
Math 53 Homework 9 – Solutions

15.6 # 44: Iz =

∫∫∫

E
(x2 + y2) ρ dV =

∫ h

−h

∫

√

h2
−x2

−

√

h2
−x2

∫ h

√
x2+y2

(x2 + y2) k dz dy dx.

Or better, in cylindrical coordinates: Iz =
∫ 2π
0

∫ h
0

∫ h
r r2 k dz r dr dθ.

Inner: [r2kz]hr = khr2 − kr3. Middle:
∫ h
0 (khr3 − kr4) dr =

[

1
4khr4 − 1

5kr5
]h

0
= 1

20kh5.

Outer: 2π · 1
20kh5 = π

10kh5.

15.6 # 52: Volume =
∫ 1
−1

∫

√

1−x2

−

√

1−x2

∫ 1−x2
−y2

0 dz dy dx =
∫ 2π
0

∫ 1
0

∫ 1−r2

0 dz r dr dθ.

Inner: 1 − r2. Middle:
∫ 1
0 (r − r3) dr =

[

1
2r2 − 1

4r4
]1

0
= 1

4 . Outer: V = 2π · 1
4 = π/2.

Average value: f̄ = 1
π/2

∫∫∫

E(x2z + y2z) dV = 2
π

∫ 2π
0

∫ 1
0

∫ 1−r2

0 r2z dz r dr dθ.

Inner:
[

1
2r2z2

]1−r2

0
= 1

2r2(1 − r2)2.

Middle:
∫ 1
0 (1

2r3 − r5 + 1
2r7) dr =

[

1
8r4 − 1

6r6 + 1
16r8

]1

0
= 1

8 − 1
6 + 1

16 = 1
48 .

Outer: f̄ = 2
π (2π) 1

48 = 1
12 .

15.7 # 9: (a) z = r2; (b) r2 = 2r sin θ, or r = 2 sin θ.

15.7 # 15: solid cone centered on the z-axis, with vertex at the origin; the top face is a
disk of radius 4 in the plane z = 4.

V =
∫ 4
0

∫ 2π
0

∫ 4
r r dz dθ dr =

∫ 4
0 (2π)(4 − r) r dr = 2π

[

2r2 − 1
3r3

]4

0
= 2π(32 − 64

3 ) = 64π/3.

15.7 # 18: The paraboloid z = 1 − x2 − y2 intersects the xy-plane in the circle x2 + y2 =
r2 = 1 or r = 1, so in cylindrical coordinates E is given by: 0 ≤ θ ≤ π/2, 0 ≤ r ≤ 1,

0 ≤ z ≤ 1 − r2. Thus
∫∫∫

E(x3 + xy2) dV =
∫ π/2
0

∫ 1
0

∫ 1−r2

0 (r cos θ)r2 r dz dr dθ.

Inner:
∫ 1−r2

0 r4 cos θ dz = r4(1 − r2) cos θ. Middle:
[

1
5r5 − 1

7r7
]1

0
cos θ = 2

35 cos θ.

Outer:
∫ π/2
0

2
35 cos θ dθ = 2

35 [sin θ]
π/2
0 = 2

35 .

15.7 # 22: E is the solid region within the cylinder r = 1 bounded above and be-

low by the sphere r2 + z2 = 4. So its volume is
∫∫∫

E dV =
∫ 2π
0

∫ 1
0

∫

√

4−r2

−

√

4−r2
r dz dr dθ =

∫ 2π
0

∫ 1
0 2r

√
4 − r2 dr dθ = 2π

∫ 1
0 2r

√
4 − r2 dr = 2π

[

−2
3(4 − r2)3/2

]1

0
= 4

3π(8 − 3
√

3).

15.8 # 9: (a) z2 = x2 + y2 (right angled cone centered on z-axis with vertex at origin)
corresponds to φ = π/4 and also φ = 3π/4 (since the equation z = ±

√

x2 + y2 actually
describes two cones, one centered on the positive z-axis and the other one centered on the
negative z-axis). Or: z2 = x2 + y2 ⇔ z2 = r2 ⇔ ρ2 cos2 φ = ρ2 sin2 φ ⇔ cos2 φ = sin2 φ (⇔
cos φ = ± sinφ ⇔ φ = π/4 or 3π/4.)

(b) x2 + z2 = 9 ⇔ (ρ sin φ cos θ)2 + (ρ cos φ)2 = 9 ⇔ ρ2(sin2 φ cos2 θ + cos2 φ) = 9.

15.8 # 14: ρ ≤ csc φ ⇔ ρ sinφ ≤ 1 ⇔ r ≤ 1, or equivalently x2+y2 ≤ 1, which corresponds
to the solid cylinder of unit radius centered on the z-axis. Moreover, ρ ≤ 2 corresponds to
the solid sphere of radius 2 centered at the origin. Hence, this solid is the intersection of
the sphere and the cylinder.

(The sphere and the cylinder intersect at the two circles r = 1, z = ±
√

3; so the boundary
of the solid is given by the portion of the cylinder where −

√
3 ≤ z ≤

√
3, and spherical caps

at the top and bottom).
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15.8 # 15: The cone z =
√

x2 + y2 corresponds to z = r, i.e. ρ cos φ = ρ sinφ, i.e. φ = π/4.
(See also 15.8 # 9(a)). Thus, the region above the cone corresponds to φ ≤ π/4.

In spherical coordinates, the sphere x2 + y2 + z2 = z (centered at (0, 0, 1
2) and of radius 1

2 ,
since the equation rewrites as x2 + y2 + (z − 1

2)2 = 1
4) has equation ρ = cos φ. (This can

be seen either geometrically on a slice by a vertical plane, or by manipulating the equation:
x2 + y2 + z2 = z becomes ρ2 = ρ cos φ, which simplifies to ρ = cos φ).

Hence, the solid is described by the inequalities ρ ≤ cos φ, 0 ≤ φ ≤ π/4.

(See Example 4 on page 1009 for a more detailed discussion and pictures).

15.8 # 19: In cylindrical coordinates: 0 ≤ z ≤ 2, 0 ≤ r ≤ 2, 0 ≤ θ ≤ π/2, so the integral

is given by
∫ π/2
0

∫ 3
0

∫ 2
0 f(r cos θ, r sin θ, z) r dz dr dθ.

In spherical coordinates: the top plane has equation z = ρ cos φ = 2, i.e. ρ = 2 sec φ. The
cylinder corresponds to r = ρ sinφ = 3, i.e. ρ = 3 csc φ. They intersect when 2 sec φ =
3 csc φ, i.e. tanφ = 3/2. Therefore:

∫ π/2
0

∫ tan−1(3/2)
0

∫ 2 sec φ
0 f ρ2 sinφ dρ dφ dθ +

∫ π/2
0

∫ π/2

tan−1(3/2)

∫ 3 csc φ
0 f ρ2 sin φ dρ dφ dθ.

15.8 # 23: The spheres correspond to ρ = 1 and ρ = 2, and the first octant corresponds

to 0 ≤ θ ≤ π/2, φ ≤ π/2. So
∫∫∫

E z dV =
∫ π/2
0

∫ π/2
0

∫ 2
1 (ρ cos φ) ρ2 sinφ dρ dφ dθ.

Inner:
[

1
4ρ4 cos φ sinφ

]2

1
= 15

4 cos φ sin φ.

Middle: 15
4

∫ π/2
0 sinφ cos φ, dφ = 15

4

[

1
2 sin2 φ

]π/2

0
= 15

8 .

Outer: π
2 · 15

8 = 15π
16 .

15.8 # 30: In spherical coordinates, the region below the cone z =
√

x2 + y2 and above the

xy-plane corresponds to π/4 ≤ φ ≤ π/2. Therefore
∫∫∫

E dV =
∫ 2π
0

∫ π/2
π/4

∫ 2
0 ρ2 sinφ dρ dφ dθ.

Inner:
[

1
3ρ3 sinφ

]2

0
= 8

3 sinφ. Middle:
[

−8
3 cos φ

]π/4

π/2
= 8

3
1
√

2
= 4

√

2
3 . Outer: 2π · 4

√

2
3 = 8π

√

2
3 .

15.8 # 33: We take the hemisphere to be the region lying above the xy-plane and inside
the sphere x2 + y2 + z2 = a2; and denote by K its (constant) density. So the base is
contained in the xy-plane.

(a) By symmetry, the centroid lies on the z-axis, so we only need compute z̄. Also, the
mass of the hemisphere is K · (volume) = 2

3Kπa3. Therefore:

z̄ = 1
mass

∫∫∫

z K dV = 3
2Kπa3

∫ 2π
0

∫ π/2
0

∫ a
0 (ρ cos φ)K ρ2 sinφ dρ dφ dθ.

Inner:
[

1
4Kρ4 cos φ sin φ

]a

0
= 1

4Ka4 cos φ sinφ.

Middle: 1
4Ka4

∫ π/2
0 sinφ cos φ dφ = 1

4Ka4
[

1
2 sin2 φ

]π/2

0
= 1

8Ka4.

Outer: 3
2Kπa3 (2π) (1

8Ka4) = 3
8a. So the centroid is (0, 0, 3

8a).

(b) We use the same setup as before, and compute the moment of inertia about the x-
axis, Ix. (One could also compute Iy instead; by symmetry Ix = Iy).

Ix =
∫∫∫

(y2 + z2)K dV =
∫ 2π
0

∫ π/2
0

∫ a
0 (ρ2 sin2 φ sin2 θ + ρ2 cos2 φ)K ρ2 sinφ dρdφdθ.

Inner: 1
5Ka5(sin3 φ sin2 θ + cos2 φ sinφ).

Middle: 1
5Ka5

∫ π/2
0 sin2 θ(1 − cos2 φ) sin φ + cos2 φ sin φ dφ =

= 1
5Ka5

[

sin2 θ(1
3 cos3 φ − cos φ) − 1

3 cos3 φ
]π/2

0
= 1

5Ka5(2
3 sin2 θ + 1

3).

Outer: Ix = 1
5Ka5

∫ 2π
0 (2

3 sin2 θ + 1
3) dθ = 1

5Ka5
∫ 2π
0 (2

3 − 1
3 cos 2θ) dθ = 4

15πKa5.
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Note: a more efficient setup for this calculation would have been to instead take the hemi-
sphere to be the “right” half of the solid sphere x2 + y2 + z2 ≤ a2, i.e. where y ≥ 0. The
bounds are then ρ ≤ a, 0 ≤ θ ≤ π. Since the base is now a disk in the xz-plane, we can
now compute the moment of inertia about the z-axis:

Iz =
∫ π
0

∫ π
0

∫ a
0 (ρ2 sin2 φ)K (ρ2 sin φ) dρdφdθ = · · · = 4

15πKa5.

15.8 # 35: In spherical coordinates z =
√

x2 + y2 becomes φ = π/4. So the volume is V =
∫ 2π
0

∫ π/4
0

∫ 1
0 ρ2 sinφ dρdφdθ = (

∫ 2π
0 dθ)(

∫ π/4
0 sinφ dφ)(

∫ 1
0 ρ2dρ) = 2π

3 [− cos φ]
π/4
0 = π(2−

√

2)
3 .

By symmetry the centroid is on the z-axis, i.e. x̄ = ȳ = 0, and z̄ = 1
V

∫∫∫

z dV , so

z̄ = 3
π(2−

√

2)

∫ 2π
0

∫ π/4
0

∫ 1
0 ρ cos φ ρ2 sin φ dρdφdθ = 3

π(2−
√

2)
(2π)(

∫ π/4
0 sinφ cos φ dφ)(

∫ 1
0 ρ3 dρ)

= 3
4(2−

√

2)

[

1
2 sin2 φ

]π/4

0
= 3

8(2−
√

2)
.

16.1 # 11: ~F (x, y) = 〈y, x〉 corresponds to graph II. In the first quadrant all the vectors
have positive x- and y-components, in the second quadrant they have positive x-components
and negative y-components, etc. Moreover, the vectors get shorter as we approach the origin.

16.1 # 13: ~F (x, y) = 〈x−2, x+1〉 corresponds to graph I since the vectors are independent
of y (the vectors along vertical lines are identical) and, as we move to the right, both the
x- and the y-components get larger.

16.1 # 18: ~F (x, y, z) = 〈x, y, z〉 corresponds to graph II: each vector ~F (x, y, z) has the
same length and direction as the position vector of the point (x, y, z), and therefore the
vectors all point directly away from the origin.

16.1 # 26: f(x, y) =
√

x2 + y2 ⇒ ∇f = 〈fx, fy〉 =
〈 x

√

x2 + y2
,

y
√

x2 + y2

〉

=
〈x, y〉

√

x2 + y2
.

This vector has the same direction as 〈x, y〉 (= position vector of the point (x, y)), so points
directly away from the origin; while its magnitude is (x2 + y2)−1/2|〈x, y〉| = 1.

So ∇f(x, y) is the unit vector in the direction of 〈x, y〉 (directly away from the origin).

16.1 # 31: f(x, y) = (x + y)2 ⇒ ∇f = 〈2(x + y), 2(x + y)〉 = 2(x + y)(̂ı + ̂). So all
the vectors are parallel to ı̂ + ̂; they vanish on the line x + y = 0 (or y = −x), and their
magnitude increases with the distance to that line. This corresponds to plot II.

Problem 1: M =

∫ 1

0

∫

√

1−z2

0

∫

√

1−z2

0
dxdydz =

∫ 1

0
(1 − z2)dz = 2/3.

z̄ =
1

M

∫ 1

0

∫

√

1−z2

0

∫

√

1−z2

0
zdxdydz =

3

2

∫ 1

0
(z − z3)dz =

3

8
.

x̄ =
1

M

∫ 1

0

∫

√

1−z2

0

∫

√

1−z2

0
xdxdydz =

3

2

∫ 1

0

∫

√

1−z2

0

1 − z2

2
dydz

=
3

4

∫ 1

0
(1 − z2)3/2dz =

3

4

∫ π/2

0
cos4 θ dθ =

3

4

3π

16
=

9π

64
(z = sin θ, dz = cos θ dθ)

using double angle formulas twice to calculate

∫ π/2
0 cos4 θ dθ =

∫ π/2
0

1
4(1 + cos 2θ)2 dθ =

∫ π/2
0 (3

8 + 1
2 cos 2θ + 1

8 cos 4θ) dθ = 3π
16 .
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By symmetry with respect to the plane x = y, x̄ = ȳ. Thus the centroid is

(x, y, z) =

(

9π

64
,
9π

64
,
3

8

)

.

Problem 2: In cylindrical coordinates, distance to the origin is d =
√

r2 + z2, and

d̄ =
1

4πa3/3

∫ 2a

0

∫ 2π

0

∫

√
a2

−(z−a)2

0

√

r2 + z2 r drdθdz

=
3

4πa3

∫ 2a

0

∫ 2π

0

1

3
(r2 + z2)3/2

∣

∣

∣

∣

r=
√

a2
−(z−a)2

r=0

dθdz

=
1

4πa3

∫ 2a

0

∫ 2π

0
((2az)3/2 − z3) dθdz

=
1

2a3

∫ 2a

0
((2az)3/2 − z3) dz

=
1

2a3

(

2

5
(2a)4 − 1

4
(2a)4

)

=
6

5
a.

In spherical coordinates, d = ρ, dV = ρ2 sinφ dρdφdθ,

d̄ =
3

4πa3

∫ 2π

0

∫ π/2

0

∫ 2a cos φ

0
ρ ρ2 sinφ dρdφdθ

=
3

4πa3

∫ 2π

0

∫ π/2

0

1

4
(2a cos φ)4 sinφ dφdθ

=
3

4πa3

∫ 2π

0

1

4
(2a)4

−1

5
(cos φ)5

∣

∣

∣

∣

π/2

0

dθ

=
3

4πa3

8πa4

5
=

6a

5
.
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