Math 53 Homework 9 – Solutions

15.6 # **44:**
$$I_z = \iiint_E (x^2 + y^2) \rho \, dV = \int_{-h}^{h} \int_{-\sqrt{h^2 - x^2}}^{\sqrt{h^2 - x^2}} \int_{\sqrt{x^2 + y^2}}^{h} (x^2 + y^2) \, k \, dz \, dy \, dx.$$

Or better, in cylindrical coordinates: $I_z = \int_0^{2\pi} \int_0^n \int_r^n r^2 k \, dz \, r \, dr \, d\theta$. Inner: $[r^2kz]_r^h = khr^2 - kr^3$. Middle: $\int_0^h (khr^3 - kr^4) \, dr = \left[\frac{1}{4}khr^4 - \frac{1}{5}kr^5\right]_0^h = \frac{1}{20}kh^5$. Outer: $2\pi \cdot \frac{1}{20}kh^5 = \frac{\pi}{10}kh^5$.

 $\begin{aligned} \mathbf{15.6} \ \# \ \mathbf{52:} \ \mathrm{Volume} &= \int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \int_{0}^{1-x^2-y^2} dz \, dy \, dx = \int_{0}^{2\pi} \int_{0}^{1} \int_{0}^{1-r^2} dz \, r \, dr \, d\theta. \\ \mathrm{Inner:} \ 1-r^2. \ \mathrm{Middle:} \ \int_{0}^{1} (r-r^3) \, dr &= \left[\frac{1}{2}r^2 - \frac{1}{4}r^4\right]_{0}^{1} = \frac{1}{4}. \ \mathrm{Outer:} \ V &= 2\pi \cdot \frac{1}{4} = \pi/2. \\ \mathrm{Average \ value:} \ \bar{f} &= \frac{1}{\pi/2} \iint_{E} (x^2z + y^2z) \, dV = \frac{2}{\pi} \int_{0}^{2\pi} \int_{0}^{1} \int_{0}^{1-r^2} r^2 z \, dz \, r \, dr \, d\theta. \\ \mathrm{Inner:} \ \left[\frac{1}{2}r^2z^2\right]_{0}^{1-r^2} &= \frac{1}{2}r^2(1-r^2)^2. \\ \mathrm{Middle:} \ \int_{0}^{1} (\frac{1}{2}r^3 - r^5 + \frac{1}{2}r^7) \, dr &= \left[\frac{1}{8}r^4 - \frac{1}{6}r^6 + \frac{1}{16}r^8\right]_{0}^{1} = \frac{1}{8} - \frac{1}{6} + \frac{1}{16} = \frac{1}{48}. \\ \mathrm{Outer:} \ \bar{f} &= \frac{2}{\pi}(2\pi)\frac{1}{48} = \frac{1}{12}. \\ \mathbf{15.7} \ \# \ \mathbf{9:} \ (\mathrm{a}) \ z = r^2; \qquad (\mathrm{b}) \ r^2 = 2r\sin\theta, \ \mathrm{or} \ r = 2\sin\theta. \end{aligned}$

15.7 #15: solid cone centered on the z-axis, with vertex at the origin; the top face is a disk of radius 4 in the plane z = 4.

$$V = \int_0^4 \int_0^{2\pi} \int_r^4 r \, dz \, d\theta \, dr = \int_0^4 (2\pi)(4-r) \, r \, dr = 2\pi \left[2r^2 - \frac{1}{3}r^3 \right]_0^4 = 2\pi (32 - \frac{64}{3}) = 64\pi/3.$$

15.7 #18: The paraboloid $z = 1 - x^2 - y^2$ intersects the *xy*-plane in the circle $x^2 + y^2 = r^2 = 1$ or r = 1, so in cylindrical coordinates *E* is given by: $0 \le \theta \le \pi/2, \ 0 \le r \le 1$, $0 \le z \le 1 - r^2$. Thus $\iiint_E (x^3 + xy^2) \ dV = \int_0^{\pi/2} \int_0^1 \int_0^{1-r^2} (r \cos \theta) r^2 r \ dz \ dr \ d\theta$. Inner: $\int_0^{1-r^2} r^4 \cos \theta \ dz = r^4 (1-r^2) \cos \theta$. Middle: $\left[\frac{1}{5}r^5 - \frac{1}{7}r^7\right]_0^1 \cos \theta = \frac{2}{35} \cos \theta$. Outer: $\int_0^{\pi/2} \frac{2}{35} \cos \theta \ d\theta = \frac{2}{35} [\sin \theta]_0^{\pi/2} = \frac{2}{35}$.

15.7 # **22:** *E* is the solid region within the cylinder r = 1 bounded above and below by the sphere $r^2 + z^2 = 4$. So its volume is $\iiint_E dV = \int_0^{2\pi} \int_0^1 \int_{-\sqrt{4-r^2}}^{\sqrt{4-r^2}} r \, dz \, dr \, d\theta = \int_0^{2\pi} \int_0^1 2r\sqrt{4-r^2} \, dr \, d\theta = 2\pi \int_0^1 2r\sqrt{4-r^2} \, dr = 2\pi \left[-\frac{2}{3}(4-r^2)^{3/2} \right]_0^1 = \frac{4}{3}\pi(8-3\sqrt{3}).$

15.8 #9: (a) $z^2 = x^2 + y^2$ (right angled cone centered on z-axis with vertex at origin) corresponds to $\phi = \pi/4$ and also $\phi = 3\pi/4$ (since the equation $z = \pm \sqrt{x^2 + y^2}$ actually describes two cones, one centered on the positive z-axis and the other one centered on the negative z-axis). Or: $z^2 = x^2 + y^2 \Leftrightarrow z^2 = r^2 \Leftrightarrow \rho^2 \cos^2 \phi = \rho^2 \sin^2 \phi \Leftrightarrow \cos^2 \phi = \sin^2 \phi$ ($\Leftrightarrow \cos \phi = \pm \sin \phi \Leftrightarrow \phi = \pi/4 \text{ or } 3\pi/4$.) (b) $x^2 + z^2 = 9 \Leftrightarrow (\rho \sin \phi \cos \theta)^2 + (\rho \cos \phi)^2 = 9 \Leftrightarrow \rho^2 (\sin^2 \phi \cos^2 \theta + \cos^2 \phi) = 9$.

15.8 # **14:** $\rho \leq \csc \phi \Leftrightarrow \rho \sin \phi \leq 1 \Leftrightarrow r \leq 1$, or equivalently $x^2 + y^2 \leq 1$, which corresponds to the solid cylinder of unit radius centered on the z-axis. Moreover, $\rho \leq 2$ corresponds to the solid sphere of radius 2 centered at the origin. Hence, this solid is the intersection of the sphere and the cylinder.

(The sphere and the cylinder intersect at the two circles r = 1, $z = \pm\sqrt{3}$; so the boundary of the solid is given by the portion of the cylinder where $-\sqrt{3} \le z \le \sqrt{3}$, and spherical caps at the top and bottom).

15.8 # 15: The cone $z = \sqrt{x^2 + y^2}$ corresponds to z = r, i.e. $\rho \cos \phi = \rho \sin \phi$, i.e. $\phi = \pi/4$. (See also 15.8 # 9(a)). Thus, the region above the cone corresponds to $\phi \le \pi/4$.

In spherical coordinates, the sphere $x^2 + y^2 + z^2 = z$ (centered at $(0, 0, \frac{1}{2})$ and of radius $\frac{1}{2}$, since the equation rewrites as $x^2 + y^2 + (z - \frac{1}{2})^2 = \frac{1}{4}$) has equation $\rho = \cos \phi$. (This can be seen either geometrically on a slice by a vertical plane, or by manipulating the equation: $x^2 + y^2 + z^2 = z$ becomes $\rho^2 = \rho \cos \phi$, which simplifies to $\rho = \cos \phi$).

Hence, the solid is described by the inequalities $\rho \leq \cos \phi$, $0 \leq \phi \leq \pi/4$.

(See Example 4 on page 1009 for a more detailed discussion and pictures).

15.8 # **19:** In cylindrical coordinates: $0 \le z \le 2, 0 \le r \le 2, 0 \le \theta \le \pi/2$, so the integral is given by $\int_0^{\pi/2} \int_0^3 \int_0^2 f(r \cos \theta, r \sin \theta, z) r \, dz \, dr \, d\theta$.

In spherical coordinates: the top plane has equation $z = \rho \cos \phi = 2$, i.e. $\rho = 2 \sec \phi$. The cylinder corresponds to $r = \rho \sin \phi = 3$, i.e. $\rho = 3 \csc \phi$. They intersect when $2 \sec \phi = 3 \csc \phi$, i.e. $\tan \phi = 3/2$. Therefore:

$$\int_0^{\pi/2} \int_0^{\tan^{-1}(3/2)} \int_0^{2\sec\phi} f\,\rho^2 \sin\phi\,d\rho\,d\phi\,d\theta + \int_0^{\pi/2} \int_{\tan^{-1}(3/2)}^{\pi/2} \int_0^{3\csc\phi} f\,\rho^2 \sin\phi\,d\rho\,d\phi\,d\theta.$$

15.8 #23: The spheres correspond to $\rho = 1$ and $\rho = 2$, and the first octant corresponds to $0 \le \theta \le \pi/2$, $\phi \le \pi/2$. So $\iiint_E z \, dV = \int_0^{\pi/2} \int_0^{\pi/2} \int_1^2 (\rho \cos \phi) \, \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta$.

Inner: $\left[\frac{1}{4}\rho^4\cos\phi\sin\phi\right]_1^2 = \frac{15}{4}\cos\phi\sin\phi$.

Middle: $\frac{15}{4} \int_0^{\pi/2} \sin \phi \cos \phi, d\phi = \frac{15}{4} \left[\frac{1}{2} \sin^2 \phi \right]_0^{\pi/2} = \frac{15}{8}.$ Outer: $\frac{\pi}{2} \cdot \frac{15}{8} = \frac{15\pi}{16}.$

15.8 # 30: In spherical coordinates, the region below the cone $z = \sqrt{x^2 + y^2}$ and above the *xy*-plane corresponds to $\pi/4 \le \phi \le \pi/2$. Therefore $\iiint_E dV = \int_0^{2\pi} \int_{\pi/4}^{\pi/2} \int_0^2 \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta$. Inner: $\left[\frac{1}{3}\rho^3 \sin \phi\right]_0^2 = \frac{8}{3} \sin \phi$. Middle: $\left[-\frac{8}{3} \cos \phi\right]_{\pi/2}^{\pi/4} = \frac{8}{3} \frac{1}{\sqrt{2}} = \frac{4\sqrt{2}}{3}$. Outer: $2\pi \cdot \frac{4\sqrt{2}}{3} = \frac{8\pi\sqrt{2}}{3}$.

15.8 #33: We take the hemisphere to be the region lying above the xy-plane and inside the sphere $x^2 + y^2 + z^2 = a^2$; and denote by K its (constant) density. So the base is contained in the xy-plane.

(a) By symmetry, the centroid lies on the z-axis, so we only need compute \bar{z} . Also, the mass of the hemisphere is $K \cdot (\text{volume}) = \frac{2}{3}K\pi a^3$. Therefore:

$$\begin{split} \bar{z} &= \frac{1}{\text{mass}} \iiint z \, K \, dV = \frac{3}{2K\pi a^3} \, \int_0^{2\pi} \int_0^{\pi/2} \int_0^a (\rho \cos \phi) \, K \, \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta. \\ \text{Inner:} \, \left[\frac{1}{4} K \rho^4 \cos \phi \sin \phi \right]_0^a &= \frac{1}{4} K a^4 \cos \phi \sin \phi. \\ \text{Middle:} \, \frac{1}{4} K a^4 \, \int_0^{\pi/2} \sin \phi \cos \phi \, d\phi = \frac{1}{4} K a^4 \left[\frac{1}{2} \sin^2 \phi \right]_0^{\pi/2} &= \frac{1}{8} K a^4. \\ \text{Outer:} \, \frac{3}{2K\pi a^3} \left(2\pi \right) \left(\frac{1}{8} K a^4 \right) = \frac{3}{8} a. \text{ So the centroid is } (0, 0, \frac{3}{8} a). \end{split}$$

(b) We use the same setup as before, and compute the moment of inertia about the x-axis, I_x . (One could also compute I_y instead; by symmetry $I_x = I_y$).

 $I_x = \iiint (y^2 + z^2) \, K \, dV = \int_0^{2\pi} \int_0^{\pi/2} \int_0^a (\rho^2 \sin^2 \phi \sin^2 \theta + \rho^2 \cos^2 \phi) \, K \, \rho^2 \sin \phi \, d\rho d\phi d\theta.$ Inner: $\frac{1}{5} K a^5 (\sin^3 \phi \sin^2 \theta + \cos^2 \phi \sin \phi).$

Middle:
$$\frac{1}{5}Ka^5 \int_0^{\pi/2} \sin^2 \theta (1 - \cos^2 \phi) \sin \phi + \cos^2 \phi \sin \phi \, d\phi =$$

= $\frac{1}{5}Ka^5 \left[\sin^2 \theta (\frac{1}{3}\cos^3 \phi - \cos \phi) - \frac{1}{3}\cos^3 \phi \right]_0^{\pi/2} = \frac{1}{5}Ka^5 (\frac{2}{3}\sin^2 \theta + \frac{1}{3}).$
Outer: $I_x = \frac{1}{5}Ka^5 \int_0^{2\pi} (\frac{2}{3}\sin^2 \theta + \frac{1}{3}) \, d\theta = \frac{1}{5}Ka^5 \int_0^{2\pi} (\frac{2}{3} - \frac{1}{3}\cos 2\theta) \, d\theta = \frac{4}{15}\pi Ka^5.$

Note: a more efficient setup for this calculation would have been to instead take the hemisphere to be the "right" half of the solid sphere $x^2 + y^2 + z^2 \le a^2$, i.e. where $y \ge 0$. The bounds are then $\rho \le a$, $0 \le \theta \le \pi$. Since the base is now a disk in the *xz*-plane, we can now compute the moment of inertia about the *z*-axis:

$$I_{z} = \int_{0}^{\pi} \int_{0}^{\pi} \int_{0}^{a} (\rho^{2} \sin^{2} \phi) K(\rho^{2} \sin \phi) d\rho d\phi d\theta = \dots = \frac{4}{15} \pi K a^{5}.$$

15.8 # 35: In spherical coordinates $z = \sqrt{x^2 + y^2}$ becomes $\phi = \pi/4$. So the volume is $V = \int_0^{2\pi} \int_0^{\pi/4} \int_0^1 \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta = (\int_0^{2\pi} d\theta) (\int_0^{\pi/4} \sin \phi \, d\phi) (\int_0^1 \rho^2 d\rho) = \frac{2\pi}{3} [-\cos \phi]_0^{\pi/4} = \frac{\pi(2-\sqrt{2})}{3}$. By symmetry the centroid is on the *z*-axis, i.e. $\bar{x} = \bar{y} = 0$, and $\bar{z} = \frac{1}{V} \iiint z \, dV$, so $\bar{z} = \frac{3}{\pi(2-\sqrt{2})} \int_0^{2\pi} \int_0^{\pi/4} \int_0^1 \rho \cos \phi \, \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta = \frac{3}{\pi(2-\sqrt{2})} (2\pi) (\int_0^{\pi/4} \sin \phi \cos \phi \, d\phi) (\int_0^1 \rho^3 \, d\rho)$ $= \frac{3}{4(2-\sqrt{2})} \left[\frac{1}{2} \sin^2 \phi \right]_0^{\pi/4} = \frac{3}{8(2-\sqrt{2})}.$

16.1 #**11:** $\vec{F}(x,y) = \langle y,x \rangle$ corresponds to graph II. In the first quadrant all the vectors have positive *x*- and *y*-components, in the second quadrant they have positive *x*-components and negative *y*-components, etc. Moreover, the vectors get shorter as we approach the origin.

16.1 # **13:** $\vec{F}(x, y) = \langle x-2, x+1 \rangle$ corresponds to graph I since the vectors are independent of y (the vectors along vertical lines are identical) and, as we move to the right, both the x- and the y-components get larger.

16.1 #**18:** $\vec{F}(x, y, z) = \langle x, y, z \rangle$ corresponds to graph II: each vector $\vec{F}(x, y, z)$ has the same length and direction as the position vector of the point (x, y, z), and therefore the vectors all point directly away from the origin.

16.1 # **26:**
$$f(x,y) = \sqrt{x^2 + y^2} \Rightarrow \nabla f = \langle f_x, f_y \rangle = \left\langle \frac{x}{\sqrt{x^2 + y^2}}, \frac{y}{\sqrt{x^2 + y^2}} \right\rangle = \frac{\langle x, y \rangle}{\sqrt{x^2 + y^2}}.$$

This vector has the same direction as $\langle x, y \rangle$ (= position vector of the point (x, y)), so points directly away from the origin; while its magnitude is $(x^2 + y^2)^{-1/2} |\langle x, y \rangle| = 1$.

So $\nabla f(x, y)$ is the unit vector in the direction of $\langle x, y \rangle$ (directly away from the origin).

16.1 # **31:** $f(x,y) = (x+y)^2 \Rightarrow \nabla f = \langle 2(x+y), 2(x+y) \rangle = 2(x+y)(\hat{i}+\hat{j})$. So all the vectors are parallel to $\hat{i} + \hat{j}$; they vanish on the line x + y = 0 (or y = -x), and their magnitude increases with the distance to that line. This corresponds to plot II.

Problem 1:
$$M = \int_0^1 \int_0^{\sqrt{1-z^2}} \int_0^{\sqrt{1-z^2}} dx dy dz = \int_0^1 (1-z^2) dz = 2/3.$$

 $\bar{z} = \frac{1}{M} \int_0^1 \int_0^{\sqrt{1-z^2}} \int_0^{\sqrt{1-z^2}} z dx dy dz = \frac{3}{2} \int_0^1 (z-z^3) dz = \frac{3}{8}.$
 $\bar{x} = \frac{1}{M} \int_0^1 \int_0^{\sqrt{1-z^2}} \int_0^{\sqrt{1-z^2}} x dx dy dz = \frac{3}{2} \int_0^1 \int_0^{\sqrt{1-z^2}} \frac{1-z^2}{2} dy dz$
 $= \frac{3}{4} \int_0^1 (1-z^2)^{3/2} dz = \frac{3}{4} \int_0^{\pi/2} \cos^4 \theta \, d\theta = \frac{3}{4} \frac{3\pi}{16} = \frac{9\pi}{64} \qquad (z = \sin \theta, \ dz = \cos \theta \, d\theta)$

using double angle formulas twice to calculate

$$\int_0^{\pi/2} \cos^4\theta \, d\theta = \int_0^{\pi/2} \frac{1}{4} (1 + \cos 2\theta)^2 \, d\theta = \int_0^{\pi/2} (\frac{3}{8} + \frac{1}{2} \cos 2\theta + \frac{1}{8} \cos 4\theta) \, d\theta = \frac{3\pi}{16}$$

By symmetry with respect to the plane x = y, $\bar{x} = \bar{y}$. Thus the centroid is

$$(\overline{x},\overline{y},\overline{z}) = \left(\frac{9\pi}{64},\frac{9\pi}{64},\frac{3}{8}\right).$$

Problem 2: In cylindrical coordinates, distance to the origin is $d = \sqrt{r^2 + z^2}$, and

$$\begin{split} \bar{d} &= \frac{1}{4\pi a^3/3} \int_0^{2a} \int_0^{2\pi} \int_0^{\sqrt{a^2 - (z-a)^2}} \sqrt{r^2 + z^2} \, r \, dr d\theta dz \\ &= \frac{3}{4\pi a^3} \int_0^{2a} \int_0^{2\pi} \frac{1}{3} (r^2 + z^2)^{3/2} \Big|_{r=0}^{r=\sqrt{a^2 - (z-a)^2}} d\theta dz \\ &= \frac{1}{4\pi a^3} \int_0^{2a} \int_0^{2\pi} ((2az)^{3/2} - z^3) \, d\theta dz \\ &= \frac{1}{2a^3} \int_0^{2a} ((2az)^{3/2} - z^3) \, dz \\ &= \frac{1}{2a^3} \left(\frac{2}{5} (2a)^4 - \frac{1}{4} (2a)^4 \right) = \frac{6}{5} a. \end{split}$$

In spherical coordinates, $d = \rho$, $dV = \rho^2 \sin \phi \, d\rho d\phi d\theta$,

$$\bar{d} = \frac{3}{4\pi a^3} \int_0^{2\pi} \int_0^{\pi/2} \int_0^{2a\cos\phi} \rho \,\rho^2 \sin\phi \,d\rho d\phi d\theta$$
$$= \frac{3}{4\pi a^3} \int_0^{2\pi} \int_0^{\pi/2} \frac{1}{4} (2a\cos\phi)^4 \sin\phi \,d\phi d\theta$$
$$= \frac{3}{4\pi a^3} \int_0^{2\pi} \frac{1}{4} (2a)^4 \frac{-1}{5} (\cos\phi)^5 \Big|_0^{\pi/2} d\theta$$
$$= \frac{3}{4\pi a^3} \frac{8\pi a^4}{5} = \frac{6a}{5}.$$