
Math 53 Homework 6 – Solutions

14.8 # 3: f(x, y) = x2 + y2, g(x, y) = xy = 1 ⇒ ∇f = 〈2x, 2y〉 and ∇g = 〈y, x〉.
Hence ∇f = λ∇g becomes: 2x = λy, 2y = λx. Rewriting the second equation as
y = λ

2
x, the first equation becomes 2x = 1

2
λ2x, which implies λ2 = 4 (note that

x 6= 0 since xy = 1). So λ = ±2.

For λ = 2 we get x = y, and the constraint xy = 1 becomes x2 = 1, so x = ±1,
giving us the two points (−1,−1) and (1, 1). For λ = −2 we get x = −y, and the
constraint xy = 1 becomes x2 = −1, no solution.

Geometrically, (−1,−1) and (1, 1) are both minima of f(x, y) = x2+y2 (square of the
distance from the origin) on the hyperbola xy = 1 (and f(1, 1) = f(−1,−1) = 2).
The maximum value is not attained, as f tends to infinity when either x → 0,
|y| → ∞ or |x| → ∞, y → 0.

14.8 # 9: f(x, y, z) = xyz, g(x, y, z) = x2 + 2y2 + 3z2 = 6 ⇒ ∇f = 〈yz, xz, zy,
∇g = 〈2x, 4y, 6z〉. Thus ∇f = λ∇g becomes:

(1) yz = 2λx, xz = 4λy, xy = 6λz.

Multiplying the first equation by x, the second by y, the third by z, we get xyz =
2λx2 = 4λy2 = 6λz2. There are two cases.

If λ = 0, then (1) becomes yz = 0, xz = 0, xy = 0, so two of x, y, z must be zero.
This gives the six points (±

√
6, 0, 0), (0,±

√
3, 0), (0, 0,±

√
2), at which f = 0.

Otherwise, 2λx2 = 4λy2 = 6λz2 implies x2 = 2y2 = 3z2, and the constraint x2 +
2y2 + 3z2 = 6 becomes 3x2 = 6, so x2 = 2, y2 = 1, z2 = 2

3
. This gives the 8

points (±
√

2,±1,±
√

2

3
), at which f = ± 2√

3
. Hence the maximum value of f on

the ellipsoid is 2/
√

3, occurring at the 4 of these 8 points where all coordinates are
positive or two are negative; and the minimum value is −2/

√
3, occurring at the 4

of these 8 points where one or three coordinates are negative.

14.8 # 29: we want to minimize f(x, y, z) = (x − 4)2 + (y − 2)2 + z2 (the squared
distance) subject to the constraint g(x, y, z) = x2 +y2−z2 = 0. ∇f = λ∇g becomes

2(x − 4) = 2λx, 2(y − 2) = 2λy, 2z = −2λz.

Considering the last equation, either z = 0 (in which case the equation of the
cone gives x = y = 0, which do not satisfy the other multiplier equations), or
λ = −1. Plugging λ = −1 into the first two equations, we get 2(x − 4) = −2x and
2(y − 2) = −2y. So x = 2, y = 1, and using the equation of the cone, z = ±

√
5.

14.8 # 35: Let f(x, y, z) = xyz (volume of the box), g(x, y, z) = x + 2y + 3z = 6
(the constraint). Then ∇f = 〈yz, xz, xy〉 = λ∇g = 〈λ, 2λ, 3λ〉. Then λ = yz =
1

2
xz = 1

3
xy implies that either λ = 0 and two of x, y, z are zero (but then f = 0, not

a maximum); or y = 1

2
x and z = 1

3
x. Plugging into the constraint equation, we get

3x = 6, so x = 2, y = 1, and z = 2

3
. The largest volume is f(2, 1, 2

3
) = 4

3
.
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Problem 1. a) The triangle splits into 6 right tri-
angles, two with area 1

2
cot α

2
, two with area 1

2
cot β

2
,

and the last two with area 1

2
cot γ

2
. Hence

A = cot
α

2
+ cot

β

2
+ cot

γ

2
.

α + β + γ = π ⇒ cot γ
2

= cot(π
2
− α+β

2
) = tan(α+β

2
).

So A = cot α
2

+ cot β
2

+ tan α+β
2

.

α
2

γ
2

γ
2

α
2

β
2

β
2

11

1

b) The set of possible values for the angles is given by α > 0, β > 0,
α+β < π. This is a triangular region in the (α, β) coordinates, with
boundaries α = 0, β = 0, and α + β = π.

@
@

@
@

β

α

∂A

∂α
= −1

2
csc2 α

2
+

1

2
sec2 α + β

2
and

∂A

∂β
= −1

2
csc2 β

2
+

1

2
sec2 α + β

2
.

So the critical points are solutions of − csc2 α

2
= csc2 β

2
= sec2 α + β

2
, or equivalently

sin2 α

2
= sin2 β

2
= cos2

α + β

2
. Since these angles are between 0 and π/2, this implies

α/2 = β/2 = π/2 − (α + β)/2. Hence the only critical point is α = β = π/3.

c) At the critical point α = β = π
3

we have A = 3
√

3. The boundary of the
(triangular) domain where A is defined consists of three parts: near the boundary
α = 0, the term cot α

2
increases to infinity. Similarly, cot β

2
increases to infinity when

β approaches 0. Finally, near α + β = π the last term tan α+β
2

increases to infinity.
So, no matter which boundary of the domain we consider, the value of A increases
to infinity as we approach it.
By comparing the values of A at the critical point and near the boundary, the
minimum of A is 3

√
3, reached for α = β = γ = π

3
, corresponding to an equilateral

triangle. On the other hand, the value of A can become arbitrarily large when one
of α, β or γ approaches zero, corresponding to the degenerate case of a very long
and thin triangle, with two sides almost parallel to each other and intersecting at a
vertex that lies very far from the incenter.

Problem 2. a) At (3

2
, 1

2
), changing x while keeping y fixed results in lower values

of f if x increases, and higher values if x decreases, so fx < 0. Similarly, fy > 0.

At the point (1, 1), fx < 0 (same argument); and fy = 0 (the line parallel to the
y-axis through (1, 1) is tangent to the level curve f = 0, and the value of f(1, y)
passes through a maximum for y = 1, so at this point we have fy = 0).

b) The directional derivative Dûf = ∇f · û is zero when û is perpendicular to
∇f , i.e. tangent to the level curve through (3

2
, 1

2
) (whose shape we can estimate

from the neighboring ones). Hence, the two directions in which Dûf = 0 are the
two unit vectors along the tangent line to the level curve at (3

2
, 1

2
). (One is about

30◦ counterclockwise from ı̂, the other is in the opposite direction i.e. about 150◦

clockwise from ı̂).

c) The two critical points where fx = fy = 0 are near P1 = (0.3, 0.7) and P2 =
(1.5, 1.25). The level curve through P1 only consists of P1 itself (for slightly lower
values of f , the level curves are small ovals, shrinking to the point P1 as one ap-
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proaches the local maximum). The level curve through P2 has two branches that
intersect each other at P2. Starting from P1, the value of f decreases in every direc-
tion. P1 is a local maximum. Starting from P2, the value of f decreases if we move
North or South, but increases if we move East or West. P2 is a saddle point.

Problem 3. a) fx = 3x2 − 6x + y + 1, and fy = x − 2y + 1, so fx(3

2
, 1

2
) = −3

4
,

fy(
3

2
, 1

2
) = 3

2
; fx(1, 1) = −1, fy(1, 1) = 0.

b) From part (a), ∇f(3

2
, 1

2
) = 〈−3

4
, 3

2
〉. The directions in which Dûf = ∇f ·û = 0 are

perpendicular to 〈−3

4
, 3

2
〉. Rotating this vector by 90◦ in either direction gives us the

two vectors 〈3

2
, 3

4
〉 and 〈−3

2
,−3

4
〉; or, scaling down to unit length, the corresponding

unit vectors are 〈 2√
5
, 1√

5
〉 and 〈− 2√

5
,− 1√

5
〉.

c) fy = x − 2y + 1 = 0 gives x = 2y − 1, and then fx = 3x2 − 6x + y + 1 = 0
can be rewritten as: 3(2y − 1)2 − 6(2y − 1) + y + 1 = 0, or 12y2 − 23y + 10 = 0.
The two roots of this quadratic are (23±

√
49)/24, i.e. 2

3
and 5

4
. Remembering that

x = 2y − 1, this gives the two critical points (1

3
, 2

3
) and (3

2
, 5

4
).

Next we calculate fxx = 6x − 6, fxy = fyx = 1, and fyy = −2.

At (1

3
, 2

3
): fxx = −4, fxy = 1, fyy = −2, so fxxfyy − f2

xy = (−4)(−2) − 12 = 7 > 0,
and fxx < 0: hence we have a local maximum.

At (3

2
, 5

4
): fxx = 3, fxy = 1, fyy = −2, so fxxfyy − f2

xy = 3(−2) − 12 = −7 < 0,
hence we have a saddle point.

Problem 4.

a) ∇g = 〈gx, gy, gz〉 = 〈2x, 2y,−6〉 = 〈8, 4,−6〉 at (4, 2, 3). The direction of greatest

decrease is that of −∇g, i.e. the unit vector − ∇g

|∇g| =
〈−8,−4, 6〉√

116
=

〈−4,−2, 3〉√
29

.

b) Let ∆x = x − 4, ∆y = y − 2, ∆z = z − 3; then the line in the direction of
〈−4,−2, 3〉 can be parametrized by ∆x = −4t, ∆y = −2t, ∆z = 3t. (Dividing by√

29 is unnecessary and makes calculations more complicated.) At P0 = (4, 2, 3), we
have g = 2, and ∇g = 〈8, 4,−6〉 (from part (a)), so linear approximation gives

g(x, y, z) ≈ g(P0) + ∇g(P0) · 〈∆x,∆y, ∆z〉 = 2 + 8∆x + 4∆y − 6∆z

= 2 + 8(−4t) + 4(−2t) − 6(3t) = 2 − 58t.

Therefore, g = 0 when 2− 58t ≈ 0, or t ≈ 1/29. At t = 1/29, (x, y, z) = (4− 4t, 2−
2t, 3 + 3t) = (4 − 4

29
, 2 − 2

29
, 3 + 3

29
). Evaluating g at this point, we find ≈ 0.024,

fairly close to 0.

Problem 5. a) Minimizing f(x, y, z) = (x − 4)2 + (y − 2)2 + (z − 3)2 subject to
the constraint g(x, y, z) = x2 + y2 − 6z = 0 gives the Lagrange multiplier equations
∇f = λ∇g, or

2(x − 4) = λ(2x)

2(y − 2) = λ(2y)

2(z − 3) = λ(−6)

The system now has four variables, so we also need to remember a fourth equation,
the constraint equation, x2 + y2 − 6z = 0.
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b) x − 4 = λx ⇐⇒ (1 − λ)x = 4 ⇐⇒ x = 4/(1 − λ)

y − 2 = λy ⇐⇒ (1 − λ)y = 2 ⇐⇒ y = 2/(1 − λ)

z − 3 = −3λ ⇐⇒ z = 3(1 − λ)

Thus x =
12

z
, y =

6

z
, and the constraint equation becomes

(

12

z

)2

+

(

6

z

)2

−6z = 0.

So 180/z2 = 6z, or z3 = 30: so z = 3
√

30 ≈ 3.10723. Using x = 12/z and y = 6/z
one finds

(x, y, z) = ( 12
3
√

30
, 6

3
√

30
,

3
√

30) ≈ (3.86196, 1.93098, 3.10723).

The answer found in Problem 3 was (4− 4

29
, 2− 2

29
, 3+ 3

29
) ≈ (3.86207, 1.93103, 3.10345)

which is within 1/100 of the exact solution (the largest difference is ∆z ≈ 0.00378).

Answers to Problem 6.

a) Denoting by V the fixed volume and by A the area of the base (also fixed), the
height h of the pyramid is determined by V = 1

3
Ah. But then the coordinates of P

must satisfy z = h.

Denoting by P1, P2, P3 the three vertices of the base triangle, the quantity to min-

imize is 1

2
|−−−→P1P2 × −−→

P1P | + 1

2
|−−−→P2P3 × −−→

P2P | + 1

2
|−−−→P3P1 × −−→

P3P |, which once expressed
in coordinates becomes a very complicated expression. A computer algebra system
can find the minimum, but the answer will be very hard to interpret.

b) The area A of the base triangle P1P2P3 is the sum of the areas of P1P2Q, P2P3Q
and P3P1Q. These smaller triangles have base ai and height ui, so the constraint is
g(u1, u2, u3) = 1

2
a1u1 + 1

2
a2u2 + 1

2
a3u3 = A.

Denoting by h the height of the pyramid (determined by A and the volume, see (a)),

each side face is a triangle with base ai and height
√

u2
i + h2. So the quantity to

minimize is f(u1, u2, u3) = 1

2
a1

√

u2
1
+ h2 + 1

2
a2

√

u2
2
+ h2 + 1

3
a3

√

u2
3
+ h2.

c) ∂f/∂ui = 1

2
aiui(u

2
i + h2)−1/2, while ∂g/∂ui = 1

2
ai. So ∇f = λ∇g yields:

u1
√

u2
1
+ h2

=
u2

√

u2
2
+ h2

=
u3

√

u2
3
+ h2

= λ.

Since the quantity
u√

u2 + h2
is a monotonically increasing function of u, this implies

that u1 = u2 = u3. Hence Q is at the same distance from all three sides of the
triangle, i.e. it lies at the incenter. (In conclusion: the apex of the pyramid should
lie directly above the incenter).
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