
Commutative and noncommutative symplectic
resolution and perverse sheaves

May 18, 2015

() Commutative and noncommutative symplectic resolution and perverse sheavesMay 18, 2015 1 / 23



Symplectic resolutions.

Let π : X → Y be a symplectic resolution.
So X , Y are algebraic varieties over a field k (for now k = C), π is a
resolution of singularities and X has an algebraic symplectic form ω. We
assume that Y is normal and that the multiplicative group Gm acts on X ,
Y contracting Y to a point 0 and t∗(ω) = t2ω.
Examples: 1) X = T ∗(G/B) is the cotangent of the flag variety for a
semisimple algebraic group G ; Y = N ⊂ g is the set of nilpotent matrices.
Or more generally Y ⊂ N is a transversal slice to an orbit and
X ⊂ T ∗(G/B) is the preimage of Y .

2) X = M(w , v)θ, Y = M0(w , v) are the Nakajima quiver varieties.
Thus M(w , v)θ is the moduli space of representations of a Nakajima
quiver which are stable with respect to stability θ and M0(w , v) is the
affine coarse moduli space.
3) Y = V /Γ where V is a symplectic vector space.
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Kleinian example

For example, Y = A2/Γ for a finite subgroup Γ ⊂ SL(2) is a special case
of all three types of examples.
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π−1(0)
X → Y = {xy = z3} (fibered over {z})

T ∗(G/B)

T ∗P T ∗(P̌).
λ
p
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v1 v2 v3.
Cv1 Cv2 Cv3
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K -equivalence ⇒ D-equivalence for symplectic resolutions.

Given X , Y we may also have another symplectic resolution π′ : X ′ → Y .
For an algebraic variety X abbreviate Db(Coh(X )) to D(X ).

Conjecture. (a special case Kawamata ”K-equivalence implies
D-equivalence” conjecture (2002)) Let X , X ′ be two resolutions of
singularities of the same singular space Y . Assume that the canonical line
bundles KX , KX ′ are trivial. Then there exists an equivalence
Db(Coh(X )) ∼= Db(Coh(X ′).

Theorem. [R.B. and D. Kaledin for Y = V /Γ (2004); Kaledin in general
(2005)].
Conjecture holds when X → Y , X ′ → Y are symplectic resolutions.
Remark. The conjecture does not say how canonical this equivalence is
supposed to be. We will state a more precise conjecture in our case.
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Equivalences from paths in the space of Kahler parameters

Notice: Pic(X ) = Pic(X ′) (this is an easy fact since X ⊃ U ∼= U ′ ⊂ X ′

where U and U ′ have complement of codimension at least two).
Let Λ = Pic(X )/torsion. It is known that Λ is a lattice,
Λ = H2(X ,Z)/torsion which is thus canonically defined given Y (assuming
a symplectic resolution X exists).

Set V = Λ⊗ R = H2(X ,R). We will define an open subset V 0
C ⊂ VC

(complement to some hyperplanes) and propose that the equivalence
depends on the homotopy class of a path connecting two regions in V 0.
Remark. This implies that π1(V 0

C) acts on D(X ), so we should have a
local system of categories on V0. We expect (and can prove in some
cases) it comes from a richer structure related to Bridgeland variations of
stabilities.
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Example: cotangent to projective spaces

X = T ∗(P), X ′ = T ∗(P̌) where P = Pn−1 is a projective space and P̌ is
the dual projective space; Y is the space of nilpotent n × n matrices of
rank at most one.
Then V = C, V 0 = C \ Z. The equivalence will depend on a path from
the upper half plan to the lower half plane. The equivalence corresponding
to the path around p0 is given by the correspondence X ×Y X ′, the one
corresponding to p′0 by the correspondence X ′ ×Y X . Using the loop p1

will get the equivalence given be the sheaf pr∗1 (O(2))⊗ pr∗2 (O(−2)) on
X ×Y X ′. π−1(0)

X → Y = {xy = z3} (fibered over {z})

T ∗(G/B)

T ∗P T ∗(P̌).
λ
p

A, A′

v1 v2 v3.
Cv1 Cv2 Cv3

Ux FT Uy

Φ trivialized

p0 p′0 p1
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Equivalences via quantization in positive characteristic

The idea of proof of the Theorem is based on quantization in positive
characteristic. This is done in five steps:

I) Replace X , X ′, Y by ”the same” varieties Xk , X ′k , Yk over k of
characteristic p � 0.
II) Find compatible quantizations Xk , X ′k , Yk .
III) Prove derived quantized affineness:

Db(X quant
k −mod) ∼= Db(Y quant

k −mod) ∼= Db((X ′)quantk −mod).

IV) Use the p-center phenomenon to relate modules over quantized
positive characteristic varieties to coherent sheaves.
V) Lift everything to characteristic zero.
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Some examples

Example of the p-center phenomenon: xp, yp are in the center of

k〈x , y〉/xy − yx = 1.

Example of the method: X = T ∗(P1), quantization produces the sheaf of
twisted differential operators on P1. Its restriction to zero section is
Fr∗(O(i)).
For −1 < i < p − 1 we have Fr∗(O(i)) = Oi+1 ⊕O(−1)p−i−1. Only
indecomposable summands, not their multiplicities matter, so lifting to
characteristic zero get O ⊕O(−1) on T ∗(P1).
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Local system of categories (and more!) from quantization
in positive characteristic

Key point: which quantization do we use in step II? Different choices lead
to different equivalences!
Program: study all possible quantizations and equivalences they yield.
Motivations:
A) Get a rich structure on D(X ) with apparent connections to mirror
symmetry, quantum cohomology etc.
A′) Sometimes they are connected to local geometric Langlands duality.
B) The quantized algebras O(Y quant) are oftentimes of interest in
representation theory.
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Applications to representation theory

In the setting of Example 1 these are quotients of enveloping algebras of
semi-simple Lie algebras or finite W -algebra; in Example 3 get rational
Cherednik algebras (rDAHA) or symplectic reflection algebras (SRA).
Hope to develop new generalizations of Kazhan-Lusztig theory: relate
irreducible representations in positive characteristic to canonical basis in
the Grothendieck ring K 0(D(X ))⊗Q ∼= H∗(X ,Q).
[The last isomorphism follows from De Concini-Lusztig-Procesi in Example
1, Kaledin in general].
Existing applications: count of the number of finite dimensional
representations of wreath product symplectic reflection algebras (Etingof’s
conjectures, joint with Losev).
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Geometric picture: symplectic resolutions depending on a
chamber

The following is standard in Example 1, due to Nakajima in Example 2 and
to Namikawa in general.
VR is partitioned into rational cones, and a resolution XC can be attached
to a cone C . There is a group W (the Weyl group) acting on V and for
λ ∈ C we have w(λ) is ample on XC for some w .
In Example 1 we get just one resolution and the usual stratification by
Weyl chambers.

π−1(0)
X → Y = {xy = z3} (fibered over {z})

T ∗(G/B)

T ∗P T ∗(P̌).
λ
p

A, A′

v1 v2 v3.
Cv1 Cv2 Cv3

Ux FT Uy

Φ trivialized

1

π−1(0)
X → Y = {xy = z3} (fibered over {z})

T ∗(G/B)

T ∗P T ∗(P̌).
λ
p

A, A′

v1 v2 v3.
Cv1 Cv2 Cv3

Ux FT Uy

Φ trivialized

1

π−1(0)
X → Y = {xy = z3} (fibered over {z})

T ∗(G/B)

T ∗P T ∗(P̌).
λ
p

A, A′

v1 v2 v3.
Cv1 Cv2 Cv3

Ux FT Uy

Φ trivialized

1

π−1(0)
X → Y = {xy = z3} (fibered over {z})

T ∗(G/B)

T ∗P T ∗(P̌).
λ
p

A, A′

v1 v2 v3.
Cv1 Cv2 Cv3

Ux FT Uy

Φ trivialized

1

π−1(0)
X → Y = {xy = z3} (fibered over {z})

T ∗(G/B)

T ∗P T ∗(P̌).
λ
p

A, A′

v1 v2 v3.
Cv1 Cv2 Cv3

Ux FT Uy

Φ trivialized

1

π−1(0)
X → Y = {xy = z3} (fibered over {z})

T ∗(G/B)

T ∗P T ∗(P̌).
λ
p

A, A′

v1 v2 v3.
Cv1 Cv2 Cv3

Ux FT Uy

Φ trivialized

1

() Commutative and noncommutative symplectic resolution and perverse sheavesMay 18, 2015 11 / 23



π−1(0)
X → Y = {xy = z3} (fibered over {z})

T ∗(G/B)

T ∗P T ∗(P̌).
λ
p

A, A′

v1 v2 v3.
Cv1 Cv2 Cv3

Ux FT Uy

Φ trivialized

1

π−1(0)
X → Y = {xy = z3} (fibered over {z})

T ∗(G/B)

T ∗P T ∗(P̌).
λ
p

A, A′

v1 v2 v3.
Cv1 Cv2 Cv3

Ux FT Uy

Φ trivialized

1

() Commutative and noncommutative symplectic resolution and perverse sheavesMay 18, 2015 12 / 23



Noncommutative resolutions depending on alcoves

In the last slide we saw that symplectic resolutions of a given singular
space depend on a cone (chamber) in the space VR. We will now look at
some shifts of the hyperplanes which partition VR into compact pieces
called alcoves, and describe noncommutative resolutions parametrized by
those alcoves.
We also let V 0

C denote the complement in VC to the complexification of
the hyperplanes.
Can define a quantization depending on λ ∈ Λ = Pic(X ), getting
Oquant

X (λ) etc.
E.g.. for X = T ∗(G/B) it’s the sheaf of twisted differential operators on
G/B.
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Noncommutative resolution via quantization in positive
characteristic

The Theorem part in the next statement is joint with R. Anno, R.B., I.
Mirkovic, based on joint work with Riche, Mirkovic; Mirkovic and Rumynin.
Claim. (Theorem in Example 1 (assuming H2(X ) ∼= H2(T ∗(G/B))) and
conjecture in general)
There exists a collection of affine hyperplanes which partition VR into
alcoves, so that

1) The equivalence obtained by the procedure above works when λ
p is in

one of the alcoves.

2) For λ
p , µ

p in the same alcove we get the same equivalence.

3) Moreover, the algebras obtained by quantizing Y in positive
characteristic can be lifted to characteristic zero resulting in algebras (well
defined up to a Morita equivalence) AA depending on an alcove A. They
come with an equivalence D(AA −mod) ∼= D(X ).
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Equivalences via quantization in positive characteristic

4) All these equivalences fit into a representation of the Poincare groupoid
of V 0

C.
Here: to a point in an alcove we assign the category Db(AA −mod).
To a point in the region VR + iC we assign D(XC ).
To a straight line connecting x ∈ A to y ∈ VR + iC we assign the
canonical equivalence Db(AA −mod) ∼= D(X ) above.
5) For two adjacent alcoves the equivalence
Db(AA −mod) ∼= Db(AA′ −mod) corresponding to the counterclockwise
path around the separating hyperplane is a perverse equivalence governed
by the central charge map, similar to Bridgeland’s stability axioms.

Question: Kapranov and Schechtman defined perverse sheaves of
categories (perverse Schobers). Does the above extend to a perverse
Schober on V ?
Easy (but important) remark: The action of π1(V 0) on D(X ) lifts to
Db(CohGm(X )).
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Relation to quantum cohomology

Claim. (Theorem in Example 1 (if H2(X ) = H2(G/B)) based on a result
of Braverman, Maulik and Okounkov, Conjecture in general).
The action of π1(V 0

C) on K 0(CohGm(X )) is isomorphic to the monodromy
of equivariant quantum connection QH∗C∗(X ).

This confirms the idea that quantum cohomology should be related to
Bridgeland stabilities proposed by Bridgeland based on mirror symmetry.

A precise relation of the Claim to mirror symmetry has not yet been
completely worked out.
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From quiver varieties to perverse sheaves

To describe the basis of irreducibles in K 0(AA −mod) one wants to apply
the pattern of Kazhdan-Lusztig theory and realize it as a category of
perverse sheaves.
A result from a joint project with M. Kapranov suggests a way to do this
in the case of a quiver variety.

Start with a quiver Q, we allow loops and other multiple edges.
Build a compact complex curve C with nodal singularities as follows.
The components of C are in bijection with vertices of Q. For a vertex v
the component Cv has genus g .
The curve C is obtained from the disjoint union of Cv by choosing m
points on Cv and gluing each one of them to a point on Cv ′ for any pair of
vertices v , v ′ connected by an edge of multiplicity m.
We also trivialize the tensor product of tangent lines at each pair of glued
points.
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Microlocal sheaves

Definition. A microlocal sheaf on C is a perverse sheaf F on the
normalization C̃ together with an identification

FT (F|Ux ) ∼= F|Uy .

Here x , y ∈ C̃ are two points projecting to the same point on C , Ux , Uy

are small disks around x , y and FT is the local Fourier transform.

A marked microlocal sheaf is a microlocal sheaf s.t. the corresponding
sheaf on C̃ has singularities at the preimages of the double points plus one
additional marked point on each component, together with trivialization of
the vanishing cycles at those marked points.
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Microlocal sheaves and multiplicative quiver varieties

Theorem. (R.B. and M. Kapranov) A multiplicative quiver variety is the
moduli space of marked microlocal sheaves.

Remark. A closely related construction is due to Crawley-Boevey and a
related construction to Yamakawa.
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Quiver varieties and perverse sheaves

The following Conjecture is motivated by the standard fact that the
moduli space (stack) LocSysDR of De Rham local systems on a smooth
curve is the cotangent bundle to the stack Bunn, the moduli stack of rank
n vector bundles.
The second part of the conjecture is motivated by analogy with geometric
Langlands duality.

Conjecture. The moduli space of De Rham microlocal sheaves is the
twisted cotangent bundle of a moduli space of object (vector bundles on C
with an additional structure) that we call marked vector bundles.
AA −mod is equivalent to a full subcategory in the category of perverse
sheaves on the space of marked vector bundles.
Remark. Something related to our marked vector bundles was defined by
Crawley-Boevey who called them vector bundle representations of the
quiver.
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