Math 53 — Practice Final — Solutions
1. P:(1,1,-1), Q: (1,2,0), R: (—2,2,2), so PQ = (0,1,1) and PR = (—3,1,3). Thus
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The vector (2,—3,3) is normal to the plane through P, Q, R. Plugging any of the given points into
the equation 2z — 3y + 3z = d, we obtain:

2z — 3y + 3z = —4.

— —_— = — — P
2. OP = 0Q + QP, where OQ = (acosf,asinf), and QP = af (L, L). Q
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3. a) = (3cost,bsint,4cost) = ¥ = dr/dt = (=3sint,5cost, —4sint), and v

7] = v/9sin?t + 16sin ¢ + 25cos? t = 5.

S

b) The trajectory passes through the yz-plane when x = 0, hence when cost =0, i.e. t = 7/2 and
37/2. Thus, the intersections occur at the points (0, £5,0).

4. w= 2%y — 2y, and P = (2,1):
a) Vw = (2zy — 33, 22 — 3zy2), so Vw(P) = (3, —2). The unit vector in the direction of A = (3,4)

A 4 4y 1
1 Aw 1 1
Dyw=~-~— Aw ~ —As = —(0.01) = 0.002.
b) Dyw PN A, S0 AwR LAs 5(00) 0.00

5. a) Let g(z,y,2) = 22 + 2y% + 222 then Vg = (2x,4y,4z) = (2,4,4) at (1,1,1). Since Vg is
normal to the tangent plane, we get the equation: 2z + 4y + 4z = 10, or x 4+ 2y + 2z = 5.

(1,2,2)-(0,0,1) 2 - _
VELE D) 3 So 6 = cos™1(2/3).

6. f(z,y) = 2% + 2y +y? — 4z — 5y + 7: the critical points correspond to f, = 2z +y —4 = 0 and
fy =x+2y—>5=0. Solving, we get x = 1 and y = 2. So the only critical point is (1, 2). Moreover
f(1,2)=0.

Next we check the boundaries and infinity. On the z-axis: f(z,0) = 22 —42+7 = (z—2)24+3 > 0;
on the y-axis: f(0,y) =y> =5y +7 = (y — %)2 + % > 0. At infinity: if  and/or y tends to +oo
then f(z,y) — +00. So the minimum of f in the first quadrant is at (1,2).

b) Dihedral angle (angle between normals): cosf =

(Note: the second derivative test shows that (1,2) is a local minimum, but this is not sufficient to
conclude regarding the absolute minimum.)

7. Minimize f(z,y,2) = 22 + y? + 2? with constraint g(z,y,2) = 22 +y — 2 = 6: the Lagrange
equations (Vf = AVg) are: 2z = 2\, 2y = \, 2z = —\. Substituting into the constraint equation:
20+y — 2z = 2)\+%— (—%) =3\A=6. So A=2, and (z,y,2) = (2,1,—-1).

8. At the point P, differentiating the constraint gives: dg = g, dx + g, dy + g.dz = 0, so dz =

0 2
Iz g Ty dy. Hence a—z = 9= _ == 2 (using the given values of g, and g,.)
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9. The region of integration is bounded by the parabola y = 22 (or z = V/¥), the horizontal line
y =9, and the y-axis. So:

3 9 , 9 T ,
/ / xe Y dydx:/ / xe YV dx dy.
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Inner: {%x%_y = Eye_yQ. Outer: {fie_yQ]O =1(1—e®).

10. By symmetry, we integrate over 1/8 of the region; recalling that the
polar moment of inertia is Io = [ 72 pdA (here p = 1), we get

w/4 p2cosf w/4
8/ / r2rdrdf (or4/ )
0 0 —m/4

11. a) fids = (dy, —da), so Flux = [, F -iads = [, —Qdz + P dy.

b) By Green’s theorem, ¢, —Qdz + Pdy = [[,(Pr + Qy)dA = [[,(a+b)dA = (a + b) area(R).
This equals the area of R if and only if a + b = 1.

r=2cost

1
12. z = Volume [[] zdV, since here the densﬂ:y is 1. 2The \;glume is 3 7 (half of the unit sphere),
s ™
and in spherical coordinates z = pcos¢. So z = — / / (pcos p) p*sin ¢ dp de db.

Inner: fol p3 cos psinpdp = [lp cos ¢ sin qb] ! =7 L cos ¢ sin ¢.
Middle: 7r/2 i 78in¢ cospdop = [ sin gb} %. Outer: % - 27 - % = %.

13. The line from P : (1,1,1) to @ : (2,4,8) has parametric equations: * = 1 + ¢, y = 1 + 3¢,
—

z =1+ Tt (since PQ = (1,3,7)). The line segment corresponds to 0 < ¢ < 1. So

Joly —x)dz + (y — 2)dz = [} 2tdt + (—4t) Tdt = [} —26tdt = [~131%], = —13.

14. a) F = (P,Q,R) = (ay?,2yx + 2yz,by* + 2%): we need Py, = 2ay = Q, = 2y, so a = 1; and

P, =0= Ry;;and Q. =2y = Ry = 2by, so b= 1. So: F is conservative when a = 1 and b = 1.

b) fr =y?, so f(z,y,2) = 2y + g(y, 2). Differentiating wrt y, f, = 22y + g, = 2zy + 2yz.

So g, = 2yz, hence g(y, 2) = y*z + h(z) and f(z,y,2) = 2y* + y?2 + h(2).

Differentiating wrt z, f. = y? + h/(2) = y? + 2% so I'(z) = 22, hence h(z) = £2° +c.

Finally we get: f(z,y,2) = zy® + y%z + %23 +c.

c) any surface S of the form zy? + y?z + %23 = K for some constant K (i.e. a level surface of f).
Then by the fundamental theorem, fg F-di = f(Q) — f(P) =0 if P and Q lie on &S.

15. //F-fldS—i—//F~ﬁdS://F-ﬁdS:///dideV:///3dV:3vol(V),Where
B U 5 R R
2 1 pl—r? 1 1
vol(V)—/ / / rdzdrd9—27r/ (1—7r?)rdr=2r [%Tz—%rﬂozw/z
o Jo Jo 0

So the total flux through B and U equals 37/2. Next we compute directly the flux through the
bottom disc B, where z = 0 and n = —k:

[[gF-0dS = [[(x,y,2)(0,0,~1)dzdy = [[,—zdxdy = [[,0dS = 0.
Hence ([, F-0dS = [[;F -1dS = 3r/2.



16. U is the graph z = f(x,y) = 1 — 2% — 42, so 2dS = (—fu, — fy, 1)dx dy = (2z, 2y, 1)dx dy.

So//F nds = // x,y,z) - 2z, 2y, >dxdy—// (222 + 2% + 2) dz dy.

Recalling that z = 1 — 22 — 32 on U, this is equal to

27 1
//U(g;2+y2+1)dxdy=/0 /0(r2+1)rdrd9=2w[}17~4+§r2‘]; o

17. By Stokes, if S is the portion of S enclosed by C, then ¢ F.dif = [s,(V x F)-ndS. Here
i d k
VxF=|08, 8 0. |=1(0,-20), andndS= <_g;, g;,1> dzdy = (—f'(2),0,1)dz dy
2?2 y? xz

(since S7 is a graph z = f(z)). So fcﬁ-df’:ffsl(v X F)-ﬁdS:ffslodxdyzo.

= 3m/2.
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18. a) C is the circle 22 + y?> = 1, z = 1. Parametrization: = = cost, y = sint, z = 1; and
dr = —sintdt, dy = costdt, dz = 0. So

I:fczvzdx+ydy+ydz:fo%cost(—sint)dt+sintcostdt+Odt:O.
i k
Oy 0, |=1+ux].

Yy

¢) By Stokes’ theorem, I = § F - di' = [[4(V x F) - 01dS = [[(i+ aj) - 1dS.

—

Note: n = %(m,y,z), so F'-n= 7(3:+xy) (where z = v/2sin ¢ cos @ and y = v/2sin ¢sin #); and
dS = 2sin¢pd¢ db.



