18.103 Problem Set 3 Partial Solutions Sawyer Tabony

1.4.18 We have that Chebyshev's inequality implies

$$
\mu\left(\left\{\omega ;\left|\frac{S_{n}(\omega)}{n}\right|<\varepsilon\right\}\right) \leq 3 n^{-2} \varepsilon^{-4}
$$

Now we are meant to choose a sequence $\varepsilon_{n} \longrightarrow 0$ such that

$$
\sum_{n=1}^{\infty} n^{-2} \varepsilon_{n}^{-4}
$$

is finite. Here, we have to be explicit, we need to actually write down a formula for ε_{n} satisfying these criteria to exhibit that such a sequence exists. It's good to be able to rattle off a few convergent infinite sums for just this sort of occassion (or for dinner parties); the two most common examples are

$$
\sum_{n=1}^{\infty} n^{-p} \text { for } p \in \mathbb{R}, p>1, \text { and } \sum_{n=1}^{\infty} a^{n} \text { for } a \in \mathbb{R},|a|<1
$$

(These two examples can be proven by the integral test and the geometric series formula respectively.)

So we'd like to choose our ε_{n} so that the summand in the infinite sum above matches one of these sums that is known to converge. Because we are multiplying a power of ε_{n} by n^{-2}, getting the sum to look like the first sum seems much more promising. So in other words, we'd like to choose ε_{n} so that both $\varepsilon_{n} \longrightarrow 0$ and $\forall n \in \mathbb{N}$,

$$
n^{-2} \varepsilon_{n}^{-4}=n^{-p}
$$

for some $p>1$. So we solve for ε_{n} :

$$
\begin{aligned}
n^{-2} \varepsilon_{n}^{-4} & =n^{-p} \\
\varepsilon_{n}^{-4} & =n^{2-p} \\
\varepsilon_{n}^{4} & =n^{p-2} \\
\varepsilon_{n} & =n^{\frac{p-2}{4}}
\end{aligned}
$$

Now we have to choose p subject to two restraints: for our sum to converge, we need $p>1$, and for $\varepsilon_{n} \longrightarrow 0$, we need $\frac{p-2}{4}<0 \Longrightarrow p<2$. So let $p=\frac{3}{2}$. Then

$$
\varepsilon_{n}=n^{\frac{3}{2}-2} 4=n^{-\frac{1}{8}}
$$

So now we define the set

$$
A_{n}=\left\{\omega ;\left|\frac{S_{n}(\omega)}{n}\right|>n^{-\frac{1}{8}}\right\} \in \mathcal{F} .
$$

Then we have (from the first equation above),

$$
\mu\left(A_{n}\right) \leq 3 n^{-2}\left(n^{-\frac{1}{8}}\right)^{-4}=3 n^{-\frac{3}{2}}
$$

Thus,

$$
\sum_{n=1}^{\infty} \mu\left(A_{n}\right) \leq \sum_{n=1}^{\infty} 3 n^{-\frac{3}{2}}=3 \sum_{n=1}^{\infty} n^{-\frac{3}{2}}<\infty
$$

So by the first Borel-Cantelli lemma, if $A=\left\{A_{i}\right.$; i.o. $\}$, then $\mu(A)=0$. Now it isn't too hard to derive the law of large numbers.

$$
\begin{aligned}
& 0=\mu(A)=\mu\left(\left\{A_{i} ; \text { i.o. }\right\}\right)=\mu\left(\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_{k}\right)=\lim _{n \longrightarrow \infty} \mu\left(\bigcup_{k=n}^{\infty} A_{k}\right)= \\
& \lim _{n \longrightarrow \infty} \mu\left(\bigcup_{k=n}^{\infty}\left\{\omega ;\left|\frac{S_{k}(\omega)}{k}\right|>k^{-\frac{1}{8}}\right\}\right)= \lim _{n \longrightarrow \infty} \mu\left(\left\{\omega ; \exists k \geq n \text { s.t. }\left|\frac{S_{k}(\omega)}{k}\right|>k^{-\frac{1}{8}}\right\}\right) \\
& \geq \mu\left(\left\{\omega ;\left|\frac{S_{i}(\omega)}{i}\right| \nrightarrow 0\right\}\right)
\end{aligned}
$$

since

$$
\left\{\omega ;\left|\frac{S_{i}(\omega)}{i}\right| \nrightarrow 0\right\} \subseteq\left\{\omega ; \exists k \geq n \text { s.t. }\left|\frac{S_{k}(\omega)}{k}\right|>k^{-\frac{1}{8}}\right\} \quad \forall n \in \mathbb{N} .
$$

So we have shown

$$
\mu\left(\left\{\omega ;\left|\frac{S_{i}(\omega)}{i}\right| \nrightarrow 0\right\}\right)=0
$$

the law of large numbers.
1.4.19 We have $X=\left\{x_{1}, x_{2}, \ldots\right\}$, and $P_{i} \in \mathbb{R}$ nonnegative with

$$
\sum_{i=1}^{\infty} P_{i}=1 \text { and } \mu(A)=\sum_{x_{i} \in A} P_{i}
$$

We prove this by contradiction: assume there does exist an infinite sequence $\left\{A_{i}\right\}_{i=1}^{\infty}$ of independent sets, all with measure $\frac{1}{2}$. Then let $x_{r} \in X, n \in \mathbb{N}$. For each $A_{i}, i \in\{1,2, \ldots, n\}$, we either have $x_{r} \in A_{i}$ or $x_{r} \notin A_{i}$. If $x_{r} \in A_{i}$, let $B_{i}=A_{i}$, if $x_{r} \notin A_{i}$, let $B_{i}=A_{i}^{c}$. Then for each $i, x_{r} \in B_{i}$, and either $\mu\left(B_{i}\right)=\mu\left(A_{i}\right)=\frac{1}{2}$ or $\mu\left(B_{i}\right)=\mu\left(A_{i}^{c}\right)=1-\mu\left(A_{i}\right)=1-\frac{1}{2}=\frac{1}{2}$. So $\mu\left(B_{i}\right)=\frac{1}{2}$ for all i.

Since the $A_{1}, A_{2}, \ldots, A_{n}$ are independent, by problem 1.4.10a (applied as necessary), the $B_{1}, B_{2}, \ldots, B_{n}$ are independent. Thus,

$$
\mu\left(\bigcap_{i=1}^{n} B_{i}\right)=\prod_{i=1}^{n} \mu\left(B_{i}\right)=\frac{1}{2^{n}}
$$

But $x_{r} \in B_{i}$ for each i, so $x \in \bigcap B_{i}$, so

$$
\frac{1}{2^{n}}=\mu\left(\bigcap_{i=1}^{n} B_{i}\right)=\sum_{x_{j} \in \cap B_{i}} P_{j} \geq P_{r}
$$

So we have shown that $P_{r} \leq \frac{1}{2^{n}}$. Since n was arbitrary, we can let $n \longrightarrow \infty$. Then $P_{r}=0$. But r was also arbitrary, so $P_{i}=0$ for all i. But this blatantly contradicts

$$
\sum_{i=1}^{\infty} P_{i}=1
$$

so our assumption must be false. Therefore, there does not exist an infinite sequence of independent sets with measure $\frac{1}{2}$.

