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It is commonly assumed that electrolyte membranes in fuel cells are electrically neutral, except in unsteady situations, when the
double-layer capacitance is heuristically included in equivalent circuit calculations. Indeed, the standard model for electron
transfer kinetics at the membrane/electrode interface is the Butler—Volmer equation, where the interfacial overpotential is based on
the total potential difference between the electrode and bulk electrolyte. Here, we develop an analytical theory for a solid-state
proton-conducting membrane that accounts for diffuse charge in the electrostatic polarization layers and illustrate its use for a
steady-state hydrogen concentration cell. The theory predicts that the total membrane charge is nonzero, except at a certain
hydrogen pressure, which is a thermodynamic constant of the fuel cell membrane. Diffuse layer polarization introduces the
Frumkin correction for reaction rates, where the overpotential is based on the potential difference across only the compact (Stern)
part of the polarization layer. In the Helmholtz limit of a relatively thin diffuse layer, we recover well-known results for a neutral
membrane; otherwise, we predict significant effects of diffuse charge on the electron-transfer rate. Our analysis also takes into
account the excluded volume of solvated protons, moving in a uniform charge density of fixed anions.
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One of the key elements in electrochemical processes is the
transfer of electrical charge across the electrode-electrolyte inter-
face. The kinetics of this reaction is commonly described by the
Butler—Volmer (BV) equation, which is formulated as the difference
between an anodic and a cathodic reaction rate. These reaction rates
depend on the concentrations of the participating atoms and ions and
on the interfacial overpotential, which describes the influence of the
step in potential of the electron when going from the electrode into
the electrolyte phase and vice versa."” The overpotential is typically
defined as the potential drop across the entire double layer, between
the electrode and the neutral bulk electrolyte, relative to the equilib-
rium state, where the net Faradaic current is zero. As emphasized
long ago by Frumkin,® it is more accurate to evaluate the concen-
trations where the reaction actually occurs, at the hypothetical “outer
Helmbholtz plane” or “pre-electrode plane,” which is the distance of
closest approach to the electrode for a solvated ion, separated from
the electrolyte bulk by the polarization layer (“diffuse layer” or
“space-charge region”); see Fig. 1a.271° This introduces the so-
called Frumkin correction to the BV equation, where the overpoten-
tial is based on the potential step from metal to the reaction plane,
across only the charge-free compact layer (the “Stern layer,” “com-
pact layer,” or “inner layer”), and not including the diffuse layer. In
describing reaction rates, the compact layer is commonly described
as a flat, uncharged, uniform dielectric film on the electrode. With
this approach, the Frumkin correction has been included in a few
general models of thin electrochemical cells, for example, by Itsk-
ovich et al.'' and Kornyshev and Vorotyntsev,lz'1 who also included
ion volume constraints for a solid electrol}/te with a single mobile
ion, and by Bonnefont et al.,” Bazant et al.,'* and Chu and Bazant."?

In models of fuel cells, diffuse charge is almost always neglected
and the ion-conducting membrane is assumed to be electrically neu-
tral. Indeed, for fuel cell modeling including diffuse charge, we are
only aware of the work by Franco et al., ~ "~ where Frumkin-
corrected electron transfer equations are used, within the framework
of transition state theory, to describe the elementary electrochemical
reaction mechanisms under transient conditions in polyelectrolyte
membrane fuel cell (PEFC) environments. Their nanoscale interfa-
cial model postulates an inner layer formed by dynamically compet-
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ing surface-adsorbed water molecules and electrochemical interme-
diate reaction species, which modify the effective water dipolar
density and the dynamic evolution of the generated electric potential
drop between the metal and the electrolytic phase (i.e., the Frumkin
potential across the Stern layer). The inner-layer model is coupled to
the standard Poisson-Nernst-Planck (PNP) diffuse-layer model for
the diffusion and electro-migration of protons in the presence of
fixed counterions representing the PEFC Nafion sulfonate groups.
Numerical solutions of this model have shown that diffuse-layer
effects are essential to describe time-dependent degradation pro-
cesses in fuel cells.”"? In the present article, we develop a simpler
analytical model to predict some basic effects of diffuse charge dur-
ing steady-state operation.

Interestingly, it is sometimes argued (Ref. 20, p. 13989; Ref. 21,
p. 1410) that the relevance of the Frumkin correction must be small
because the ion concentrations in pol;/mer electrolytes (such as
Nafion) are high. Similarly, Wang et al.** (p. A1734) argue that “the
term cy,/cpy . [the Frumkin correction] can be approximated by
unity because the proton concentration is fixed in acid ionomers,
[and] high in acid liquid media, and thus essentially constant during
the hydrogen oxidation reaction.” These arguments are often used to
support neglecting the diffuse part of the double layer and thus
replacing the potential difference of the compact (Stern) part by the
full potential difference from metal to bulk electrolyte. However, as
we will argue, even at high ion concentrations, there can still be a
significant potential difference (and proton concentration gradient)
in the diffuse part of the polarization layer, which affects reaction
rates; as a result, diffuse-charge effects can be important even in
solid electrolytes. Similar conclusions have been reached by Franco
et al.'®!® on the basis of nanoscale modeling of PEFCs and by
Bazant et al.'"* and Chu and Bazant" through analysis of a general
mathematical model for binary electrochemical cells. Atomistic cal-
culations also highlight the importance for accounting for diffuse
layer effects for a more accurate prediction of the energetics in gen-
eral interfacial electrochemical processes.

The goal of the present contribution is to derive simple analytical
expressions for the voltage and power generated by a fuel cell in
steady state, taking into account diffuse charge in the membrane.
The physical insights and general formulas resulting from this ap-
proach are intended to complement the more detailed time-
dependent numerical models of fuel cells described elsewhere (e.g.,
by Franco et al.'%1% and references therein). To keep matters as
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Figure 1. (Color online) (a) Schematic
representation of the electrostatic potential
profile in the fuel cell membrane. In this
representation, there is an excess of pro-
tons in the anodic polarization layer and a

deficit on the cathodic side. (b) As in (a),
but for three cases: I, as in (a); I, with an
excess of protons on both sides; and III,
with a deficit of protons on both sides. The
dashed lines show the electrical voltage
increase through the external circuit.

(b)

simple as possible, we analyze a planar proton-conducting polyelec-
trolyte membrane with fixed negative charge.” Our analysis is
based on two types of mean-field, continuum models for proton
transport, where either positive point charges or solvated protons of
a nonzero size move in a uniform background density of immobile
anions.""™ The membrane model is completed by Frumkin-
corrected BV reaction kinetics for the charge transfer from the metal
catalyst across a uniform Stern layer to the reaction plane. Although
this general model already incorporates a number of complicated
physical effects, it remains simple enough for mathematical analysis
of various limiting cases. In the context of fuel cell modeling, one
aspect is the inclusion of ion volume constraints in the description of
the polarization layer and the charge transfer rate.

To illustrate the use of the analytical membrane model, we apply
it to the simplest case of a fuel cell where the only reactive gas-
phase species is hydrogen. In such a ‘“concentration cell,” it is a
difference in hydrogen concentration between the anodic and ca-
thodic compartments that drives the electrical current.”® This allows
us to neglect other processes, such as the catalytic conversion of
gaseous oxygen, and to consider only the Tafel-Heyrovsky—Volmer
reaction mechanism for the conversion of molecular hydrogen into

10,20,21 .
protons and electrons at each electrode. As a first approxima-
tion, we neglect the Heyrovsky reaction step, which is a mixed
reaction of simultaneous atomic hydrogen adsorption and proton
formation. Transport limitations in the gas phases, nonisothermal
operation, and the nonzero thickness of the electrode reaction region
(and the mass transport therein26) are also neglected, as well as
water transport for the case of PEFCs.”" Although we consider the
adsorption/desorption equilibrium of hydrogen onto the catalyst, we
neglect a diffusional limitation for the adsorbed hydrogen atoms on
the catalyst surface. In summary, we consider as possible rate-
limiting steps the ad-/desorption of hydrogen, the electrochemical
conversion of hydrogen atoms into protons (and vice versa), as well
as the ohmic transport of electrons and ions through the external
circuit and the electrolyte membrane, respectively. Although our
analysis is performed for a hydrogen concentration cell, it can easily

be extended to other types of fuel cells or electrochemical systems,
and its conclusions about diffuse-charge effects on reaction rates
should have broad applicability.

Theory

As explained above, we illustrate the modeling of diffuse charge
in a fuel cell membrane via the example of an electrochemical hy-
drogen concentration cell, where the only mobile and reactive ion in
the electrolyte phase is the proton. At the cathode, the proton can
react with an electron to form a neutral adsorbed hydrogen atom
(Volmer reaction step) that can diffuse over the catalytic surface,
combine with a second hydrogen atom, and desorb as molecular
hydrogen (Tafel reaction step). We assume that the adsorbed hydro-
gen atoms are at equilibrium with the hydrogen molecules. For sim-
plicity, we neglect a possible limitation in the catalytic surface con-
centration of sites for protons to adsorb to (i.e., we set the adsorption
site vacancy concentration 6 to unitylé). At the anode, we have the
reverse situation.

Ohmic laws.— According to Ohm’s law, the generated electrical
voltage, V, is given by

V= VC,m - VA,m = iRexl [1]

with 7 is current, Ry is the external resistance, and V¢ ,, and Vi

are the electrical potentials in the metallic phase of the cathode and

anode, respectively. In the electrolyte bulk phase (membrane), we
also assume Ohm’s law"?

AVey = Vap = Vep = iRay [2]
where b stands for the electrolyte bulk phase, just beyond the polar-

ization layer (outer, or Volta, potential), and where the electrolyte
resistance is given for a planar membrane by
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L

Relyt = A_O'

(3]
where L is the thickness, A is the area, and o is the ionic conduc-
tivity of the membrane. Assuming that protons are the only charge-
carrying ions, o is given by
2
e
o=Dc,— 4
kT (4]

where D is the proton diffusion coefficient and c.. is the bulk proton
concentration.

BV equation.— The BV equation including the Frumkin correc-
tion describes the electronic current at the electrode-electlgollgfte in-

terface as the sum of a cathodic and an anodic reaction®™

i = — kgco exp(— agfAVyg) + kocg explagfAVs) [5]

where kg and kg are reaction rate constants, co and cg are concen-
trations at the reaction plane of the ion in the oxidized (O) and
reduced (R) state, and AVy is the Stern potential difference, defined
as the difference in potential between the metal phase (the elec-
trode), Vj,, and the potential at the reaction plane, V,, thus AVg
= Vim — V;- The sum of the transfer coefficients ag and ag equals
unity; f equals F/RT, or e/kgT. We stress that if diffuse charge were
neglected, as in most fuel cell models, the Stern potential drop AVg
would be replaced by the total voltage drop across the full double
layer, from the metal to the neutral bulk phase.

The representation of Eq. 5 considers both the oxidant and re-
ductant to be species present in the electrolyte phase (typical for an
electrochemical reaction in a polar solvent, such as water). However,
in fuel cells, one of the species that participates in the electrochemi-
cal reaction is typically uncharged and derives from an adjacent
phase (such as the hydrogen atoms that are surface adsorbed to a
catalytically active surface), and it is a standard approximation to set
its concentration near the site of the electrochemical reaction equal
to the reactant concentration cq or cg in Eq. 5. As discussed below,
Eq. 5 also assumes an ideal dilute solution, which can be relaxed
more generally by replacing concentrations with chemical activities.
Further on, we consider corrections due to excluded volume of the
reacting species in the electrolyte phase.

The sign of the current i in Eq. 5 is defined to be negative at the
cathode (i.e., negative in the direction for reduction, O* + e~ — R).
Implementing in Eq. 5 the proton for O, the adsorbed hydrogen
atom for R, and assuming that the electron transfer coefficients are
given by ag = ag = 1/2, we obtain the Volmer reaction rate for the
electrochemical conversion of hydrogen

1 1
i = —kgep+ exp(— EfAVs) +kocn,, exp(EfAVS) [6]

We can relate the concentration of adsorbed hydrogen atoms
cy,, 1o the gas-phase hydrogen pressure PH, according to the Tafel
reaction steplo

i= kadspH2 - kdesclz-[ads [7]

We now make two simplifications: (i) Assuming that the ad/
desorption of hydrogen gas in Eq. 7 is fast compared to the faradaic
reactions at both electrodes in Eq. 6, the adsorbed hydrogen atom is
in equilibrium with the molecular hydrogen, and we can replace
CHads in Eq 6 by \ kads/kdes . sz and define k] = ko . \“skads/kdes; (ll)
For thin double layers and non-negligible bulk ion concentrations, it
is common to assume local electrochemical equilibrium, or a con-
stant electrochemical potential, in the diffuse layers in the electro-
lyte. Ignoring volume constraints for a dilute solution, this allows us
to relate the concentration of protons at the reaction plane, cy+, to
the proton concentration in the bulk of the electrolyte phase, c..,
according to a Boltzmann distribution

Ccy+ = Coo €Xp(= fAVpy) (8]

where the potential difference across the diffuse part of the double
layer is AVpp, which is V-V. In the bulk electrolyte phase, the
proton concentration is approximately constant and at a value of c..,
which equals the concentration of the background, fixed, negative
charge. This has previously been shown by Franco et al.l’ by solv-
ing the full PNP equations for the transport of protons in Nafion, a
polyelectrolyte membrane, where the thickness of the polarization
layer was found to be between 1 and 5 nm for the anode and cath-
ode diffuse layers in a PEFC. The nearly uniform bulk proton con-
centration due to fixed anions is a crucial difference between solid
and liquid electrolytes, which eliminates diffusion limitations and
nonequilibrium space-charge formation;"” instead, bulk transport is
dominated by electromigration and the diffuse layers typically re-
main in equilibrium. With these two simplifications, Eq. 6 takes the
form

— 1 1
i=- kj{\'p* exp(— AV — EfAVS) - \/P_Hz exp(EfAVS>}
[9]

where

— k,
W= et [10]

ki

The critical fuel pressure p* is a thermodynamic constant of the
fuel cell membrane at given temperature, and k; is a kinetic constant
dependent on structural details of the electrode.

Structure of the polarization layers.— Let us discuss the struc-
ture of the Stern and diffuse layer in more detail. Directly next to the
electrode is the charge-free Stern layer, across which the potential
decay is AVg, which is separated by the reaction plane from the
diffuse layer (or “space-charge region”), across which the potential
drop is AVp =V, - V;}, where DL stands for diffuse layer. The
reaction plane is located within the electrolyte phase, and is the
closest interface to where the reacting ions and atoms that are in the
electrolyte phase are assumed to be able to approach the metallic
phase. The reaction plane is often denoted as the “outer Helmholtz
plane” or “Stern plane.” (We can also interpret it as the typical
distance over which the electron can tunnel from electrode into the
electrolyte; Ref. 2, p. 130). In the diffuse layer, both the proton
concentration and the electric potential rapidly change. For ideal
Boltzmann—Coulomb statistics based on Eq. 5, the structure of the
diffuse layer is described by the Poisson-Boltzmann (PB) equation,
which amounts to a mean-field approximation for pointlike ions.
However, many modified theories are available that incorporate cor-
relations or excluded volume effects.?®?

To relate the potential drop over the Stern layer AVg to the
charge stored in the diffuse layer, ¢ (in charge/area), we consider
continuity of the electrical displacement at the reaction plane, as-
suming a constant electric field in the Stern layer, to obtain

q=-&— [11]

which is identical to the calculation of the nondipolar contribution
A, to the overall Frumkin potential difference, given in Franco
et al.'® This is a standard approximation, which (via Gauss’ law)
relates the Stern voltage drop to the normal electric field at the inner
edge of the diffuse layer, by modeling the Stern layer as a thin,
planar, dielectric film. Equation 11 provides a boundary condition
for the electrostatic potential whenever diffuse charge is
considered.”'**" In Eq. 11, the parameter \g is an effective width
for the Stern layer, equal to its true width times the permittivity ratio
of the electrolyte to the Stern layer, and ¢ is the permittivity of the
electrolyte, which relates to k, the inverse Debye length, and to c.,
the background number concentration of negative charge, according
to k% = 2c,.e?/(ekgT). For our purposes, Eq. 11 amounts to the as-
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Figure 2. (Color online) Surface charge density ¢ of the polarization layer as
a function of diffuse-layer potential difference AV, according to the modi-
fied one-dimensional planar PB model with fixed anions and mobile cations,
as function of volume parameter v, which is the inverse volume fraction of
protons in the bulk phase.

sumption of a constant Stern-layer capacitance, which can be re-
laxed and extended in various ways, as discussed in Ref. 14 and 16.

To calculate the total charge (per unit area) stored in each diffuse
layer, ¢, we must consider the detailed structure of these layers,
including the concentration of fixed counter charge, and we require
a model for the electrostatic potential. For an ideal, dilute solution in
equilibrium, the standard model is based on PB theory, which is a
mean-field approximation for pointlike ions, as noted above. In the
simplest case of a symmetric binary electrolyte, Gouy’s solution to
the PB equation yields Chapman’s well-known formula

1
g =—4deck! sinh(EAVDL> [12]

but this is not suitable for a solid electrolyte, with only one mobile
species. Instead, we must solve the PB equation for mobile protons,
and for anions which are fixed (to a good approximation for most
proton-conducting membranes), which results in 2£d*V/dx?
= k[ 1 — exp(—fV)]. For this case, an analytical formula for the
charge density is available, given by]3

q = =2 sgn(AVp)ec k' Vexp(— fAVp) + fAVp, — 1 [13]

where sgn stands for “sign of” [i.e., sgn(x) = x/|x|]. For very nega-
tive values of AVp;, Eq. 12 and 13 coincide, but for fAVp; close to
zero, g as predicted by Eq. 13 is a factor of |2 smaller than accord-
ing to Eq. 12. Because coion expulsion is not considered in Eq. 13,
it is more realistic for a solid electrolyte. While for a binary liquid
electrolyte, Eq. 12 is symmetric and exponentially diverging in
AVpp, for a solid electrolyte with only one mobile ion and for
AVp;, > 0 the charge density ¢ as predicted by Eq. 13 grows much
more slowly, following a square-root dependence on AVp;, which is
due to the finite maximum charge density set by the anions (see Fig.
2). Interestingly, analogous models of ionic volume constraints in a
binary electrolyte28 or molten salt”! yield the same square-root scal-
ing at both large positive or negative voltage, because in all these
cases, the diffuse layer has asymptotically uniform charge density
set by the maximum density of counterions. For a solid electrolyte,
the strong asymmetry of the total charge density with voltage is a
very interesting aspect of polarization layers that have fixed back-

ground charge, whose role in fuel cell membranes has not previously
been discussed.

One assumption behind Eq. 13 is that the protons in the electro-
lyte are point charges. However, the finite volume of the protons can
be taken into account in various ways, while maintaining the mean-
field approximation, following the classical theory of steric effects
in a binary electrolyte.zg‘3 233 The simplest approach is based on a
Langmuir lattice isotherm, where the controlling parameter, v, is the
number of available sites per proton (v > 1) in the quasi-neutral
bulk phase. Equivalently, the parameter ¢., = 1/v is the volume
fraction occupied by protons in bulk (analogous to the parameter v
defined in Ref. 28). For a model of a solid electrolyte with one
mobile ion of finite size, Itskovich et al. derived a modified form of
the charge-voltage relation

q = -2 sgn(AVp ec k™!
XVfAVp + v In{l + v~ [exp(- fAVy) = 1T} [14]

which reduces to Eq. 13 for very large v. The volume constraint on
the proton concentration leads to the same square-root asymptotic
scaling of the total charge with diffuse-layer voltage for a positively
charged diffuse layer (AVp < 0), as that noted above for a nega-
tively charged diffuse layer (AVp > 0), because in both limits the
charge density becomes saturated at finite limiting values. In Fig. 2,
we give results for ¢ vs AVp; using Eq. 13 (when v is set to infinity)
and using Eq. 14 (setting v = 10), where these general trends are
apparent.

Steady-state electrical potential profiles— Figure la shows a
schematic representation of the potential profiles in the electro-
chemical cell model. Here, an example is given with an excess of
protons in the anode polarization layer, related to the fact that the
diffuse layer potential difference AVpy; is negative [AVp; being the
difference in potential at the Stern plane (reaction plane) relative to
the value in the bulk electrolyte]. On the cathode side, we have a
deficit of protons and AVp; > 0. Because we assume local equilib-
rium in the double layer, the Stern layer potential difference AV
always has the same sign as the diffuse-layer potential difference
because the electric displacement is continuous at the Stern plane.
Though we expect this approximation to have broad applicability for
fuel cell membranes, it is important to note that at a large enough
current, or for a too weak diffuse-layer field, local equilibrium can
be violated, which can cause “charge inversion” in the diffuse layer,
as has recently been predicted using a similar mean-field model for
biological membranes transmitting ionic current.**

In our model of a fuel cell membrane, the magnitudes of AVp ;
and AVg; are coupled through Eq. 11 in combination with either Eq.
12, 13, or 14. The electric potential decreases through the bulk of the
electrolyte (thus, AVgy = Vap = Vep > 0), which is a required
condition for the protons to spontaneously migrate in the electric
field through the bulk electrolyte. Similarly, the external potential
difference AV, = Vi, c — Vin.a must be positive for the electrons to
flow spontaneously through the external circuit and do work. Now it
is important to realize that though AV, and AV, must always be
positive, the polarization layer potential differences AVp ; and
AVg; do not necessarily have the signs as depicted in Fig. la, with
the associated excess of protons on the anode side and a proton
deficit on the cathode side. Actually, we can have the situation that
both layers have a deficit of protons, or both have a proton excess
(see cases II and III in Fig. 1b). This situation, for instance, occurs
when the current is low and both gas-phase pressures (at the anode
side and at the cathode side) are above p* (resulting in an excess of
protons on both sides), or when both gas-phase pressures are below
p* (resulting in a proton deficit on both sides). However, other pa-
rameter settings are also possible to give these “symmetric” situa-
tions.

The case of a proton deficit on the anode side, and an excess on
the cathode side, is impossible within our model. This can be con-
cluded from the fact that the potential must be continuous through
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the entire circuit (see Eq. 29 below) and that AV, and AV, must
always be positive. Roughly speaking, the two polarization layers
(each consisting of a diffuse part plus a Stern part) must “rectify”
the potential mismatch created in the system by the bulk proton
transport and the external electron transport. Therefore, the two po-
larization layers must compensate for the total potential drop AV,
plus AV,,,. This is most effectively done when having an excess of
protons on the anode side and a deficit on the cathode side, but
Kirchoff’s rule of zero total voltage drop around a current loop (Eq.
29) can also be respected in a system where there is an excess of
protons on both sides, or a deficit of protons on both sides, as illus-
trated in Fig. 1b.

We stress again that, in the present model, the excess proton
charge on the anodic side is not constrained in any way to exactly
compensate the proton charge deficit on the cathodic side. The total
diffuse charge on the membrane (number of mobile protons minus
the number of fixed anions) though generally small (compared to the
total number of ions) typically is nonzero. This violation of the
traditional assumption of overall electroneutrality of the membrane,
due to unbalanced diffuse charge produced by the faradaic reactions,
has been explicitly noted and quantified in models of binary electro-
chemical thin films'* while in the context of fuel cell membranes is
implicitly included in the model of Ref. 10.

Influence of ion volume constraints on the electrochemical
charge transfer rate.— A fundamental question that has received
little attention in the electrochemical literature is the manner in
which nonideal solution behavior at an interface affects faradaic
reaction rates, going beyond the BV equation (Eq. 5). For example,
above we have accounted for volume constraints in the solid elec-
trolyte at equilibrium following a classical lattice-gas model, but
there are two basic ways that such entropic considerations should
also influence the reaction rate: (i) the ion concentration at the reac-
tion (Stern) plane, relative to the bulk, is altered by steric effects in
the diffuse layer, and (ii) the reaction kinetics may be directly af-
fected by volume constraints on the reactants and activated com-
plexes, thus modifying the local BV equation (Eq. 5).

Effect (i) follows from the equilibrium theory for the polarization
layer given by Eq. 11 and 14. Using a lattice-based model of volume
constraints, the equilibrium distribution (Eq. 8) must be modified by
adding to the ideal chemical potential an excess term given by
p*=-In(1 - ¢), where & =c/(cov) is the excluded
volume.'¥%%323 The approximation of constant electrochemical po-
tential then yields the proton concentration at the reaction plane, to
be used in Eq. 6

-¢ v exp(= fAVp)
——— exp(- fAVp) = c.,

1 - b v—1+exp(— fAVp)

[15]
which resembles a Fermi-Dirac distribution and reduces to the
Boltzmann distribution (Eq. 8) in the limit v — <. In the opposite
limit v — 1, the proton concentration at the Stern plane approaches
the value in bulk (i.e., cy+ — ¢.,) because volume constraints are so
strong that protons remain at a nearly uniform concentration of
“close packing” across the entire membrane.

Effect (ii) can be included in various ways. A general approach,
consistent with the treatment of the bulk, is to express reaction rates
in terms of differences in chemical potential for the reaction com-
plex, as it undergoes stochastic transitions in a landscape of excess
chemical potential (relative to an ideal gas). Such a theoretical
framework is developed in Ref. 35 and applied there to various
examples of surface adsorption and electrochemical reactions in
concentrated solutions. One example can be found in Ref. 36, where
the intercalation reaction in a rechargeable battery cathode is driven
by changes in chemical potential, which include contributions from
differences in enthalpy, entropy, and concentration gradients, in a
general lattice-based phase-field model.

Here, we apply the more familiar approach to describe volume
constraints in reactions, similar to Langmuir-isotherm models for

Cy+ = Cop

specific adsorption of ions on electrodes,’ although we focus on the
reverse situation, where volume constraints arise only in the electro-
lyte phase, consistent with our electrolyte membrane model, and not
for the adsorbed neutral hydrogen atoms on the catalyst surface. As
in standard models of heterogeneous catalysis, the reaction plane is
conceptually divided into a lattice of sites, where both occupied and
unoccupied sites are considered as reacting species. The true reac-
tion O + ¢~ <> R occurring in a concentrated solution is thus re-
placed by the approximate dilute-solution reaction, O + e~
+ S < R, where S is a vacant site for the ion O in the oxidized state.
This reduces the oxidation reaction rate by a factor 1 — ¢, which is
the available volume fraction in the reaction plane for new protons
resulting from oxidation of hydrogen. We ignore volume constraints
in the reverse reaction rate [except for effect (i) above] by assuming
that the occupancy of adsorbed neutral hydrogen atoms on the cata-
lyst surface remains small enough not to hinder the reduction of
protons.

Including these two effects in the BV equation (Eq. 6) results in

o 1
i=-(1- ¢){kkj exp(— FAVpy - EfAVs)

%

1
= koch,,, exp(EfAVs)} [16]

which can be simplified to

”_v 1
i=—k(l - d))[\p* eXP<— fAVpL - ngVS)

1
- \UDT{2 eXP(EfAVs)} [17]

where we assume infinitely fast hydrogen ad-/desorption (the Tafel
reaction step) and where the critical pressure p* is slightly modified
via Vp* = ¢/ (1 = o) - kg/k;. In summary, when proton volume
constraints are incorporated in the membrane model, we suggest that
Eq. 9 is modified by a prefactor 1 — ¢, where ¢ follows from ¢
= cy+/(cv) With cy+ from Eq. 15, and by the replacement of the
constant ¢, by ¢,/(1 — ¢,,). Furthermore, AVp; and AVg are no
longer related to each other through Eq. 11 and 13, but require Eq.
11 and 14.

Results and Discussion

In this section, numerical results are presented for the concentra-
tion cell model, and simple analytical results are derived for several
limits. The critical hydrogen pressure p* defined above is the same
at both electrodes because it is a thermodynamic parameter for the
membrane electrolyte material. First, we derive simple formulas for
an ideal, dilute membrane, and then we consider effects of volume
constraints at high proton concentrations.

Analytical solution for PH,A = Pr,c— We begin by consider-
ing the equilibrium situation, where the gas-phase hydrogen pres-
sure py, is equal on both sides of the membrane, and no current
flows. Setting i = 0 in Eq. 9, we obtain

\p* exp(= fAVpy) = \pu, exp(fAVs) [18]
which, using Eq. 11 and 13, yields the nonlinear relation

JAVg = sgn(AVp)dVexp(— fAVp) + fAVp — 1

1 1
~ —=3| fAVp, — _(fAVDL)Z + [19]
V2 6

which can be solved iteratively. Following Ref. 9, 14, and 32, we
have introduced the dimensionless parameter & = Agk, the ratio of
the effective Stern-layer thickness to the diffuse-layer thickness, be-
cause this allows us to analyze the limits of large and small polar-
ization effects. Note that combination of Eq. 11 with Eq. 12, 13, or
14 results in a relation between AVg and AVpy; which only depends

Downloaded 10 Dec 2008 to 137.224.8.14. Redistribution subject to ECS license or copyright; see http://www.ecsdl.org/terms_use.jsp



B230 Journal of The Electrochemical Society, 156 (2) B225-B233 (2009)

on & and f and does not require values for kK or c.

For a sufficiently high gas-phase hydrogen pressure some of the
hydrogen molecules will be converted into excess protons residing
in the electrolyte (with the electrons stored on the surface of the
metal phase). As the gas-phase pressure is decreased, below a cer-
tain PH, there is no longer an excess of protons in the material, but
instead a proton deficit will develop (i.e., the polarization layers
become negatively charged). Let us first find the value of PH, for
which the total excess proton charge in the electrolyte is zero (i.e.,
the gas phase pressure for which the electrolyte membrane is un-
charged). In this case, g = 0, thus also AVp;, as well as AVy. Insert-
ing AVp = AVg =0 in Eq. 18, we obtain the result that pu, =P
Therefore, at an applied hydrogen pressure of p*, the membrane has
zero total charge. At this special pressure, no molecules are taken up
or released by the material; thus, it is meaningful to view p* as a
thermodynamic property of the electrolyte material, in equilibrium
with hydrogen gas.

For any other gas conditions, the total charge on the electrolyte
will generally be nonzero, in contrast to traditional membrane mod-
els assuming electroneutrality. The total charge can be cumbersome
to calculate analytically, but close to pu, = p* we can use the lin-
earization of AVg vs AV as given by Eq. 19. Together with Eq. 11
this results in

Pu
g =eck'(d+ \5)—1 In —2 [20]
»*

which shows that for pu, > p* the electrolyte will become posi-
tively charged (containing an excess of protons in both polarization
layers), and vice versa for pu, < p*. Equation 20 suggests that
physical parameters of the electrolyte material, such as p* or 8, can
be inferred from experimental measurements of stored charge vs
applied pressure, in equilibrium.

The above analysis shows that when diffuse-layer polarization is
included in the membrane model, it can naturally describe the total
proton charge stored in the polarization layers, even at equilibrium
(e.g., as function of the gas-phase hydrogen pressure). In contrast,
when diffuse-layer effects are omitted, polarization charge is absent
from the model and assumed to be zero. Indeed, it is commonly
believed that the stored charge in the membrane (via its differential
capacity Cpyp) is only relevant for dynamical modeling of fuel cells
via resistor-capacitor (RC) circuit models. We stress, however, that
the standard BV approach does not give a rationale for the existence
or relevance of Cpy, and its widespread use in empirical RC models
for transients in fuel cells is thus theoretically inconsistent. Instead,
the Frumkin-corrected BV equation naturally includes the polariza-
tion layer capacity Cpp, and shows that Cp; is not only important
for transients, but also for stationary operation, and even for equi-
librium.

Simplified model for very high kinetic rates.— Next we consider a
concentration cell operating in a steady state, with Pu,A > pu,c. In
the case that the electrochemical kinetics are very fast (as well as the
hydrogen ad-/desorption step), the equilibrium Eq. 18 is valid at
both electrodes, and together with Eq. 1, 2, and 29 (to be discussed
further on), we obtain for the cell voltage vs current i the well-
known expression

V= VO - iRelyt [21]
where the ideal Nernstian cell voltage V|, is given by
1 Pu,.A
Vo=—In —— [22]
2f Pu,.c

The generated electrical power (P =iV) is then straightfor-
wardly derived from Eq. 1 and 21. As Eq. 21 shows, for infinitely
fast kinetics, the details of charge stored in the polarization layers, as
described by Eq. 19, are irrelevant. In this respect, the present model
behaves as expected.

Simplified model for electrochemical kinetic rates very high.—
Next we consider the case where the electrochemical step (Volmer)
is still very fast (i.e., at equilibrium), but a limited rate for the
hydrogen ad-/desorption (Tafel) is considered. The electrochemical
reaction equilibria follow from Eq. 6, assuming that both the oxida-
tion and reduction rates are much larger than the current i, and thus
equal to one another. This determines the total double-layer voltage
on each electrode

1 p* kads,'
AVy = 5‘ 1n(_2_—1) [23]

where AVy = AVg + AVp. In this case, Eq. 21 is modified to

1 Koo ¢ Kads,APH,A = §
e e [24]
2f kads,A kads,CpHZ,C +1

For a very small current i [due to a high value of R, (i.e., close to
an open circuit)], or a high value for k,gs  and kg c, Eq. 24 reduces
to Eq. 21 and 22. For a very low external resistance R.,; (close to a
short circuit), V — 0 and the (maximum) current i is obtained itera-
tively from Eq. 24. Setting Ry = 0 and kygs o = kyas,c, We obtain a
simple analytical result for the maximum current, i,
= 1/2 - kyas(Pu,.a-Pu,.c), which is an example of a “reaction-limited
current,” also predicted in some regimes for binary electrochemical
thin films.*'°

Thus, when only the electrolyte resistance and the hydrogen ad-/
desorption kinetics are important, the details of the polarization lay-
ers are unimportant for steady-state behavior. Clearly, for diffuse
layer effects to play a role in the steady state, the electrochemical
reaction must be at least partially rate limiting, which we consider
next. For simplicity, we will assume hereafter that the hydrogen
ad-/desorption reaction (Tafel reaction step) is always at equilib-
rium, so that we can use Eq. 9 for both the anode and the cathode. At
the end of this section, we will include volume effects and will
replace Eq. 9 by Eq. 17.

cip o Kdes,
Hyged des.j

Helmholtz and GC limits.— In the general situation where elec-
trochemical reactions are at least partially rate limiting, simple ana-
Iytical results are possible in two interesting limits, namely, where
the effective Stern layer thickness Ag is either much larger or much
smaller than the diffuse-layer thickness k~'. In the former “Helm-
holtz limit,” & — % and AVg > AVp;, and the Stern layer carries
the total double-layer voltage and diffuse-layer polarization is zero.
In the latter “Gouy—Chapman (GC) limit,” 8 — 0 and AVg
< AVpp, and the Stern potential difference can be set to zero. These
asymptotic limits based on the parameter & were introduced in Ref.
14 in the context of modeling binary-electrolyte thin films; here, we
develop a similar analysis for a fuel cell membrane.

Combining Egs. 2, 9, and 29 and setting AVp ; = 0 results for
the Helmholtz limit in an explicit expression for the generated volt-
age V versus the current i given by

2 i
V=V, -4 7 arcsinh — 77— + iRy
f 2kA\p*pH2,A

2 i
+ — arcsinh —— 77—
f 2kc \/p*sz,C

This formula resembles standard expressions from fuel-cell mod-
els assuming a neutral membrane and BV kinetics, if we identify

[25]

k; \4/p*pH2’j as the exchange current density i*. Indeed, in standard
BV fuel cell modeling,‘“3 744 the ideal voltage V is reduced (as in
Eq. 25) by subtracting the ohmic drop across the electrolyte, iRy,
and the surface overpotential vy = 2/f - arcsinh(i/2i*) for each elec-
trode. In all of these fuel cell models, the Tafel and Heyrovsky
reaction steps are neglected, just as in the present model. For low
currents i, Eq. 25 simplifies to
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. 4 ; - 4 1 -
V=Vo =i [(fka\p*pu,a)™" + Ray + (fke\p*pu, o)
[26]

which has the familiar form of two “charge-transfer resistances” in
series with the electrolyte bulk resistance, R.jy. The charge-transfer
resistance in Eq. 26 scales with hydrogen pressure to power —1/4
(see also Table III in Ref. 42).

The analysis shows that the state-of-the-art BV models in litera-
ture can be identified as the Helmholtz limit (8 — <) of our more
complete model, resulting in Eq. 25. This identification makes it
possible to systematically extend the state-of-the-art approach to BV
modeling to allow for nonzero membrane charge by taking finite
values of 3 instead of implicitly assuming & — o°.

Departures from electroneutrality are most important in the GC
limit, & = 0; thus, this limit is convenient to quantify maximum
effects of diffuse charge using our model. Assuming AVg = 0 in Eq.
9, we obtain an explicit expression for the generated voltage V as
function of the current i given by

V=Vy-1r'1 (—kLpHZ’A ) R
=Yoo~ n N elyt
ka \VPH,A — 1

ot
n| =2
kC\sz,C

which has different nonlinear, surface-overpotential contributions
compared to the opposite limit of an uncharged membrane in Eq. 25.
For small currents i, Eq. 27 simplifies to

V=Vo =i [(fkavpu,a)™ + Ray + (fhevpu,o) '] [28]

Thus, in the GC limit, we have, just as in the Helmholtz limit, an
analytical expression for the linearized current-voltage relation,
which corresponds to a “resistances-in-series” model, but with very
different expressions for the charge transfer resistance (i.e., compare
Eq. 26 to Eq. 28). An interesting point is that the GC limit does not
reduce to the same expression as for the Helmholtz limit, even
though both limits are independent of details of the polarization
layer. This difference is due to the fact that in the GC limit the
concentration of ions (protons) in the charge-transfer reaction is
evaluated at the Stern reaction plane, while in the Helmholtz limit
bulk-phase values are used. Interestingly, the two expressions given
above are equally valid for the case of fixed countercharge (as in a
solid electrolyte) as for the situation that the countercharge is mobile
(as for aqueous solution). It must finally be noted that when Eq. 27
is used outside the fuel cell range (where 0 < V < V), it will di-
verge at two limiting currents which are i;, = —k¢ pu,c and

[27]

imax = kA \;sz,A'

Electrochemical reactions partially rate limiting—numerical cal-
culations.— To illustrate the behavior of the model in general situ-
ations, between the limits analyzed above, we obtain numerical so-
lutions. The complete model is based on Eq. 1, 2, 9, and 19, where
Eq. 9 and 19 are evaluated on both the anode and cathode. Equation
9 for the cathode requires an additional minus sign. The model is
completed with an overall potential constraint, given by

AVS,A + AVDL,A + AVelyl - AVDL,C - AVS,C + AVexl = 0 [29]

where AV, is equal to the generated voltage V as used in the above
equations. This set of equations is a self-consistent one-dimensional
steady-state model, including diffuse-layer effects (but without vol-
ume constraints for the protons), in which the hydrogen atom on the
catalytic surface is considered to be at equilibrium with the bulk gas
phase. In this model, both charge-transfer limitations and bulk-
transport limitations within the membrane are considered.

Unless otherwise stated, the parameter settings are & =1, v
=o, and p* = 107 bar in the examples below. For the electro-
chemical kinetic constants, we will generally assume k; = k = ku
= ke (with dimension A/bar!/?). At the anode side the hydrogen pres-

— Helmholtz limit
--- GC limit

o &=1
X =10

V (mV)

400 -

200 1

Figure 3. (Color online) Generated voltage V vs current i in a hydrogen
concentration cell with a proton-conducting membrane. Parameter values are
discussed in the text. k is the kinetic rate constant of both the anode and
cathode charge-transfer reaction (with dimension A/bar'?). The case “k
= " represents absence of kinetic limitation. Symbols represent the numeri-
cal model (x: & = 10; O: 8 = 1), while solid and dashed lines give the Helm-
holtz and GC limits, respectively.

sure is set to py, o =1 bar, while it is 1 pbar at the cathode
(sz,C = 107'2 bar). The temperature is T = 800 K, and thus the fac-
tor f is equal to F/RT = 14.51 V~'. The open-circuit cell voltage is
Vo = 1/(2f) ln(sz’A/sz’C) ~ 952 mV.

Though the exact values for the chosen parameter are not very
relevant for the objective of the paper (which is to explain the struc-
ture of a fuel cell model that includes diffuse-charge effects), we
have taken realistic parameter settings: 7' = 800 K 1is typical for a
high-temperature solid-state fuel cell, V; ~ 1 V is a typical value
for an open-circuit voltage, and py 4 = 1 bar represents atmo-
spheric conditions for the hydrogen gas on the anode side (pHZ,C
follows automatically from py, 5 and V). The electrolyte resistance
is chosen arbitrary at Rgy = 68.9 m(), a value that can always be
achieved by changing the membrane area or thickness (as long as
we can assume that the diffuse layers remain thin). The kinetic rate
constant k is varied such that we go from the limit of the purely
ohmic transport dominated regime, to parameter settings where the
kinetics are rate limiting.

Comparison of full theory with the Helmholtz and GC limits.—
We now show that the simple analytical formulas derived above
tend to bound the numerical solutions of the complete model and
thus may suffice for use in many practical situations. In Fig. 3, we
present results for the full theory (symbols are as follows: O:
=1, x: 8 = 10) and compare to predictions of the Helmholtz and GC
limits, given by Eq. 25 and 27 (solid and dashed lines, respectively).
In the limit where kinetic limitations are absent (i.e., k = ©), all
models reduce to the simple expression given by Eq. 21, with V
decreasing linearly with current i. When finite values are used for
the kinetic rate constant, very interesting differences develop be-
tween the three approaches. At a relatively high kinetic constant of
k =10° A/bar'?, we observe that the Helmholtz limit gives the
highest prediction for V, after which the numerical results for &
= 10 and 1 follow, with the GC limit giving the lowest prediction for
generated voltage V. However, for a value of the kinetic constant
which is reduced to k = 10 A/bar!’?, this behavior is significantly
modified. The region where Vi > Vs_jg > V5o > Ve is limited
from current zero to a current of i ~ 1 A. Beyond i ~ 1 A, the
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Figure 4. (Color online) Influence of 3,
the ratio of Stern layer thickness Ag to the
diffuse-layer thickness, k!, on
concentration-cell current i and voltage V.
(a) Continuous curves are based on full
calculations; the Helmholtz limit is based
on Eq. 25, and the GC limit on Eq. 27.
ka = kc = 10* A/bar'?, (b) Results for i
and V in the GC and Helmholtz limit as a
function of k, = kc.
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performance sequence is exactly reversed, with Vgc higher than
predictions of the other calculations. At even lower values of k, the
transition point (the value of i above which the GC limit predicts the
highest performance) rapidly shifts to zero current (e.g., at k
= 10 A/bar'? it is located around i ~ 0.01 A). Figure 3 furthermore
shows that for the present parameter settings, the Helmholtz limit
rather well approximates the exact results if 8 = 10, whereas the
GC limit closely follows the exact results for 8 < 1 (except for k
= 10 A/bar'”? for a current beyond i ~ 0.2 A).

In Fig. 4, we analyze the influence of the parameter 8 in more
detail. For one particular condition given by ks =kc
= 10* A/bar'? and R, = 91.6 mQ, we give in Fig. 4a results for
current i and generated voltage V as function of 3. In this case, both
the current i and the concentration cell voltage V increase with in-
creasing 8, while both i and V level off both at very low and very
high &. Furthermore, Fig. 4 shows that the limiting expressions are
valid (for this calculation) for & < 0.1 (for the GC limit) and for
d > 100 (for the Helmholtz limit).

In Fig. 4b, we only analyze the Helmholtz and GC limits and
show the influence of the kinetic constant on the prediction of the
two limiting expressions. As already observed in Fig. 3, the ratio
a = (igelig ~ Vge/Vy) is a strong function of k, starting signifi-
cantly above unity at low k (e.g., @ ~ 15 at k = 1 A/bar"?). Thus, at
k =1 A/bar!?, we have in the GC-limit currents and voltages that
are ~ 15 times higher than in the Helmholtz limit. Increasing k, o
decreases, and we have o = 1 for k ~ 3000 A/bar!2, after which «
decreases further to reach a minimum value of ~0.82 at k
= 10° A/bar'?. Thus at k = 10° A/bar"’?, predictions for the Helm-
holtz limit are ~23% above those for the GC limit. With further
increasing k, a increases again, finally to reach unity for k — .

Influence of ion volume constraints on reaction rate.— Finally, we
analyze the effect of ion volume constraints on the structure of the

1000 10000 100000 1000000

a=kc (Albar®®)

polarization layer, the electrochemical reaction rate, and
concentration-cell performance. In Fig. 5, we show the influence of
v = 1/d.., where v is the number of potential sites per proton (at the
proton bulk concentration), on the voltage difference over the Stern
and polarization layer, AVg and AVp, for AVy=AVg+ AV
=-10 (8 =1), based on Eq. 11 and 14, while Fig. 6 shows the
resulting effect on the cathodic and anodic current (for k, = k¢
=1 A/bar'?). As Fig. 5 shows, for a given AV, the influence of
volume constraints on the Stern and polarization potential differ-
ences, as well as on the resulting electrochemical charge transfer
rate, can be very large. Whereas without volume constraints, AVg
and AVp; are about equal in magnitude, when volume constraints
are turned on the ratio AVp;/AVg becomes very large. Simulta-
neously, the charge transfer rate goes to zero when v goes from
infinity to unity.

However, if we run the full concentration cell model (for kp
= ke = 10* A/bar'?), we find that at the parameter settings of Fig. 3
there is not such a pronounced influence of volume constraints on
cell performance: if we reduce v from v = 200 (almost no volume
constraints) to v = 2 (very significant volume constraints), the gen-
erated voltage decreases by a maximum of ~90 mV (namely, at
high-current, i ~ 6 A); see Fig. 6. To increase the influence of vol-
ume constraints, we reduce the kinetic rate of the anodic reaction
(the anode being the electrode where the protons are typically in
excess, which is thus the electrode where volume constraints be-
come most apparent). Reducing k, by a factor of 10? has only a
small influence on the generated voltage when v = 200, but has a
very significant influence when v = 2. Now we have a much in-
creased difference in generated voltage between the case of v
=200 and 2, namely, up to 260 mV (at i = 4 A). Reducing k, by a
further factor of 102 results in a difference in generated voltage
between the v = 200 and 2 case of 270 mV ati ~ 0.2 A. In conclu-

Figure 5. Influence of proton volume
constraints on the structure of the polar-
ization layer and the resulting electro-
chemical reaction rates (3=1, fAVy=
—10, kg = k¢ = 1 A/bar'?, Ph,j and p* as
in Fig. 3).
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Figure 6. (Color online) Influence of proton volume constraints on the gen-

erated cell voltage V as function of current i (8 = 1, kc = 10* A/bar!?,

Ray = 68.9 mQ).

sion, although volume constraints do not have as large an impact in
the concentration cell model as they do in a sub-calculation for a
polarization layer with fixed AVy, volume constraints can signifi-
cantly influence predicted cell performance, reducing the generated
voltage at a given current, compared to dilute-solution theory.

Conclusions

We have developed simple, general models for diffuse-charge
effects in fuel cell membranes and applied them to the case of a
steady-state concentration cell. This approach goes beyond the stan-
dard model, based on the BV equation for the electron charge trans-
fer rate across a neutral membrane, while remaining analytically
tractable and physically transparent. At equilibrium, we present an
analytical expression for the proton charge in the polarization layer
as a function of hydrogen pressure. In the Helmholtz limit of a very
low polarization layer thickness relative to the Stern layer thickness,
the state-of-the-art representation of the BV equation for a neutral
membrane is recovered, but corrections due to nonzero diffuse
charge can also be calculated. In the Helmholtz limit, as well as in
the opposite GC limit, simple analytical expressions are obtained for
generated voltage as function of current. For the first time in fuel
cell modeling, to our knowledge, ion volume constraints are also
included in the model via a modified PB equation for the polariza-
tion layer and a modified equation for the charge transfer rate. Com-
pared to dilute-solution PB theory, the concentrated solution model
predicts a substantially modified structure of the polarization layer
and a reduction in the generated cell voltage due to an increased
crowding of finite-sized ions.
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