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Dynamics of Conformal Maps for a Class of Non-Laplacian Growth Phenomena
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Time-dependent conformal maps are used to model a class of growth phenomena limited by coupled
non-Laplacian transport processes, such as nonlinear diffusion, advection, and electromigration. Both
continuous and stochastic dynamics are described by generalizing conformal-mapping techniques for
viscous fingering and diffusion-limited aggregation, respectively. The theory is applied to simulations
of advection-diffusion-limited aggregation in a background potential flow. A universal crossover in
morphology is observed from diffusion-limited to advection-limited fractal patterns with an associated
crossover in the growth rate, controlled by a time-dependent effective Péclet number. Remarkably, the
fractal dimension is not affected by advection, in spite of dramatic increases in anisotropy and growth
rate, due to the persistence of diffusion limitation at small scales.
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To illustrate the theory, we study fractal growth driven by
advection diffusion in a potential flow.

conformal mapping still works [15]: If ��w; �ww� solves
Eq. (2) in one domain, �w, then ��f�z�; f�z�� solves
Laplacian growth models describe some of the best
known phenomena of pattern formation far from equilib-
rium, including continuous dynamics such as viscous
fingering [1] and (quasistatic) dendritic solidification [2]
and stochastic processes such as diffusion-limited aggre-
gation (DLA) [3] and dielectric breakdown [4]. In this
class of models, the interfacial velocity is determined by
the normal derivative of a harmonic function, so the
powerful technique of conformal mapping has been
used extensively in two dimensions. Time-dependent con-
formal maps are used in the classical analysis of continu-
ous Laplacian growth [5–7], and the analogous method of
iterated conformal maps has recently been developed for
stochastic Laplacian growth [8–10].

In spite of the broad relevance of these models, real
growth phenomena often involve non-Laplacian transport
processes, such as advection or electromigration coupled
to diffusion [11,12]. Much less theoretical work exists in
such cases, in part because conformal mapping would
appear to be of little use for nonharmonic functions. An
exception is the recent use of streamline coordinates for
dendritic solidification in a potential flow, but it turns out
that advection has no effect on the shape of an infinite
dendrite [13]. Stochastic conformal-map dynamics, how-
ever, has not yet been formulated for any non-Laplacian
transport process (although iterated conformal maps have
been used in a recent model of brittle fracture with a
biharmonic elastic potential [14]).

In this Letter, we formulate the dynamics of conformal
maps for growth phenomena limited by non-Laplacian
transport processes in a recently identified conformally
invariant class [15]. We consider both continuous and
stochastic growth from a finite seed to allow for non-
trivial competition between different transport processes.
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Transport processes.—Consider a set of scalar ‘‘fields,’’
� � f�1; �2; . . . ; �Mg, whose gradients produce quasi-
static, conserved ‘‘flux densities,’’

F i �
XM
j�1

Cijr�j; r � Fi � 0; (1)

where the coefficients, fCij���g, may be nonlinear func-
tions of the fields. This general system contains a number
of physical cases [15]: (M � 1) simple nonlinear diffu-
sion, F1 � �D�c�rc, where c is a temperature or particle
concentration and D�c� the diffusivity; (M � 2) advec-
tion diffusion, F1 � cr��D�c�rc, of a scalar c in a
potential flow, u � F2 � r� (e.g., in a porous medium or
Hele-Shaw cell); and (M � 2) various cases of electro-
chemical transport, Fi � �Di�ci�rci � bi�ci�qicir�,
where ci, Di, bi, and qi are, respectively, the concentra-
tion, diffusivity, mobility, and charge of ion i, and � is
the (nonharmonic) electrostatic potential determined by
the electroneutrality condition,

P
M
i�1 qici � 0.

In planar geometries, it is convenient to represent a
vector, F � �Fx; Fy�, as a complex scalar, F � Fx 	 iFy,
so Eq. (1) takes the form

Fi �
XM
j�1

Cijr�j; Re�rFi� � 0 (2)

in the z � x	 iy plane, where r � @
@x	 i @

@y . Under a
conformal mapping, w � f�z�, Fi transforms as

Fi�z; �zz� � f0�z�Fi�w;w� (3)

(like r [16]), and Re�rFi� � 0 is unchanged. There-
fore, even though the solutions (depending on z and �zz �
x� iy) are not harmonic functions, the usual trick of
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Eq. (2) in another domain, �z � f�1��w� (with appro-
priately transformed boundary conditions).

Interfacial dynamics in the plane can be elegantly
described by a conformal map, z � g�w; t�, from �w,
the exterior of the unit circle, to �z�t�, to the exterior of
the (singly connected) growing object [5–10]. Since the
map must be univalent (1-1), it has a Laurent series,

g�w; t� � A1�t�w	 A0�t� 	
A�1�t�
w

	 . . . (4)

for jwj > 1, where A1�t� is real and defines an effective
diameter of �z�t� [8]. As described above, the fields
satisfying
(1) in �z�t� are easily obtained from the inverse,
w � f�z; t�, once the same equations are solved in �w.
As in Laplacian growth, the removal of geometrical
complexity from the transport problem is a tremendous
simplification.

Boundary conditions.—On the moving boundary,
@�z�t�, we consider generalized Dirichlet (�i � 0) and
Neumann (n̂n � r�i � 0) boundary conditions (BC) [15]:

Ri���z; z�� � 0 or n̂n � Fi � Re�n�z�Fi�z; z�� � 0; (5)

respectively, for z 2 @�z�t�, where n � nx 	 iny repre-
sents the outward normal, n̂n, and Ri��� is a function of
the fields. The former BC express interfacial equilibrium
for ‘‘fast reactions’’ (compared to transport rates), while
the latter expresses impermeability to flows (F � u �
r�) or flux densities of nonreacting species. Because of
Eq. (3), these BC are the same for w 2 @�w,

Ri���w;w���0 or n̂n �Fi�Re�wFi�w;w���0; (6)

since n�w� � w � n�z�f0�z�=jf0�z�j.
Far from the growth, we assume either constant values

of the fields (e.g., temperature, concentration) or given
flux (or flow) profiles which drive the growth:

�i�z; �zz� ! �1
i or Fi�z; �zz� � F1

i �z; �zz� (7)

as jzj ! 1 (where F1
i could also vary in time). The

former BC also remain the same after conformal map-
ping, but the latter is transformed by Eqs. (3) and (4):

�i�w; �ww� ! �1
i or Fi�w; �ww� � A1F1

i �A1w;A1w� (8)

as jwj ! 1. Through A1�t� [ � A1�t�], the fields and
fluxes in �w vary with the diameter of the growth, �z�t�.

Continuous dynamics.—Suppose that a Lagrangian
boundary point, z�t� 2 @�z�t�, moves in the normal di-
rection with (complex) velocity,

v� zt��n�; ��Re�nQ�; Q�
XM
i�1

BiFi; (9)

where Q is a flux density causing growth, � is a constant,
and Bi��� may be functions of the fields. This generalizes
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Stefan’s law (v � �n̂n � r�), e.g., to electrodeposition [12]
(where Q is for the depositing ion).

The classical analysis of viscous fingering is easily
generalized to Eqs. (2), (5), (7), and (9). Let w�t� be a
‘‘marker’’ for z�t� � g�w�t�; t� on �w [7]. Substituting
zt � g0wt 	 gt into Eq. (9), multiplying by wg0, taking
the real part, and using Re�wwt� � 0 for jwj2 � ww � 1,
we arrive at an evolution equation for the conformal map,

R e�wg0gt� � ���w;A1�t�� for jwj � 1; (10)

where ��w;A1�t�� � Re�wQ�w;w�� is the normal flux
density on �w, which depends on A1�t� through Eq. (8).

The evolution equation for radial Laplacian growth
(e.g., viscous fingering) [5,6], Re�wg0gt� � 1, corresponds
to the special case of uniform flux, � � const. This
dynamics is known to preserve the number of polelike
singularities (inside the unit circle) for a wide class of
initial maps, g�w; 0�. Except for some elementary maps,
e.g., circles and ellipses, which preserve their shapes,
arbitrary smooth initial interfaces develop singularities
(cusps) in finite time [6].

In our generalized models, the time-dependent, non-
uniform flux,�, in Eq. (10) changes the analytic structure
of an initial map (including the number of poles), so even
circles and ellipses become distorted. This raises interest-
ing questions about finite-time singularities: For ex-
ample, what is the fate of solidification from a circular
seed in a flowing melt (with � described below)? Does
advection generally enhance or retard the formation of
singularities? We leave these questions for future work
and focus here on non-Laplacian fractal growth.

Stochastic dynamics.—Suppose that the domain,
�z�tN�, grows from its initial shape, �z�0�, at times
t1; t2; . . . ; tN by discrete ‘‘bumps’’ representingN particles
of characteristic area, �o [8,9]. Since our models exhibit
nontrivial time dependence (see below), we introduce
time into the usual morphological model by replacing
Eq. (9) with p�z; tN� � ���z�=�o, for z 2 @�z�tN�1�,
where p�z; tN� jdzj dt is the probability that the Nth
growth event occurs in the boundary element �z; z	 dz�
in the time interval �t; t	 dt�. The waiting time, tN �
tN�1, is then an exponential random variable with mean,
#N , given by

�o
�#N

�
I
@�z�tN�1�

��z�jdzj�
Z 2$

0
��ei&;A1�tN�1��d&; (11)

where we use jdzj � jdwj=jf0j and ��z� � jf0�z�j��w�
from Eq. (3) to transform to @�w where w � ei& and
jdwj � d&. The probability that the position of the Nth
growth occurs in �z; z	 dz� � @�z�tN�1� is pN�z�jdzj �
�
�o
#N ��z�jdzj � PN�&�d&, where

PN�&� �
�
�o

#N��e
i&; A1�tN�1��; ei& 2 �w; (12)

is the probability measure for angles on the unit circle. In
045503-2



FIG. 1 (color). Evolution of the flow (yellow streamlines) and concentration (color contour plot) in �w (top) and in �z�t�
(bottom) during advection-diffusion-limited aggregation of N � 10 000 particles (�o � L2

o � 1) with Peo � 0:05. The columns
from left to right correspond to Pe � 0:1, Pe � 1, and Pe � 10. The lower plots are shown rescaled by A1�t3� � 2, A1�t193� � 20
and A1�t9621� � 200, the effective diameters of the fractal cluster.
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DLA [8], pN�z� is the harmonic measure, PN�&� �
�2$��1 is uniform, and #N is not defined.

It is now straightforward to generalize the Hastings-
Levitov DLA algorithm [8] to our non-Laplacian models.
The univalent map z � g�w; tN� from �w to �z�tN�, the
exterior of an N-particle aggregate, is constructed itera-
tively from a two-parameter basic map that places a
‘‘bump’’ of area �N around an angle &N on the unit circle.
In order to fix the area �o of a new bump on @�z�tN�, the
size of its preimage, �N, on @�w is divided by the
Jacobian of the previous map, �k � �o=jg

0�ei&N ; tN�1�j
2.

The first difference with DLA is that the angle, &N , is
chosen according to the time-dependent (nonharmonic)
measure, PN�&�, in Eq. (12). The second difference is the
evolving waiting time, #N , in Eq. (11).

Advection-diffusion-limited aggregation.—As an ex-
ample, we consider the stochastic aggregation of particles
around a circular seed of radius, Lo, limited by advection
diffusion in a uniform potential flow of speed U and
concentration C. In �z�t� the transport problem has the
usual dimensionless form,

Pe or� �rc�r2c; r2��0; z2�z�t�; (13)

c�0; n̂n �r��0; �� n̂n �rc; z2@�z�t�; (14)

c ! 1; r� ! x̂x; jzj ! 1; (15)

where x, �, c, and � are in units of Lo, ULo, C, and
DC=Lo, respectively, and Peo � ULo=D is the initial
Péclet number. In complex notation, we solve Eq. (2) in
�z�t� with BC (5) and (7) for the ‘‘fluxes,’’ F1 �
�Peorc	 cr� and F2 � u � r�. In �w, Eqs. (2)
045503-3
and (6) are the same, but the BC (7) calls for a background
flow speed at jwj ! 1 that diverges with A1�t�.

It is natural then to rescale the w velocity by A1�t� to fix
the background speed at unity, and instead solve the same
equations in �w as in �z�t� with a time-dependent Péclet
number, Pe�t� � PeoA1�t�. Since A1�t� is an effective di-
ameter for �z�t�, the theory has shown us how to properly
define Pe (which is not obvious for fractals). We also see
that advection eventually dominates diffusion since
Pe�t� ! 1, so we expect to see a crossover from DLA
to new advection-limited dynamics, as shown in the
simulation of Fig. 1, which we now discuss in detail.

With the scalings above, the velocity potential in �w
has the usual harmonic form, ��w� � Re�w	 1=w�, for
potential flow past a cylinder, but the nonharmonic con-
centration, c�w;w; Pe�t��, cannot be expressed in terms of
elementary functions. However, asymptotic expansions
(for fixed w) can be derived [17],

c�w;w; Pe� �
�
�Re�logw= logPe�; Pe � 1;
erf�

������
Pe

p
Im�

����
w

p
	 1���

w
p ��; Pe � 1: (16)

The low-Pe approximation, the familiar harmonic field of
Laplacian growth, is valid out to a ‘‘boundary layer at
1,’’ while the high-Pe approximation is valid away from a
wake region around the positive real axis (the branch cut
for

����
w

p
) [15]. From Eqs. (11), (12), and (16) we also obtain

#N �

�
� logPe;
8

������������
$=Pe

p
;

PN�&� �
�
1=2$; Pe � 1;
1
4 sin

&
2 ; Pe � 1;

(17)

where #N is measured in units of ��o=D�=��C�. Even for
Peo � 1, the advection-diffusion-limited aggregation
045503-3



10
0

10
2

10
4

10
0

10
1

10
2

N

A
1

 DLA
ADLA

Slope =
1 / 1.71 

10
0

10
2

10
4

10
0

10
1

10
2

|A
o
|

N

 DLA
ADLA Slope =  

1 / 1.71 

Slope = 0.35

FIG. 2. Log-log plot of the Laurent coefficients, A1�t� and
jA0�t�j versus N�t�, averaged over 30 ADLA simulations (Peo �
0:05, �o � L2

o � 1), compared with analogous results for DLA
without advection.
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(ADLA) dynamics smoothly crosses over from the DLA
‘‘unstable fixed point,’’ Pe�t� � 1, to a new advection-
dominated ‘‘stable fixed point,’’ Pe�t� � 1.

To investigate this crossover, we accurately obtain the
normal flux, ��w; Pe�t��, on @�w by interpolating static
numerical solutions for a range of Pe. Following the
methods above, we then perform many ADLA simula-
tions of N > 104 particles for various Peo and �o=L2

o.
Details will be given elsewhere, but here we briefly dis-
cuss morphological changes and growth rate.

The Laurent coefficients in Eq. (4) contain morpho-
logical information [8,9]. As illustrated in Fig. 2, for all
Peo, the diameter of the cluster, A1�tN� � N1=Df , remark-
ably maintains the same fractal dimension as DLA, Df �
1:71, for all Pe�t� and N�t� in the scaling regime,
A1�tN� � 1. (As a check, we obtain the same Df from
the radius of gyration.) A posteriori, this can be under-
stood by noting that the stable fixed point has a growth
measure, PN�&� / sin&=2, which is differentiable, and
thus locally constant (as in DLA), everywhere except at
the rear stagnation point, & � 0. Physically, this simply
means that diffusion always dominates advection at small
scales. We conjecture that the same Df holds for any non-
Laplacian dynamics in our class, if limN!1PN�&� is con-
tinuous and almost everywhere differentiable. The sur-
prising universality of Df � 1:71 makes its exact value
seem quite fundamental.

Of course, as seen in Fig. 1, the growth is highly
anisotropic and moves toward the flow for Pe�t� � 1.
This is seen in scaling of the next Laurent coefficient,
A0�t�, the ‘‘center of charge’’ [9],

jA0�tN�j �
�
Na; Pe � 1;
N1=Df ; Pe � 1;

(18)

which crosses over from DLA scaling (2a � 0:7 [9]) to
the same scaling as A1�tN�, as shown in Fig. 2. Elsewhere,
we will show that jA0�t�j=A1�t� tends to a universal func-
tion of Pe�t� after initial transients vanish, A1�t� � 1,
e.g., limt!1jA0�t�j=A1�t� � 0:6.

The expected total mass versus time, N�t�, also under-
goes a crossover. Using Eqs. (11) and (17) and integrating
dN=dt � #�1

N �Pe�t�� � #�1
N �PeoN1=Df � yields N�t� / t for
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t � 1 and N�t� / t2Df=�2Df�1� for t � 1, where again only
Df matters. The cluster diameter A1�t� switches from t1=Df

to t2=�2Df�1� scaling in time, even though the scaling with
N�t� does not change. One should also bear in mind that
#N ! 0 as Pe�t� ! 1, so the quasistatic, discrete-growth
approximation must eventually break down (although
this is delayed in the dilute limit, �C � 1).

In summary, we have formulated conformal-map dy-
namics for a class of planar growth phenomena limited by
non-Laplacian transport processes. Although various
simplifying assumptions were made, the method enables
simulations of fractal-growth phenomena, such as
ADLA, which it seems could not be achieved in a more
efficient way. By describing competing transport process-
es, it also provides a new general model for crossover
phenomena in pattern formation.
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