Math 53 Homework 6 — Solutions

14.8 #3: f(z,y) = 22+ 9%, g(z,y) =2y =1 = Vf = (22,2y) and Vg = (y, ).
Hence Vf = AVg becomes: 2z = Ay, 2y = Ax. Rewriting the second equation as
y = %x, the first equation becomes 2x = %)\233, which implies A2 = 4 (note that
x # 0 since zy = 1). So A = £2.

For A\ = 2 we get © = y, and the constraint zy = 1 becomes 22 = 1, so z = +1,
giving us the two points (—1,—1) and (1,1). For A = —2 we get © = —y, and the
constraint xy = 1 becomes 22 = —1, no solution.

Geometrically, (—1, —1) and (1, 1) are both minima of f(x,y) = 22+ (square of the
distance from the origin) on the hyperbola zy = 1 (and f(1,1) = f(—1,—1) = 2).
The maximum value is not attained, as f tends to infinity when either z — 0,
ly| — o0 or |z| — 0o, y — 0.

14.8 #9: f(x,y,2) = zyz, g(z,y,2) = 22+ 2> + 322 = 6 = Vf = (yz, 2z, 2y,
Vg = (2x,4y,6z). Thus Vf = AVg becomes:

(1) yz =2 x, xz=4)\y, xy=0A\z.

Multiplying the first equation by x, the second by y, the third by z, we get xyz =
222 = 4\y? = 622, There are two cases.

If A =0, then (1) becomes yz =0, zz = 0, xy = 0, so two of x,y, z must be zero.
This gives the six points (£+/6,0,0), (0,4+/3,0), (0,0, £v/2), at which f = 0.

Otherwise, 2\z? = 4Ay? = 622 implies 22 = 2y?> = 322, and the constraint 2% +
292 + 322 = 6 becomes 322 = 6, so 22 = 2, y> =1, 22 = % This gives the 8

points (:l:ﬁ,:l:l,j:\/g), at which f = :l:%. Hence the maximum value of f on

the ellipsoid is 2/v/3, occurring at the 4 of these 8 points where all coordinates are
positive or two are negative; and the minimum value is —2/v/3, occurring at the 4
of these 8 points where one or three coordinates are negative.

14.8 # 29: we want to minimize f(z,y,z) = (x —4)? + (y — 2)? + 2% (the squared
distance) subject to the constraint g(z,y, z) = 22 +y>—2? = 0. Vf = AVg becomes
2@ —4) =2z, 2(y—2)=2\y, 2z=-2\z
Considering the last equation, either z = 0 (in which case the equation of the
cone gives z = y = 0, which do not satisfy the other multiplier equations), or
A = —1. Plugging A = —1 into the first two equations, we get 2(z —4) = —2z and

2(y —2) = —2y. So x = 2, y = 1, and using the equation of the cone, z = £+/5.

14.8 # 35: Let f(z,y,2) = xyz (volume of the box), g(x,y,2) =z +2y+32 =6

(the constraint). Then Vf = (yz,zz,xy) = A\Vg = (\,2),3\). Then A = yz =

%xz = %my implies that either A = 0 and two of z,y, z are zero (but then f = 0, not

a maximum); or y = %:L‘ and z = 1z. Plugging into the constraint equation, we get

3z =6,50x=2,y=1,and z = 3. The largest volume is f(2,1, %) = %.



Problem 1. a) The triangle splits into 6 right tri-
angles, two with area %cot 5, two with area %cot g,
and the last two with area %cot % Hence

Azcot%—kcotg—i—cot%.

a+ﬂ+7:ﬂ:>c’0t%:COt(%—aTw):tan(aTJrﬁ)_
SOA:COt%—I—Cotg—ktanL‘gﬁ.

B
b) The set of possible values for the angles is given by o > 0, # > 0,
a+ 3 < 7. This is a triangular region in the (o, 3) coordinates, with
boundaries « =0, 8 =0, and a + 3 = 7. @
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So the critical points are solutions of — csc” — = csc = sec 5

2
2% _ gin? é —cos2 & + B. Since these angles are between 0 and 7 /2, this implies

, or equivalently

sin
a/2=[F/2=m7/2— (a+ (3)/2. Hence the only critical point is o = § = 7/3.

c) At the critical point « = 3 = § we have A = 3v/3. The boundary of the
(triangular) domain where A is defined consists of three parts: near the boundary
a = 0, the term cot § increases to infinity. Similarly, cot g increases to infinity when
B approaches 0. Finally, near o 4+ 8 = 7 the last term tan a—;ﬁ increases to infinity.
So, no matter which boundary of the domain we consider, the value of A increases
to infinity as we approach it.

By comparing the values of A at the critical point and near the boundary, the
minimum of A is 3v/3, reached for a = f = v = %, corresponding to an equilateral
triangle. On the other hand, the value of A can become arbitrarily large when one
of a, B or v approaches zero, corresponding to the degenerate case of a very long
and thin triangle, with two sides almost parallel to each other and intersecting at a
vertex that lies very far from the incenter.

Problem 2. a) At (2, 1), changing = while keeping y fixed results in lower values
of f if x increases, and higher values if x decreases, so f; < 0. Similarly, f, > 0.

At the point (1,1), f, < 0 (same argument); and f, = 0 (the line parallel to the
y-axis through (1,1) is tangent to the level curve f = 0, and the value of f(1,y)

passes through a maximum for y = 1, so at this point we have f, = 0).

b) The directional derivative Dyf = Vf -4 is zero when @ is perpendicular to
Vf, i.e. tangent to the level curve through (%, %) (whose shape we can estimate
from the neighboring ones). Hence, the two directions in which Dy f = 0 are the
two unit vectors along the tangent line to the level curve at (2,1). (One is about
30° counterclockwise from 1, the other is in the opposite direction i.e. about 150°
clockwise from 1).

c) The two critical points where f, = f, = 0 are near P; = (0.3,0.7) and P, =
(1.5,1.25). The level curve through P; only consists of P; itself (for slightly lower
values of f, the level curves are small ovals, shrinking to the point P, as one ap-



proaches the local maximum). The level curve through P, has two branches that
intersect each other at P». Starting from Py, the value of f decreases in every direc-
tion. P is a local maximum. Starting from Ps, the value of f decreases if we move
North or South, but increases if we move East or West. P, is a saddle point.

Problem 3. a) f, = 32" — 6z +y+ 1, and fy = o — 2y +1, 50 fo(3,4) = —F,
fy(272) %7fr(1 1 :_17 fy(l 1):0

)

b) From part (a), Vf(2,3) = (—2,2). The directions in which Dy f = V-4 = 0 are
perpendicular to (— % > Rotating this vector by 90° in either direction gives us the
two vectors (3, i) and (-3 —i), or, scaling down to unit length, the corresponding

2 1 2 _ 1
unit vectors are <\/5, \/g> and ( N \/g>
¢) fy=x—2y+1=0givesz = 2y — 1, and then f, = 32> -6z +y+1 =0
can be rewritten as: 32y —1)2 - 62y — 1) +y +1 = O, or 12y% — 23y + 10 = 0.
The two roots of this quadratic are (23 +£+/49)/24, i.e. § 2 and 2. Remembering that
z =2y — 1, this gives the two critical points (3, 3) and (3, 2).
Next we calculate fr, = 6z — 6, fzy = fya = 1, and fyy =—
At (37 3) Jrz = —4, fry =1, fyy =-2,50 f:mfyy acy = (_4)(_2) —12=7> 0,
and f;, < 0: hence we have a local maximum.
At (27 4) f:cx 37 facy = 17 fyy - 2 S0 fx:vfyy ;py - 3(_2) - 12 =-7< O?
hence we have a saddle point.

Problem 4.

a) Vg = (9u, 9y, 9-) = (2x,2y,—6) = (8,4, —6) at (4,2,3). The direction of greatest
Vg (—8,—4,6) B (—4,-2,3)
Vg V116 V29
b) Let Az = v — 4, Ay = y — 2, Az = z — 3; then the line in the direction of
(—4,—2,3) can be parametrized by Az = —4t, Ay = —2t, Az = 3t. (Dividing by
V29 is unnecessary and makes calculations more complicated.) At Py = (4,2, 3), we
have g = 2, and Vg = (8,4, —6) (from part (a)), so linear approximation gives

decrease is that of —Vg, i.e. the unit vector —

g(x,y,2) = g(Py) + Vg(Py) - (Ax, Ay, Az) = 2 + 8Ax + 4Ay — 6Az
— 2 4 8(—4t) + 4(—2t) — 6(3t) = 2 — 58¢.

Therefore, g = 0 when 2 — 58t ~ 0, or t ~ 1/29. At t =1/29, (z,y,2) = (4 — 4t,2 —
26,3+ 3t) = (4 — 5.2 — %,3+ o). Evaluating g at this point, we find ~ 0.024,
fairly close to 0.

Problem 5. a) Minimizing f(z,y,2) = (r — 4)> + (y — 2)® + (2 — 3)? subject to
the constraint g(z,y, z) = 22 + y? — 62 = 0 gives the Lagrange multiplier equations
Vf=AVg,or

The system now has four variables, so we also need to remember a fourth equation,
the constraint equation, 2 + y% — 6z = 0.



b) r—4=Xt <= (1-Nz=4 < xz=4/(1-))
y—2=Xy <= (1-Ny=2 <= y=2/(1-))
z—3=-3\ <= z=3(1-))

12 6 12\* /6)?

Thus * = —, y = —, and the constraint equation becomes () + <> —6z =0.
z z z z

So 180/2% = 6z, or 23 = 30: so z = v/30 ~ 3.10723. Using v = 12/z and y = 6/z

one finds

(z,y,2) = (317%, 3%), V/30) ~ (3.86196, 1.93098, 3.10723).
The answer found in Problem 3 was (4—5, 2— 25, 3+55) ~ (3.86207,1.93103,3.10345)
which is within 1/100 of the exact solution (the largest difference is Az ~ 0.00378).

Answers to Problem 6.

a) Denoting by V the fixed volume and by A the area of the base (also fixed), the
height h of the pyramid is determined by V = %Ah. But then the coordinates of P
must satisfy z = h.

Denoting by Py, P>, P53 the three vertices of the base triangle, the quantity to min-
imize is %|JTP£ X ]ﬁ)| + %|P2P3 x P,P| + %|P3P1 x P3P|, which once expressed
in coordinates becomes a very complicated expression. A computer algebra system
can find the minimum, but the answer will be very hard to interpret.

b) The area A of the base triangle P} P, P5 is the sum of the areas of P} P2Q, P> P3Q
and P3P;@Q. These smaller triangles have base a; and height u;, so the constraint is
g(uy,ug,uz) = %alul + %aqu + %agu;g = A.

Denoting by h the height of the pyramid (determined by A and the volume, see (a)),
each side face is a triangle with base a; and height \/u? + h2. So the quantity to

minimize is f(u1,uz,u3) = %a“/u% + h2 + %agx/ug + h2 + %CL3\/U§ + h2.
¢) Of /Ou; = La;u;(u? + h?)~1/2, while 8g/0u; = 3a;. So Vf = AVg yields:
(5] u9 us
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that u; = wo = ug. Hence @ is at the same distance from all three sides of the
triangle, i.e. it lies at the incenter. (In conclusion: the apex of the pyramid should
lie directly above the incenter).

Since the quantity is a monotonically increasing function of u, this implies



