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We use recent theoretical advances to develop a functional form for interatomic forces in bulk silicon. The
theoretical results underlying the model include an analysis of elastic properties for the diamond and graphitic
structures and inversions ab initio cohesive energy curves. The interaction model includes two-body and
three-body terms which depend on the local atomic environment through an effective coordination number.
This formulation is able to capture successfully the energetics and elastic properties of the ground-state
diamond lattice(ii) the covalent rehybridization of undercoordinated atoms, (@nda smooth transition to
metallic bonding for overcoordinated atoms. Because the essential features of chemical bonding in the bulk are
built into the functional form, this model promises to be useful for describing interatomic forces in silicon bulk
phases and defects. Although this functional form is remarkably realistic by the usual standards, it contains a
small number of fitting parameters and requires computational effort comparable to the most efficient existing
models. In a companion paper, a complete parametrization of the model is given, and excellent performance for
condensed phases and bulk defects is demonst{86d63-182807)08537-9

[. INTRODUCTION accurately model various special atomic configurations. Sur-
faces and small clusters are the most difficult to hafdle,

The study of materials properties is increasingly relyingbut even bulk materia(crystalline and amorphous phases,
on a microscopic description of the underlying atomic struc-solid defects, and the liquid phadeas resisted a transferable
ture and dynamics. While many of the key features can bélescription by a single potential. Realist_ic simulatio_ns of i_m—
described by a small number of atoms that are actively paPortant bulk phenomena such as plastic deformation, diffu-
ticipating in a physical process, many problems of interesgion, and crystallization are still problematic.
require of order 19-1C° or even higher number of atoms _ In this article, we derive a general model for the func-
and time scales of 10—100 ps for a proper descriptim. tional form (_)f |ntera_tom|cforce_s in bul_k tetrahedral semicon-
initio methods based on density functional théoapd the ductors. This functional form is applied to the prototypical
local density approximatiofDFT and LDA) have been in- C€ase of S|I|c_on in a companion artidlerhe development .of
tensively and successfully used to provide a microscopic dethe model is organized as follows: In Sec. II, we briefly
scription of simple structurésFor more complex cases, in- feview existing potentials and approximations of quantum
cluding, for instance, disordered or stepped surfacegnodels for silicon and extract important conclusions about
dislocations, grain boundaries, crystal growth, and théhe desirable features of a successful interatomic potential.
amorphous-to-crystal transition, a large number of atoms i&ecent theoretical advances used in deriving our model from
required, making amb initio description untenable. A pos- @b initio total energy data are outlined in Sec. IIl. A func-
sible alternative for these cases might be empirical intertional form that incorporates the theoretical results using a
atomic potentials which are computationally much less exminimal number of fitting parameters is presented and dis-
pensive. The difficulty in employing empirical potentials is cussed in Sec. IV. Finally, Sec. V contains some concluding
their unproven ability to capture the physics of structures fafemarks.
from the fitting data used to construct them. Developing re-
liable empirical potentials remains an issue of great interest Il. REVIEW OF EMPIRICAL POTENTIALS
and possibly of great rewards. AND APPROXIMATIONS

Silicon is a test case for the development of empirical
potentials for covalent materials. Its great technological im-
portance, the vast amount of relevant experimental and the- The usual approach for deriving empirical potentials is to
oretical studies available, and its intrinsic interest as the repguess a functional form, motivated by physical intuition, and
resentative covalent material make it an ideal candidate fothen to adjust parameters to dib initio total energy data for
exploring to what extent the empirical potential approach carvarious atomic structures. A covalent material presents a dif-
be exploited. In recent years, more than 30 empirical poterficult challenge because complex quantum-mechanical ef-
tials for silicon have been developed and applied to a numbdects such as chemical bond formation and rupture, hybrid-
of different systems, and more recently compared to eaclration, metalization, charge transfer, and bond bending must
other>* They differ in degree of sophistication, functional be described by an effective interaction between atoms in
form, fitting strategy, and range of interaction, and each camvhich the electronic degrees of freedom have somehow been

A. Empirical potentials
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“integrated out.”” In the case of Si, the abundance of po-interaction ¢r(r) and an attractive interactiop(?) ¢a(r)

tentials in the literature illustrates the difficulty of the prob- that depends on the local bonding environment, which is

lem and lack of specific theoretical guidance. In spite of thecharacterized by a scalar quantity

wide range of functional forms and fitting strategies, all pro-

posed models possess compardhled insufficient overall

accuracy’ It has proved almost impossible to attribute the E:iEj [ér(Rij)+P(Lij) da(Rij)], )

successes or failures of a potential to specific features of its

functional form. Nevertheless, much can be learned from ..

past experience, and it is clear that a well-chosen functional gij => V3(Rij ,Rix), (4)

form is more useful than elaborate fitting strategies. K
To appreciate this point we compare and contrast som

representative potentials for silicon. The pioneering potenti

of Stillinger and WebefSW) has only eight parameters and

was fitted to a few experimental properties of solid cubic

diamond and liquid silicofi. The model takes the form of a

third-order cluster potentiain which the total energy of an

atomic configuratiof R;;} is expressed as a linear combina-

tion of two- and three-body terms,

here the functiorp(¢{) represents the Pauling bond order.

he three-body interaction has the form of Eg) with the
important difference that the angular function, although still
positive, may not have a minimum at the tetrahedral angle.
The T1, T2, and T3 angular functions are qualitatively dif-
ferent, possessing minima at 180°, 90°, and 126.745°, re-
spectively. The Tersoff format has greater theoretical justifi-
cation away from the diamond lattice than SW, but the three
. versions do not outperform the SW potential overall, perhaps
E=2 Va(Rj)+ X Va(Rj,Ry), (1)  due to their handling of angular forcéd\evertheless, the

i 1k Tersoff potential is another example of a successful potential

where Iiijzlij_liiv Rij:||iij| and we use the convention for bulk properties with a physically motivated functional

that multiple summation is over all permutations of distinctform and simple fitting strategy.

- o The majority of empirical potentials fall into either the
indices. The range of the SW potential is just short of thegeneric SW(Refs. 1517 or Tersoff(Refs. 18—22 formats

;ﬁ;ogg'rgﬁéggg?rr icjr:tsé?ggt?olrg t(hg ehllg“g”g;?%vrgﬁngtl?ﬁge}ust des.cri_bed,.but there are notable exceptions that .provide
first-neighbor distance to rep?esent the restoring force againf rther |nS|'ght into successful approgches for de3|gn|ng po-
tentials. First, a number of potentials possess functional
forms that have either limited validity or no physical moti-
Vation at all, suggesting that fitting without theoretical guid-
ance is not the opti£§2I6approach. The valence force?fiéfd
oo and related potenti (of which there are over 40 in the
Va(l1,r2)=0(r)g(rz)h(l), @ literatureé®) involve scalar products of the vectors connecting
where |,=c0s6,,=r1-F,/(ryr). The angular function atomic positions, an approximation that is strictly valid only
h(1)=(1+1/3)*> has a minimum of zero at the tetrahedral for small departures from equilibrium. Thus, extending these
angle to represent the angular preferencepf bonds, and models to highly distorted bonding environments under-
the radial functiong(r) decreases with distance to reducemines their theoretical basis. The potential of Pearson
this effect when bonds are stretched. The SW three-bodgt al.?” as the authors emphasize, is not physically moti-
term captures the directed nature of covatept bonds in a  vated, but rather results from an exercise in fitting. Their use
simple way that selects the diamond lattice over closeof Lennard-Jones two-body terms and Axilrod-Teller three-
packed structures. Although the various terms lose theibody terms, characteristic of van der Waals forces, has no
physical significance for distortions of the diamond latticejustification for covalent materials. The potential of Mistrio-
large enough to destragp® hybridization, the SW potential tis, Flytzanis, and Farant85(MFF) is an interesting attempt
seems to give a reasonable description of many states expet® include four-body interactions. Although the importance
mentally relevant, such as point defects, certain surfacef four-body terms is certainly worth exploring, the inclusion
structures, and the liquid and amorphous stat€he SW  of a four-body term in a linear cluster expansion is not
potential continues to be a favorite choice in the literatureunique, and theoretical analysis tends to favor nonlinear
due in large part to its appealing simplicity and apparenfunctionals’**4
physical content. A natural strategy to improve on the SW and Tersoff
Another popular and innovative empirical model is themodels is to replace simple functional forms with more flex-
Tersoff potential, with three versions generally called®T1, ible ones and complement them with more elaborate fitting
T2,1% and T3 The original version T1 has only six adjust- schemes. The Bolding-Andersé®A) potentiaf® generalizes
able parameters, fitted to a small database of bulk polytypeshe Tersoff format with over 30 adjustable parameters fit to
Subsequent versions involve seven more parameters to inan unusually wide range of structures. Although it has not
prove elastic properties. The Tersoff functional form is fun-been thoroughly tested, the BA potential appears to describe
damentally different from the SW form in that the strength of simultaneously bulk phases, defects, surfaces, and small
individual bonds is affected by the presence of surroundinglusters, a claim that no other potential can makiawever,
atoms. Using Carlsson’s terminology, the Tersoff potential ists complexity makes it difficult to interpret physically, and
a third-order cluster functionawith the cluster sums appear- since a large fitting database was used, it is unclear whether
ing in nonlinear combinations. As suggested by theoreticathe potential can reliably describe structures to which it was
arguments?~1* the energy is the sum of a repulsive pair not explicitly fit. In this vein, the spline-fitted potentials of

g(r) and an angular functioh(6),
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the force matching methdlirepresent the opposite extreme minimum around 130° and thus differs qualitatively with the
of the SW and Tersoff approaches: Physical motivation isT1 and T2 potentials. With hindsight, a simple physical prin-
bypassed in favor of elaborate fitting. These potentials in€iple explains these results: & bond is most weakened
volve complex combinations of cubic splines, which have(desaturatedby the presence of an another atom when the
effectively hundreds of adjustable parameters, and the stratesulting angle is small§<100°) because in such cases the
egy of matching forces on all atoms in various defect strucatom lies near the bond axis, thus interfering with the
tures is the most elaborate attempted thus far. Although therbital where it is most concentrated. Working within the
method may be worth pursuing as an alternative, it has natame framework of the TB LDOS, Carlsson and co-workers
yet produced competitive potentigfsMoreover, even if a have derived potentials with the generalized embedded atom
reliable potential could result from such fitting strategies, itmethod®®~38 Harrison has arrived at a similar model by ex-
would make it hard to interpret the results of atomistic simu-panding the average band energy in the ratio of the width of
lations in terms of simple principles of chemical bonding.the bonding band to the bond-antibond splitting, the relevant
Such an interpretation is essential, in our view, if physicalsmall parameter in semiconductdfsThese potentials re-
insight is to be gained from computer simulations. semble the SW potential in its description of angular forces
In spite of relentless efforts, no potential has demonwith an additive three-body term, particularly for small dis-
strated a transferable description of silicon in all its forins, tortions of the diamond lattice. The transition to metallic
leading us to another important conclusion: It may be todbehavior in overcoordinated structures involves interbond in-
ambitious to attempt a simultaneous fit of all of the importantteractions similar to the Tersoff and embedded atom poten-
atomic structureqbulk crystalline, amorphous and liquid tials.
phases, surfaces, and clusjesince qualitatively different Many-body potentials can be derived from quantum-
aspects of bonding are at work in different types of struc-mechanical models if we restrict our attention to important
tures. Theory and general experience suggest that the masmall sets of configurations. Using a basissgf® hybrid
ingredient needed to differentiate between surface and bulkrbitals in a TB model, Carlssoet al.”*® have shown that a
bonding preferences is a more sophisticated description afeneralization of the SW format, in which E@) is replaced
the local atomic environment. A notable example in this re-by a form similar to that used by Biswas and Ham@&nn
spect is the innovative thermodynamic interatomic force field BH),
(TIFF) potential of Chelikowskyet al,*? which includes a
guantity called the ‘“dangling bond vector” that is a 2
weighted average of the vectors pointing to the neighbors of V(F1,F2)= 2 Om(r)0m(r2)!5, )
an atom. For symmetric configurations characteristic of the m=0

ideal (or slightly distorted bulk material, the dangling bond ig y5jiq in the vicinity of the equilibrium diamond lattice. In

vector vanisheor is exceedingly small Conversely, anon-  ganera); the fourth moment controls the essential band gap of
zero value of the dangling bond vector indicates an asyms gemiconductor, implying four-body interactions, but the

metric distribution. of neighbors. While the TIFF dangling separable, three-body SW-BH terms are a consequence of
bond vector description appears to be very useful for underg,o open topology of the diamond lattice: The only four-
coordinated structures like surfaces and small clusters, in thigy, hopping circuit between first neighbors is the self-

work we restrict ourselves to bulk material and thus use Retracing path— j—i—k—i.’
simpler, scalar environment description. Our goal is to obtain  \ye can make analogous arguments for the graphitic lat-

th.e best_possible desqriptiorj of_c_ondense@ phases and defeﬁ& to draw conclusions abostp? hybrid bonds. Ignoring
with a simple, theoretically justified functional form. the weak, long-range interaction between hexagonal planes,
we can assume a TB basis s hybrid orbitals and follow
Carlsson’s derivation. Because the self-retracing path is also
An alternative to fitting guessed functional forms is to the only first-neighbor hopping circuit in a graphitic plane, a
derive potentials by systematic approximation of quantum<luster expansion with the generic BH three-body interaction
mechanical models. So far, this approach has failed to pras also valid for hexagonal configurations, with the functions
duce superior potentials, but important connections betweeim Egs. (1) and (5) differing from their diamondsp® coun-
electronic structure and effective interatomic potentials havéerparts, as described below. These calculations also suggest
been revealed. Although attempts are being made to directlthat a locally valid cluster expansion should acquire strong
approximate density functional theotythe most useful con-  environment dependence for large distortions from the refer-
tributions involve approximating various tight-bindit@B) ence configuratiof.
models, which can themselves be derived as approximations These studies provide theoretical evidence that the linear
of first principles theoried? These methods are based onthree-body SW-BH format is appropriate near equilibrium
low-order moment approximations of the TB local density of structures, while the nonlinear many-body Tersoff format de-
states(LDOS), which is used to express the average bandscribes general trends across different bulk structures. For
energy as the sum of occupied bonding statés>*petti-  the asymmetric configurations found in surfaces and small
for has derived a many-body potential, similar in form to theclusters, these theories also suggest that a more complicated
Tersoff potential, by approximation of the TB bond ordér. environment dependence than Tersoff's is needed, like the
More recently, an angular dependence remarkably close tdangling bond vector of the TIFF potentf4®® In conclu-
the T3 angular function has been derived ddnonding from  sion, direct approximation of quantum models can provide
the lowest-order two-site term in the bond order potentialinsight into the origins of interatomic forces, but apparently
expansior’> but the analytically derived function has a flat cannot produce improved potentials. The reason may be that

B. Approximation of quantum models
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the long chain of approximations connecting first principlesthe formation of a gap in the LDO%**3¢3"Thus, the bond
and empirical theories is uncontrolled, in the sense that thererder should depart from the divergeft 2 behavior at

is no small parameter which can provide an asymptotidower coordinations with a shoulder at the ideal coordination
bound for the neglected terms for a wide range ofof Z=Z, where the transition to metalliz~*? dependence

configurationg® begins.
Inversion ofab initio cohesive energy curves verifies that
IIl. INVERSION OF ab initio ENERGY DATA trends in chemical bonding across various bulk bonding ar-

rangements are indeed consistent with these theoretical

There are very few hard facts concerning the nature opredictions* Previously, the only evidence in support of the
interatomic forces. Although there has been a proliferation obond order formalism came fromquilibrium bond lengths
ab initio energy and force calculations for a wide range ofand energies for a small set of ideal crystal
atomic structures, it has proved difficult to discover any con-structures11131°The inversion approach has revealed that
crete information regarding the functional form of inter- the bond order decomposition expressed by Bgis actu-
atomic potentials. With the ubiquitous fitting approach, it isally valid for a wide range of volumes away from equilib-
never clear whether discrepancies with initio data result rium and for a representative set of low-energy crystal struc-
from an incorrect functional form or simply suboptimal tures. In addition to selecting the generic form of the pair
fitting.® Thus, in addition to the practical problem of design- interaction, inversion provides a precise measure of the rela-
ing potentials, it is also difficult to build a simple conceptual tive bond orders in various local atomic configurations. For
framework within which to understand the complexities of example, the bond order afp? bonds involving threefold-
chemical bonding. In this section, we summarize our receng¢oordinated atoms is about 5% greater than that of fourfold-
efforts to extract features of interatomic forces directly fromcoordinatedsp® bonds in silicon.
ab initio total energy data. In order to investigate the global These results have immediate implications for empirical
trends in bonding across bulk structures predicted by quampotentials. The main conclusion is that the generic Tersoff
tum theories, we first perform inversions ab initio cohe-  format is much more realistic than the SW format for highly
sive energy curves in Sec. Ill A. By analyzing elastic prop-distorted configurations. However, the inversion results also
erties of covalent solids in Sec. Il B, we then explore theindicate that a coordination-dependent pair interaction can
cohesive forces in certain specidligh-symmetry bonding  provide a fair description of high-symmetry crystal structures
states, which can be viewed as an inversiorlfinitio en-  without requiring additional many-body interactions. In par-

ergies restricted to selected important configurations. ticular, angular forces are only needed to stabilize these
structures under symmetry-breaking distortions, primarily
A. Inversion of cohesive energy curves for small coordinations. In order to make a quantitative con-

nection between Tersoff's functional form and our inverted
ab initio data, angular contributions to the bond order must
somehow be suppressed for ideal crystal structures.

The inversion procedure applied to explicit three-body in-
teractions has also led to some useful conclusions. Although
it is not always the cas¥,inverted three-body radial func-
tionsg(r) tend to be strictly decreasing functiotitke SW),
especially when an overdetermined set of input structures is
used*! Inverted angular functions(l) also tend to penalize

small angles §<m/2) less than most existing models, in

Va(r,.2)=¢r(r)+P(2) $alr), © agreemegt Wit?] a cor)nparative study of empiri?:al potentials.
where ¢R(r) represents the Short_range repu'sion of atomé/ve must emphasize, however, that the re.SUItS of this Seqtion
due to Pauli exclusion of their electrong(r) represents Cconcern general trends in chemical bonding, and have little
the attractive force of bond formation, apdZ) is the bond  to offer in terms of the precise nature of interatomic forces in
order, which determines the strength of the attraction as &P€cial atomic configurations, such as the low-energy states
function of the atomic environment' measured by the COOf'Of hybrld covalent bonds. TO-UnderStand better these critical
dinationZ. The theoretical behavior of the bond order is ast@ses, we employ a related inversion strategy.
follows:" 13143738 The jdeal coordination for Si iy,=4,
due to its valence. As an atom becomes increasingly overco-
ordinated Z>Z,), nearby bonds become more metallic,
characterized by delocalized electrons. In terms of electronic A useful theoretical approach to guide the development of
structure, the LDOS for overcoordinated atoms can be regaotentials, which has been pursued recently only by a few
sonably well described by its scalar second moment. It is @uthors*®is to predict elastic properties implied by generic
well-established result that the leading-order behavior of théunctional forms and compare with experimentalatr initio
bond order is p(Z)~Z Y2 in the second-moment data. This tool for understanding interatomic forces dates
approximation’.1*38For Z<Z,, on the other hand, a matrix back to the 19th century, when St. Venant showed that the
second-moment treatment predicts a roughly constant borassumption of central pairwise forces supported by Cauchy
order (additive bond strengths® For small coordinations and Poisson implies a reduction in the number of indepen-
higher moments are needed to incorporate important featurefent elastic constants from 21 to 45The corresponding six
of band shape characteristic of covalent bonding, primarilydependences, given by the single equa@gg= C,, if atoms

We have recently shown that it is possible to derive ef-
fective interatomic potentials for covalent solids directly
from ab initio data?'*? The inversion procedure generalizes
the “ab initio pair potential” of Carlsson, Gelatt, and
Ehrenreich® to many-body interactions and for arbitrary
strains beyond uniform volume expansifrzor the case of
silicon, this work provides first principles evidence in favor
of the generic bond order form of the pair interaction,

B. Analysis of elastic properties
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TABLE I. Comparison of elastic constantis units of Mbay for diamond cubic Si computed from empirical models with experimental
or ab initio (LDA) values. The values for experime(fitxpt) are from Simmons and War(&ef. 59, for tight-binding(TB) from Bernstein
and Kaxiras(Ref. 55, and for the empirical potentials Biswas-HaméBH), Tersoff (T2, T3), Dodson(DOD), and Pearson-Takai-
Halicioglu-Tiller (PTHT) from BalamangRef. 3. The Stillinger-WebefSW) values were calculated with the analytic formulas of Cowley
(Ref. 45 and scaled to set the binding energy to 4.63 (&¢éf. 3. In the lower half of the table, we test the elastic constant relations
discussed in the text by calculating the ratigs=(7C1;+2C1,) C44/3(C11+2C15)(Cy1— Cyp) and ag=(4C,+5C1,)/9C3,.

Expt. LDA SW BH T2 T3 DOD PTHT B
Ci 1.67 1.617 2.042 1.217 1.425 1.206 2.969 1.45
Ci, 0.65 0.816 1.517 0.858 0.754 0.722 2.697 0.845
Cu 0.81 0.603 0.451 0.103 0.690 0.659 0.446 0.534
cs, 111 1172 1.049 0.923 1.188 3.475 2.190 1.35
ay 1.16 1.00 0.98 2.99 231 1.69 1.71 2.80
ag 0.99 1.00 1.67 1.10 0.89 0.27 1.29 0.82

are at centers of cubic symmetry, are commonly called thevhich does not include relaxation of the internal degrees of
Cauchy relation8®4’ They provide a simple test for select- freedom in the crystal unit cell. In the early literature on
ing which materials can be described by a pair potefifi#l. elastic forces, unrelaxed elastic moduli were ignored, be-
Once it was realized that the Cauchy relations are not saticause they are not experimentally accessible. With the ad-
fied by the experimental data for semiconductors, a numberent of ab initio calculations that predict elastic constants
of authors in this century, led by Borfi>! derived general- within a few percent of experimental values, we can now
ized Cauchy relations for noncentral forces in the diamondanalyze unrelaxed elastic properties as well. Considering
structure®®*® Building upon this body of work, we have re- again the simple Harrison model, with its two degrees of
cently analyzed the elastic properties of several generdteedom, we report another relation for the unrelaxed
classes of many-body potentials in the diamond and graphitimoduli,
crystal structures in order to gain insight into the mechanical
behavior of sp® and sp® hybrid covalent bonds, 4C,,+5C,=9CY,. (8)
respectively** These high-symmetry atomic configurations _ ) o _
must be accurately described by any realistic model of interAS shown in Table Ithe experimental and ab initio elastic
atomic forces in a tetravalent solid. Here we will only outline moduli for silicon satisfy this relatiomwithin experimental
results directly related to the model presented in the nex@nd computational error. On the other hand, more general
section. cluster potentials and functionals, including the Tersoff for-

sp® hybrids. The simplest model of elastic forces that Mat, BH, and PTHT, do not require this relation, and appar-
captures the essential physics of a tetrahedral semiconduct8ftly cannot satisfy it under the usual circumstances. This is
is given by Egs(1) and(2) with the additional assumptions Qemonstrated_ in Table | anq explains yvhy it has proved dif-
of nearest-neighbor interactions and an angular function havicult to obtain good elastic properties with the Tersoff
ing a minimum of zero at the tetrahedral angte=h’=0, potential: The;e _results unambiguously selec.t the Harrison
h">0). This functional form, which includes the SW poten- model for_de;cr|b|_ng small ho_mogeneou_s strains of the_dla-
tial as a special case, is equivalent to a general model pr(gn_ond Iattlce_m Si. Althqugh imperfect, internal rel_axatlon
posed by Harrison with two degrees of freedom for elasticvith the Hamspn model is also much bet’_[er than with _other
behavior,V4 and h”, the curvatures of the pair interaction Models. Combining Eqs7) and(8), we arrive %t a relation
and of the angular function at their respective minfh&s?  involving all four moduli,Cy;, Cyz, Cy4, andCyy,
Since cubic symmetry allows for three independent elastic )
moduli, there is an implied relation due to Harrison, cO _C.= (C1118Cy) 9)

44 F4T9(7C+2Ch)]
(7C11+2C1p)Cyy=3(C11+2C1)(C13—Cypp). (V) . . .
which expresses the effect of internal relaxation. If the two

Using the experimental data for GRef. 54 shown in Table degrees of freedom in the Harrison model are used to repro-
I, the ratio of the two sides of the equation is 1.16, indicatingduce the experimental values 6f, andC,,, and thus also
a reasonable description by the Harrison model. In contrasG$, by Eq. (8) for Si, then the predicted value 6f,, from
the potentials with the Tersoff format, T2, T3, and DodsonEgq. (9) is 0.71 Mbar, which is only 12% smaller than the
(DOD),*® are far from satisfying this relation. This does not experimental value of 0.81 Mbar. The elastic behavior of the
imply rejection of the Tersoff format, because the functionalHarrison model is quite remarkable considering it has only
form has more than enough degrees of freedom to exactlalf of the necessary degrees of freedom, while most other
reproduce all the elastic constants. However, as such, th@odels are overdetermined for elastic behavior. This ex-
inability of Tersoff potentials to accurately describe elasticplains the surprising fatthat the SW potential gives one of
behavior when constrained to fit other important propertieshe best descriptions of elastic properties in spite of not hav-
does suggest a potential shortcoming in the functional forming been fit to any elastic constants. We conclude that it is

A more compelling reason to select the Harrison modethe superiority of the simple SW functional form that gives
over others comes from the unrelaxed shear modﬂ]&,s the desirable properties, not a complex fitting procedure.



56 ENVIRONMENT-DEPENDENT INTERATOMIC POTENTIA . .. 8547

Using analytic expressions for the elastic constants it isnodels for both. The relative radial stiffness is given by a
possible to devise a simple prescription to achieve good elasimple ratio of elastic constants,
tic properties with the Harrison mod¥lAs a simple conse-

guence ofh(—1/3)=0, the curvature of the pair potential is on(ry) grg An(C11+Cion
. m = — y 12
given by i(ra) 917 Vg(Cur+ 2C1g (12
" 3Vy where the subscriph refers to the equilibrium hexagonal
¢'(ro)= 4—r5(C11+ 2C1a). (10 plane with area per atorA,=a’v3/4, andd refers to the

diamond lattice. For most covalent solids, the prefactor,
The curvature of the angular function can be related to th@r3/9r2, is close to 1.0(using theab initio result for Si,
second shear modulus, rn=2.23 A, it is 0.99, and so the elastic constant ratio on
the right-hand side of Eq12) provides a direct comparison
g of sp? andsp?® radial forces. Ouab initio value of that ratio
g(fd)zh”(—1/3)=§(cn— C12), (1) is 1.4+0.1, implying thatsp? bonds have a 40% greater
radial stiffness tharsp® bonds in Si. The same result also
follows directly from inverted pair potentials for the gra-
Jhitic and diamond structurés.
A similar elastic analysis yields an expression for the rela-
tive angular stiffness o§p? andsp® hybrid bonds,

wherery, a4, and Vd=a§/8 denote the equilibrium first-
neighbor distance, lattice constant, and atomic volume. U
ing theab initio data in Table I, the right-hand sides of Egs.
(10) and(11) evaluate to 8.1 eV/Aand 3.6 eV, respectively.
This provides a simple two-step procedure to maintain good . )
elastic behavior while fitting any potential reducing to the hp(—1/2) _ 25694(ra)” An(C11—3C o
Harrison model near the diamond lattice(i) Scale the pair N(—1/3)  243p(rp)? V¢(C1i—Ciog
interaction V,(r) to obtain the correct bulk modulus
K=(Cq1+2C,)/3, and(ii) scale the three-body energy to Using ourab initio data for Si, we have the general result
set the second shear modulus. As shown above, this will leagh,(r ) 2hp.(— 1/2)/g4(r 4)hj(— 1/3)=0.46+0.15. Assuming
to perfect unrelaxed elastic constants and only a 12% error ig4(r)~g,(r) with each function decreasing in accordance
Cy4in the case of Si. with inversion resultd!  then the prefactor
sp? hybrids. We have also obtained useful information 256g4(r 4)2/243y,(r,)? is nearly unity. In that case the ratio
about interatomic forces due &p? hybrid bonds from the of elastic constants on the right-hand side of B allows
elastic moduli of the graphitic structuf&In this analysis we us to quantify the relative bending strength of the hybrid
neglect interplanar interactions, which are insignificant com-bonds. Theab initio value for the ratio of 0.4# 0.15 indi-
pared to the covalent bonds within a single, hexagonal planeates that the angular stiffness sy bonds is smaller than
Our goal is to understand the elastic propertiespf hy-  that ofsp? bonds in Si by about a factor of 2, in spite of the
brids appearing around threefold-coordinated atoms in a bullgreater radial stiffness afp? bonds. Our conclusion for the
environment, such as a dislocation core or a grairrelative bending strength ofp? andsp® hybrids would be
boundary>® An isolated hexagonal plane embedded in threereversed only ifgy(ry) were smaller thamq(ry) by at least
dimensional space has two independent elastic consiants a factor of 2, which seems unlikely in light of the bond
and C, with units of energy per unit areéd.There is no  orders.
relation implied by empirical models because any reasonable Elastic constant analysis suggests that a hybrid covalent
functional form must possess at least two degrees of freebond is well represented by a separable, first-neighbor, three-
dom, for pair bonding and angular forces. body cluster potential whose angular function has a mini-
Drawing on the TB approximations described above,mum of zero at the appropriate angle. This may seem to
which correctly predict the general form of interactions me-contradict the ample evidence we have cited in favor of the
diated bysp® hybrids, we proceed by assuming a separateTersoff format for large distortions of the diamond lattice,
three-body cluster potential feip? hybrids given by Eqs(1) particularly those involving changes in coordination. These
and(5). By analogy with thesp® case, we further assume the findings are consistent, however, in light of Carlsson’s argu-
simpler SW form of Eq.2) for the three-body interaction, ment that cluster potentials like SW can accurately fit narrow
with the important difference that the angular function has aanges of configurations while cluster functionals like Ter-
minimum of zero at thénexagonal angl®f 27/3 rather than  soff’s provide a less accurate but physically acceptable fit to
at the tetrahedral angle. We again restrict the interactiom much broader set of configuratiotis.
range to nearest neighbors engaged in the covalent bonds This body of results forms a reliable foundation upon
that dominate cohesion. These are not the only possiblehich to build empirical potentials for bulk tetravalent sol-
choices, but we can evaluate their validity through analysisds. In general, we conclude that the functional form of
of elastic moduli. atomic interactions should reduce exactly to appropriate
With such a functional forfit which differs from all ex-  cluster potentials in special bonding geometries, with envi-
isting empirical potential®? stability considerations imply ronment dependence that interpolates smoothly between
C11>3C4,, which is indeed satisfied by theb initio values  these special cases and captures general trends. We shall
for Si, C;;=1.79 Mbar andC;,=0.51 Mbar®® More impor-  refer to this theoretically motivated functional form as the
tantly, we can relate the mechanical propertiesspf and  environment-dependent interatomic potenti@DIP) for
sp® hybrids because we have assumed simple Harrison-likbulk Si.

(13
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IV. FUNCTIONAL FORM formaf~11®2%n which a mixed bond-atom perspective is

Although reasonable interaction potentials can be deriven?idomed: The contribution of atoito the strength of bond

; . ; . —{ij) is affected by the “interference” of other bondsk{
using the analytic methods of the previous section, such Ini'nvolving atomi. This model provides an intuitive explana-
version schemes become most powerful when used as theﬁ)c')n for trends in chemical reaction paths of molectfiesd

retical guidance for fitting. The reason is that inversion nec- .
essarily involves a restricted set ab initio data. Although allows for both covalent and metallic bonds to be centered at

the input data can be perfectly reproducadless it is over- ;heen:ﬁli?: f?)trom(’a%Scfsblsz;:ivc%d\'/vﬁ::ﬁ)ig:%Z\?vgrgﬂotﬁgi?\?a-
determinegl it is desirable to allow an imperfect description '

of the inversion data in order to achieve a better overall fit o#em dlamond lattice _and the ”.‘eta”@'“” lattice. However,
a widerab initio database that includes low-symmetry defectthe analysis of elastic properties discussed earlier favors the

structures. Thus, our approach is to incorporate the theoretP—resent approach for environment dependence near the dia-

cally derived features of the previous section directly intomgggl ;ar;{gc-?ér;??;hiirtﬁemggrtgrn;tiggf;[zzceu|:re(tjvgegg dgz(r:e
our functional form, and then to fit the potential to a care- P 9 P

fully chosenab initio database with a minimal number of from the bond order. As we shall see, this allows us to con-

parameters. In this way, we can systematically derive a reIiJErOI independently the preferences for bond strengths, bond

able potential for bulk properties while keeping the funC_angles, and angular forces in a way that the Tersoff potential

tional form simple enough to allow for efficient computation ?:c;?oﬁs?{hl;eﬁmo%t;ﬁ ttr)g(;?e?iI;datlarr:slﬁ]l?slet'hgemcciir:/:tlgg t?]'é
of forces as well as intuitive understanding of chemical y P

bonding in covalent solids. Tersoff potential in the first place.

A. Scalar environment description B. Coordination-dependent chemical bonding

The simplest description of the local environment of an OUr potential consists of coordination-dependent two- and
jhree-body interactions corresponding to the defining fea-

atom is the number of nearest neighbors, determined by a ; . )
effective coordination numbez, for atomi, tures of covalent materialpair bonding and angular forces

The energy of a configuratio[rﬁi} is a sum over single-atom
_ energies,E=3,E;, each expressed as a sum of pair and
Zi_,%:‘i f(Rim)., (14 three-body interactions,

wheref(R;,) is a cutoff function that measures the contri- .

bution of neighbom to the coordination of in terms of the Ei=> Va(Rj,Z)+ > Va(Rij ,Ri.Z)), (16)
bond lengthR;,,. The speciakp? andsp* bonding geom- ' I

etries can be uniquely specified by their coordinations due t@epending on the coordinatidfy of the central atom. The

thei[jh(ijg_h s%mmetry. Since environlment gepﬁndencz.is NQair functionalV,(R;;,Z;) represents the strength of bond
needed in those cases, it is natural to take the coordination. -\ e o wnee body functionals(Ry ,Ry,Z,) repre-

number to be a constant, except when large distortions fro sents preferences for special bond angles, due to hybridiza-

equilibrium occur. Moreover, covalent bonds tend to involvetion as well as the anaular forces that resist bending awa
only first neighbors, as indicated Iap initio charge density ' 9 : ; 9 Y
from those angles. From our atomic perspective, the pair

calculations of open structures like the diamond laftice. S . S o
nteraction is broken into a sum of contributions from each

Thus, we choose the neighbor function to be exactly unit atom, and similarly the three-body interaction is broken into
for typical covalent bond lengths<c, with a gentle drop to ’ y oay .
a sum over the three angles in each triangle of atoms. Note

zero above a cutofb that excludes second neighbors, that due to the environment dependence, the contributions to

1 if r<c, the bond strength from each pair of atoms are not symmetric
in general Vy(R;j ,Zi) # Va(R;i ,Z))-
_ a ; Pair bonding.We adopt the well-established bond order
f(r)= ex‘{l—x*’) It e<<r<b, (15 format of Eq.(6) for the pair interaction. Drawing on the
0 if r>b popularity of the SW potential, we use those functional
’ forms for the attractive and repulsive interactions,

where x=(r—c)/(b—c). This particular choice of cutoff
function is appealing because it has two continuous deriva- B\” o
tives at the inner cutoft, and is perfectly smooth at the Vo(r,Z)=A (T) —P(2) ex;{m ' (17

outer cutoffb. The cutoffsb andc are restricted to lie be-
tween first and second neighbors of both the hexagonal planghich go to zero at the cutoff=a with all derivatives con-
and diamond lattice in equilibrium, so that their coordina-tinuous. This choice can reproduce the shapes of inverted
tions are 3 and 4, respectively. pair potentials for St! Because we have constructgdand

Our scalar description of the atomic environment is simi-hencep(Z), to be constant near the diamond lattice, our pair
lar to Tersoff's, but there are notable differences. First, thénteraction reduces exactly to the SW form for configurations
perspective is that of the atom rather than the bond: With ounear equilibrium, thus allowing us to obtain excellent elastic
potential, the preferences for special bond angles, bongdroperties as explained above. Making this choice of repul-
strengths, and angular forces are the same for all bonds irsive term with the parameters obtained by fitting to defect
volving a particular atom. This is in contrast to the Tersoffstructure$, we can follow the procedure of Bazant and
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FIG. 2. Attractive pair interactions from inversion ab initio
cohesive energy curves for the structures in Fig. 1 using the bond
Bdrder and repulsive pair potential of our model. The solid lines are
(Lor the covalent structures with coordinations 3 and 4, while the
) . . . otted lines are for the overcoordinated metallic structures. The
vacancy(VAC) and the dimer molecule (i as explained in the reasonable collapse of the attractive pair potentials indicates the

te_xt. For comparison the solid line shows the Gau§$1ezl) ob- validity of the bond order functional form of the pair interaction
tained from fitting to defect structures. The dotted line shows the .

. . ) . across a wide range of volumes and crystal structures.
1/\Z dependence, the theoretically predicted approximate behavior

for large coordinations.

FIG. 1. Ab initio values for the bond order as a function of
coordination, obtained from the inversion of cohesive energy curve
for the graphitic(GRA), cubic diamondDIA), bc8, bct5, scs-tin,
and bcc bulk structures and with additional points for the unrelaxe

Angular terms.In a thorough comparative study of Si

Kaxirad! to extract the implied bond ordex(Z) from ab  Potentials, Balamanet al. attribute the limitations of empiri-
initio cohesive energy curves for the following crystal struc-Cal models to the inadequate description of angular fotces.
tures(with coordinations given in parenthesegraphitic(3), ~ Our potential contains a number of innovations in handling
diamond(4), bc-8(4), bet-5(5), B-tin (6), sc(6), and bco8).  angular forces, leading to a significant improvement over
These structures span the full range from threefold- an@Xisting models in reproducingb initio data. Analysis of
fourfold-coordinated covalent bonding Bp? and sp® ar- elastic properties shows that, at least near equm_bnum, the
rangements, to overcoordinated atoms in metallic phase&rée-body functional should be expressed as a single, sepa-
The invertedab initio bond order versus coordination is rable product of a radial functiog(r) for both bonds and an
shown in Fig. 1, along with two additional data points. Since@ngular functiorh(4,2),
we have only first-neighbor interactions in the diamond lat-
tice, we can obtain another bond order for threefold coordi- 5. P _
nation from theab initio formation energy(3.3 eV) for an V3(Rij,Rik.Zi) =9(Rijp)9(Ri)h(lijc . Z)). (18)
unrelaxed vacancy. An additional data point for unit coordi-
nation comes from the experimental binding ene(gy24
eV) and bond lengtt{2.246 A) of the Sj molecule®®

The bond order data has a clear shouldeZatZ,=4
where the predicted transition from covalent to metallic
bonding occurs. For overcoordinated atoms védthZ,, the
bond order approaches its rough asymptotic behaor,
«Z~ 12 characteristic of metallic band structure. For coordi-
nationsZ<Z,, the bond order departs from t#e ' diver- _ Y
gence, due to the formation of a band gap in the LDOS g(r)_exim)'
associated with covalent bonds. A natural choice to capture

this shape is a GaussiaxQZ)zefﬂzz. In Fig. 1, we see that which also goes to zero smoothly at a cutoff distabcea

the bond order function we obtain from fittihig fairly close  value different from the two body cuto#f. Having separate

to the inversion data. It is intentionally somewhat too largecutoffs for two- and three-body interactions is reasonable
for coordinations 5—-8 to compensate for the small, but nonbecause they describe fundamentally different features of
vanishing many-body energy for those structures, as déionding. Although the pair interaction might extend consid-
scribed below. The collapse of the attractive functionserably beyond the equilibrium first-neighbor distance, the an-
da(r)=[Va(r,Z)—Va(r)]/p(Z) with this choice of bond gular forces should not be allowed to extend beyond first
order shown in Fig. 2 is reasonably good, thus justifying theneighbors, if they are to be interpreted as representing the
bond order formalism across a wide range of volumes. Ouresistance to bending of covalent bonds.

potential is the first to have a bond order in such close agree- Much of the new physics contained in our potential comes
ment with theory, which is a direct result of our novel treat- from the angular functioh(l,Z). Theoretical considerations
ment of angular forces. lead us to postulate the following general form:

Although the radial functions could vary with coordination,
in the interest of simplicity we have focused on the angular
function as the most important source of coordination depen-
dence. Inversion ofb initio cohesive energy curv&ssug-
gests that a consistent choice for the radial functions is the
monotonic SW form

(19
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shifting of the minimum of the angular function in our model
incorporates coordination-dependent hybridization in a way
that other potentials cannot.

Through the functiorw(Z), our angular function has an-
other coordination dependence to represent the covalent to
metallic transition. The width of the minimunw(Z) is
broadened with increasing coordination, thus reducing the
angular stiffness of the bonds as they become more metallic.
Similarly, as coordination is decreased from 4 to 3, the width
of the minimum is increased to reproduce the smaller angular
stiffness ofsp? bonds compared to that sfp® bonds. Thus,
the functionw(Z) should have a minimum afy,=4 and
diverge with increasingZ. Fitting of the model can be
guided by Eq(11), which determinesv(4) from the second
shear modulus, and by Eq(13), which requires

FIG. 3. The coordination dependence of the preferred bondv(3)/w(4)~v2. The softening of the angular function is
angle6y(Z) (in degreey which interpolates the theoretically moti- important because it allows the decrease in cohesive energy

130 T T T T T
120 [~
110 -
& 100

9

70
0

vated points foiZ=2,3,4,6, indicated by diamonds. per atom concomitant with overcoordination to be modeled
by a weakening of pair interactions. In contrast, cluster po-
|+ 7(2) tentials like SW penalize overcoordinated structures with an

h(l,2)= H( W2 ) (200 increased three-body energy that overcomes the decrease in

pair-bonding energy. This is an unphysical feature, since
overcoordinated structures do not even have covalent bonds,
&nd the many-body energy cannot be viewed as a conse-
quence of stretchingp® bonds far from the tetrahedral ge-
ometry. In this sense, the reasonably good description of
liquid Si (a metal with about six neighbors per atomith

the SW potential appears to be fortuitous.

whereH(x), w(Z), and 7(Z) are generic functions whose
essential properties we now describe. The overall shape
the angular function is given bi(x), a non-negativ&’

function with a quadratic minimum of zero at the origin,
H(0)=H'(0)=0 andH”(0)>0. The guantum-mechanical
studies described earlier suggest a polynomial forntfer) S .
(expansions in=cos#), but the exact shape is a fundamen- The coordination dependence of our angular function

tal gap in our theoretical understanding, requiring additionaF.‘akes it possible for the first time to reproduce the well-

research. A useful tool in this regard may be the inversion o nown b_ehawor of the bond order: The reason is that the
ab initio cohesive energy versus shear strain curves. contribution of the three-body functional to the total energy

Motivated by theory, we choose the functiefZ) to con- is suppressed for ideal crystals and overcoordinated struc-

trol the coordination-dependent minimum of the angulartures' The shifting of the minimum makes the three-body

) o ™ : 162 energy vanish identically fosp? and sp® hybrids, and the
function, 1o(Z) = cog 6(Z)]=~(2), with the forn? variable width greatly reduces the three-body energy in me-
3 Lz 2wz tallic structures. With the three-body energy suppressed, we

T(Z)=uptuy(uze "4 —e” 7). (21) can use our knowledge of the bond order for the graphitic,

diamond,s-tin, and other lattices from inversion of cohesive

The  parameters u;=-0.165799, u,=32.557, energy curves to capture the energetics of these structures in
u3=0.286 198, andi,=0.66 were chosen to make the pre- the pair interaction, as described above. Several other poten-
ferred angledo(Z) =cos [ —7(2)] interpolate smoothly be- tials have tried to incorporate the bond order predicted from
tween several theoretica"y motivated values, as shown ilﬂ‘]eory, but the uncontrolled many_body energy makes it im-
Fig. 3: We have already argued that(4)=1/3 and possible to connect directly with theory. Our treatment of
7(3)=1/2 (so thatsp® andsp? bondings correspond to the angular forces is intuitively appealing because the forces pri-
diamond and graphitic structures, respectiyelyhich deter-  marily model the bending of covalent bonds, with the control
mines two of the four parameters #(z). The remaining two  of global energetics left to the pair interactions.
parameters were selected so tha{2)=7(6)=0 or Although our model contains a complicated environment
0o(2)= 6o(6)=m/2. For twofold coordination, this choice dependence, forces can still be evaluated with computational
reproduces the preference for bonding along two orthogonalpeed comparable to much simpler existing potentials. The
p states with the low-energy, nonbondisgtate fully occu-  coordination dependence introduces an extra loop into each
pied. For sixfold coordination, the choia#(6)=m/2 also  force calculation. For the three-body functional, this intro-
reflects thep character of the bonds. However, structuresduces a fourth nested loop over atomsoutside each triplet
with Z=6 like sc andg-tin are metallic, with delocalized (ijk) that contribute to coordination of atoris which
electrons that tend to invalidate the concept of bond bendingyould make force evaluation much slower than the typical
underlying the angular function, a crucial point we shall ad-three-body cluster expansions used in most other potentials.
dress shortly. The vanishing many-body energies for the graHowever, our choice of(r) greatly reduces the frequency of
phitic plane and diamond structures allow fitting of the pairfour-body computations because nonzero forces result if the
interactionsV,(r,3) andVy(r,4) to be guided by Eq(10),  fourth atom lies in the range of being a partial neighbor,
which determinesd/5(r 4,4) from the bulk modulus, and Eq. c<r;,<b, which happens only for a small number of neigh-
(12), which requiresv5(rp,3)/V5(r4,4)~1.4. Moreover, the bors in most cases. If coordinations stay relatively constant
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during a simulation, as in a low-temperature solid, the fouring sp? hybridization should also be well described. In gen-

body force computation is insignificant. Indeed, we haveeral, the model should perform best whenever the
found that force evaluation with our model can be almost agoordination number can adequately specify the local atomic
fast as with the SW potentifllwhich is an advantage of our environment. This certainly includeg? andsp® hybridiza-

model over others of comparable sophistication. tion and some metallic states, but might also include more
general situations in which atoms are more or less symmetri-
V. CONCLUSION cally distributed, like the liquid and amorphous phases and

o . reconstructed dislocation cores and grain boundaries. The
In summary, we have used recent theoretical innovationg,eory behind the model begins to break down for noninteger
to arrive at a functional form that describes the dependencggorginations, since our effective coordination number is a
of chemical bonding on the local coordination number. Bonq,\,ay of smoothly interpolating between well-understood lo-
order, hybridization, metalization, and angular stiffness argg| structures. More seriously, no attempt is made to handle
all described in qualitative agreement with theory. Consistensymmetric distributions of neighbors, which are abundant in
with our motivation, we have kept the form as simple asgrfaces and small clusters. Theory suggests that our model
possible, reproducing the essential physics with little MOrénay be fitted to provide a good description of condensed
complexity than existing potentials. The fitted implementa-phases and defects in bulk tetrahedral semiconductors, such
tion of the model described in the companion péjrerolves 4 Si, Ge, and with minor extensions perhaps alloys such as

only 13 ao_ljustable parameters. U_sing th_e results of theice which can be understood in terms of simple principles
present article, we provide theoretical estimates of almosgs covalent bonding.

half of the parameters, thus greatly narrowing the region of
parameter space to be explored during fitting. The remaining
parameters are chosen to fit important bulk defect structures. ACKNOWLEDGMENTS
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