Commutative and noncommutative symplectic resolution and perverse sheaves

May 18, 2015

Symplectic resolutions.

Let $\pi: X \to Y$ be a symplectic resolution.

So X, Y are algebraic varieties over a field k (for now $k = \mathbb{C}$), π is a resolution of singularities and X has an algebraic symplectic form ω . We assume that Y is normal and that the multiplicative group \mathbb{G}_m acts on X, Y contracting Y to a point 0 and $t^*(\omega) = t^2 \omega$.

Examples: 1) $X = T^*(G/B)$ is the cotangent of the flag variety for a semisimple algebraic group G; $Y = \mathcal{N} \subset \mathfrak{g}$ is the set of nilpotent matrices. Or more generally $Y \subset \mathcal{N}$ is a transversal slice to an orbit and $X \subset T^*(G/B)$ is the preimage of Y.

2) $X = M(w, v)_{\theta}$, $Y = M_0(w, v)$ are the Nakajima *quiver varieties*. Thus $M(w, v)_{\theta}$ is the moduli space of representations of a Nakajima quiver which are stable with respect to stability θ and $M_0(w, v)$ is the affine coarse moduli space.

3) $Y = V/\Gamma$ where V is a symplectic vector space.

For example, $Y = \mathbb{A}^2/\Gamma$ for a finite subgroup $\Gamma \subset SL(2)$ is a special case of all three types of examples.

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

 $X \to Y = \{xy = z^3\}$ (fibered over $\{z\}$)

<ロ> (日) (日) (日) (日) (日)

K-equivalence \Rightarrow *D*-equivalence for symplectic resolutions.

Given X, Y we may also have another symplectic resolution $\pi' : X' \to Y$. For an algebraic variety X abbreviate $D^b(Coh(X))$ to D(X).

Conjecture. (a special case Kawamata "*K*-equivalence implies D-equivalence" conjecture (2002)) Let X, X' be two resolutions of singularities of the same singular space Y. Assume that the canonical line bundles K_X , $K_{X'}$ are trivial. Then there exists an equivalence $D^b(Coh(X)) \cong D^b(Coh(X'))$.

Theorem. [R.B. and D. Kaledin for $Y = V/\Gamma$ (2004); Kaledin in general (2005)].

Conjecture holds when $X \rightarrow Y$, $X' \rightarrow Y$ are symplectic resolutions.

Remark. The conjecture does not say *how canonical* this equivalence is supposed to be. We will state a more precise conjecture in our case.

イロト 不得下 イヨト イヨト 二日

Equivalences from paths in the space of Kahler parameters

Notice: Pic(X) = Pic(X') (this is an easy fact since $X \supset U \cong U' \subset X'$ where U and U' have complement of codimension at least two). Let $\Lambda = Pic(X)/torsion$. It is known that Λ is a lattice, $\Lambda = H^2(X, \mathbb{Z})/torsion$ which is thus canonically defined given Y (assuming a symplectic resolution X exists).

Set $V = \Lambda \otimes \mathbb{R} = H^2(X, \mathbb{R})$. We will define an open subset $V_{\mathbb{C}}^0 \subset V_{\mathbb{C}}$ (complement to some hyperplanes) and propose that the equivalence depends on the homotopy class of a path connecting two regions in V^0 . **Remark.** This implies that $\pi_1(V_{\mathbb{C}}^0)$ acts on D(X), so we should have a *local system* of categories on V_0 . We expect (and can prove in some cases) it comes from a richer structure related to Bridgeland variations of stabilities.

Example: cotangent to projective spaces

 $X = T^*(\mathbb{P}), X' = T^*(\check{\mathbb{P}})$ where $\mathbb{P} = \mathbb{P}^{n-1}$ is a projective space and $\check{\mathbb{P}}$ is the dual projective space; Y is the space of nilpotent $n \times n$ matrices of rank at most one.

Then $V = \mathbb{C}$, $V^0 = \mathbb{C} \setminus \mathbb{Z}$. The equivalence will depend on a path from the upper half plan to the lower half plane. The equivalence corresponding to the path around p_0 is given by the correspondence $X \times_Y X'$, the one corresponding to p'_0 by the correspondence $X' \times_Y X$. Using the loop p_1 will get the equivalence given be the sheaf $pr_1^*(\mathcal{O}(2)) \otimes pr_2^*(\mathcal{O}(-2))$ on $X \times_Y X'$.

The idea of proof of the Theorem is based on *quantization in positive characteristic*. This is done in five steps:

I) Replace X, X', Y by "the same" varieties X_k , X'_k , Y_k over k of characteristic $p \gg 0$.

II) Find compatible quantizations X_k , X'_k , Y_k .

III) Prove derived quantized affineness:

$$D^b(X_k^{quant} - mod) \cong D^b(Y_k^{quant} - mod) \cong D^b((X')_k^{quant} - mod).$$

IV) Use the *p-center* phenomenon to relate modules over quantized positive characteristic varieties to coherent sheaves.V) Lift everything to characteristic zero.

Example of the *p*-center phenomenon: x^p, y^p are in the center of

$$k\langle x,y\rangle/xy-yx=1.$$

Example of the method: $X = T^*(\mathbb{P}^1)$, quantization produces the sheaf of twisted differential operators on \mathbb{P}^1 . Its restriction to zero section is $Fr_*(\mathcal{O}(i))$.

For -1 < i < p-1 we have $Fr_*(\mathcal{O}(i)) = \mathcal{O}^{i+1} \oplus \mathcal{O}(-1)^{p-i-1}$. Only indecomposable summands, not their multiplicities matter, so lifting to characteristic zero get $\mathcal{O} \oplus \mathcal{O}(-1)$ on $T^*(\mathbb{P}^1)$.

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ●

Local system of categories (and more!) from quantization in positive characteristic

- **Key point:** which quantization do we use in step II? Different choices lead to different equivalences!
- **Program:** study all possible quantizations and equivalences they yield. Motivations:
- A) Get a rich structure on D(X) with apparent connections to mirror symmetry, quantum cohomology etc.
- A') Sometimes they are connected to local geometric Langlands duality. B) The quantized algebras $\mathcal{O}(Y^{quant})$ are oftentimes of interest in representation theory.

イロト 不得 トイヨト イヨト 二日

Applications to representation theory

In the setting of Example 1 these are quotients of *enveloping algebras* of semi-simple Lie algebras or finite *W*-algebra; in Example 3 get rational Cherednik algebras (rDAHA) or symplectic reflection algebras (SRA). Hope to develop new generalizations of *Kazhan-Lusztig theory*: relate irreducible representations in positive characteristic to *canonical basis* in the Grothendieck ring $K^0(D(X)) \otimes \mathbb{Q} \cong H^*(X, \mathbb{Q})$.

[The last isomorphism follows from De Concini-Lusztig-Procesi in Example 1, Kaledin in general].

Existing applications: count of the number of finite dimensional representations of wreath product symplectic reflection algebras (Etingof's conjectures, joint with Losev).

(日) (同) (三) (三) (三)

Geometric picture: symplectic resolutions depending on a chamber

The following is standard in Example 1, due to Nakajima in Example 2 and to Namikawa in general.

 $V_{\mathbb{R}}$ is partitioned into rational cones, and a resolution X_C can be attached to a cone C. There is a group W (the Weyl group) acting on V and for $\lambda \in C$ we have $w(\lambda)$ is *ample* on X_C for some w.

In Example 1 we get just one resolution and the usual stratification by Weyl chambers.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三重 - のへの

Noncommutative resolutions depending on alcoves

In the last slide we saw that symplectic resolutions of a given singular space depend on a cone (chamber) in the space $V_{\mathbb{R}}$. We will now look at some shifts of the hyperplanes which partition $V_{\mathbb{R}}$ into compact pieces called *alcoves*, and describe *noncommutative* resolutions parametrized by those alcoves.

We also let $V^0_{\mathbb{C}}$ denote the complement in $V_{\mathbb{C}}$ to the complexification of the hyperplanes.

Can define a quantization depending on $\lambda \in \Lambda = Pic(X)$, getting $\mathcal{O}_{X}^{quant}(\lambda)$ etc.

E.g.. for $X = T^*(G/B)$ it's the sheaf of *twisted differential operators* on G/B.

Noncommutative resolution via quantization in positive characteristic

The Theorem part in the next statement is joint with R. Anno, R.B., I. Mirkovic, based on joint work with Riche, Mirkovic; Mirkovic and Rumynin. **Claim.** (Theorem in Example 1 (assuming $H^2(X) \cong H^2(T^*(G/B))$) and conjecture in general) *There exists a collection of affine hyperplanes which partition* $V_{\mathbb{R}}$ *into alcoves, so that*

1) The equivalence obtained by the procedure above works when $\frac{\lambda}{p}$ is in one of the alcoves.

2) For $\frac{\lambda}{p}$, $\frac{\mu}{p}$ in the same alcove we get the same equivalence.

3) Moreover, the algebras obtained by quantizing Y in positive characteristic can be lifted to characteristic zero resulting in algebras (well defined up to a Morita equivalence) A_A depending on an alcove A. They come with an equivalence $D(A_A - mod) \cong D(X)$.

Equivalences via quantization in positive characteristic

4) All these equivalences fit into a representation of the Poincare groupoid of $V^0_{\mathbb{C}}$.

Here: to a point in an alcove we assign the category $D^b(A_A - mod)$. To a point in the region $V_{\mathbb{R}} + iC$ we assign $D(X_C)$.

To a straight line connecting $x \in A$ to $y \in V_{\mathbb{R}} + iC$ we assign the canonical equivalence $D^{b}(\mathcal{A}_{A} - mod) \cong D(X)$ above.

5) For two adjacent alcoves the equivalence

 $D^{b}(\mathcal{A}_{A} - mod) \cong D^{b}(\mathcal{A}_{A'} - mod)$ corresponding to the counterclockwise path around the separating hyperplane is a perverse equivalence governed by the central charge map, similar to Bridgeland's stability axioms.

Question: Kapranov and Schechtman defined perverse sheaves of categories (*perverse Schobers*). Does the above extend to a perverse Schober on V?

Easy (but important) remark: The action of $\pi_1(V^0)$ on D(X) lifts to $D^b(Coh^{\mathbb{G}_m}(X))$.

May 18, 2015 16 / 23

・ロト・(部・・ヨ・・ヨ・・(の・・ロト

Claim. (Theorem in Example 1 (if $H^2(X) = H^2(G/B)$) based on a result of Braverman, Maulik and Okounkov, Conjecture in general). The action of $\pi_1(V^0_{\mathbb{C}})$ on $K^0(Coh^{\mathbb{G}_m}(X))$ is isomorphic to the monodromy of equivariant quantum connection $QH^*_{\mathbb{C}^*}(X)$.

This confirms the idea that quantum cohomology should be related to Bridgeland stabilities proposed by Bridgeland based on mirror symmetry.

A precise relation of the Claim to mirror symmetry has not yet been completely worked out.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

From quiver varieties to perverse sheaves

To describe the basis of irreducibles in $K^0(A_A - mod)$ one wants to apply the pattern of Kazhdan-Lusztig theory and realize it as a category of *perverse sheaves*.

A result from a joint project with M. Kapranov suggests a way to do this in the case of a quiver variety.

Start with a quiver Q, we allow loops and other multiple edges. Build a compact complex curve C with nodal singularities as follows. The components of C are in bijection with vertices of Q. For a vertex v the component C_v has genus g.

The curve *C* is obtained from the disjoint union of C_v by choosing *m* points on C_v and gluing each one of them to a point on $C_{v'}$ for any pair of vertices *v*, *v'* connected by an edge of multiplicity *m*.

We also trivialize the tensor product of tangent lines at each pair of glued points.

・ロト・(部・・ヨ・・ヨ・・(の・・ロト

Definition. A microlocal sheaf on C is a perverse sheaf \mathcal{F} on the normalization \tilde{C} together with an identification

$$FT(\mathcal{F}|_{U_x})\cong \mathcal{F}|_{U_y}.$$

Here $x, y \in \tilde{C}$ are two points projecting to the same point on C, U_x , U_y are small disks around x, y and FT is the local Fourier transform.

A marked microlocal sheaf is a microlocal sheaf s.t. the corresponding sheaf on \tilde{C} has singularities at the preimages of the double points plus one additional marked point on each component, together with trivialization of the vanishing cycles at those marked points.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三重 - のへの

()

Microlocal sheaves and multiplicative quiver varieties

Theorem. (R.B. and M. Kapranov) *A multiplicative quiver variety is the moduli space of marked microlocal sheaves.*

Remark. A closely related construction is due to Crawley-Boevey and a related construction to Yamakawa.

Quiver varieties and perverse sheaves

The following Conjecture is motivated by the standard fact that the moduli space (stack) $LocSys_{DR}$ of De Rham local systems on a smooth curve is the cotangent bundle to the stack Bun_n , the moduli stack of rank n vector bundles.

The second part of the conjecture is motivated by analogy with geometric Langlands duality.

Conjecture. The moduli space of De Rham microlocal sheaves is the twisted cotangent bundle of a moduli space of object (vector bundles on C with an additional structure) that we call marked vector bundles. $A_A - mod$ is equivalent to a full subcategory in the category of perverse sheaves on the space of marked vector bundles. **Remark.** Something related to our marked vector bundles was defined by

Crawley-Boevey who called them vector bundle representations of the quiver.

・ロト ・ 一 ・ ・ ヨト ・ ヨト