Math 53 Homework 6 – Solutions

14.8 #3: $f(x,y) = x^2 + y^2$, $g(x,y) = xy = 1 \Rightarrow \nabla f = \langle 2x, 2y \rangle$ and $\nabla g = \langle y, x \rangle$. Hence $\nabla f = \lambda \nabla g$ becomes: $2x = \lambda y$, $2y = \lambda x$. Rewriting the second equation as $y = \frac{\lambda}{2}x$, the first equation becomes $2x = \frac{1}{2}\lambda^2 x$, which implies $\lambda^2 = 4$ (note that $x \neq 0$ since xy = 1). So $\lambda = \pm 2$.

For $\lambda = 2$ we get x = y, and the constraint xy = 1 becomes $x^2 = 1$, so $x = \pm 1$, giving us the two points (-1, -1) and (1, 1). For $\lambda = -2$ we get x = -y, and the constraint xy = 1 becomes $x^2 = -1$, no solution.

Geometrically, (-1, -1) and (1, 1) are both minima of $f(x, y) = x^2 + y^2$ (square of the distance from the origin) on the hyperbola xy = 1 (and f(1, 1) = f(-1, -1) = 2). The maximum value is not attained, as f tends to infinity when either $x \to 0$, $|y| \to \infty$ or $|x| \to \infty$, $y \to 0$.

14.8 #9: f(x, y, z) = xyz, $g(x, y, z) = x^2 + 2y^2 + 3z^2 = 6 \Rightarrow \nabla f = \langle yz, xz, zy, \nabla g = \langle 2x, 4y, 6z \rangle$. Thus $\nabla f = \lambda \nabla g$ becomes:

(1)
$$yz = 2\lambda x, \quad xz = 4\lambda y, \quad xy = 6\lambda z.$$

Multiplying the first equation by x, the second by y, the third by z, we get $xyz = 2\lambda x^2 = 4\lambda y^2 = 6\lambda z^2$. There are two cases.

If $\lambda = 0$, then (1) becomes yz = 0, xz = 0, xy = 0, so two of x, y, z must be zero. This gives the six points $(\pm\sqrt{6}, 0, 0)$, $(0, \pm\sqrt{3}, 0)$, $(0, 0, \pm\sqrt{2})$, at which f = 0.

Otherwise, $2\lambda x^2 = 4\lambda y^2 = 6\lambda z^2$ implies $x^2 = 2y^2 = 3z^2$, and the constraint $x^2 + 2y^2 + 3z^2 = 6$ becomes $3x^2 = 6$, so $x^2 = 2$, $y^2 = 1$, $z^2 = \frac{2}{3}$. This gives the 8 points $(\pm\sqrt{2},\pm 1,\pm\sqrt{\frac{2}{3}})$, at which $f = \pm \frac{2}{\sqrt{3}}$. Hence the maximum value of f on the ellipsoid is $2/\sqrt{3}$, occurring at the 4 of these 8 points where all coordinates are positive or two are negative; and the minimum value is $-2/\sqrt{3}$, occurring at the 4 of these 8 points where all coordinates are negative.

14.8 # 29: we want to minimize $f(x, y, z) = (x - 4)^2 + (y - 2)^2 + z^2$ (the squared distance) subject to the constraint $g(x, y, z) = x^2 + y^2 - z^2 = 0$. $\nabla f = \lambda \nabla g$ becomes $2(x - 4) = 2\lambda x$, $2(y - 2) = 2\lambda y$, $2z = -2\lambda z$.

Considering the last equation, either z = 0 (in which case the equation of the cone gives x = y = 0, which do not satisfy the other multiplier equations), or $\lambda = -1$. Plugging $\lambda = -1$ into the first two equations, we get 2(x - 4) = -2x and 2(y - 2) = -2y. So x = 2, y = 1, and using the equation of the cone, $z = \pm\sqrt{5}$.

14.8 #35: Let f(x, y, z) = xyz (volume of the box), g(x, y, z) = x + 2y + 3z = 6 (the constraint). Then $\nabla f = \langle yz, xz, xy \rangle = \lambda \nabla g = \langle \lambda, 2\lambda, 3\lambda \rangle$. Then $\lambda = yz = \frac{1}{2}xz = \frac{1}{3}xy$ implies that either $\lambda = 0$ and two of x, y, z are zero (but then f = 0, not a maximum); or $y = \frac{1}{2}x$ and $z = \frac{1}{3}x$. Plugging into the constraint equation, we get 3x = 6, so x = 2, y = 1, and $z = \frac{2}{3}$. The largest volume is $f(2, 1, \frac{2}{3}) = \frac{4}{3}$.

Problem 1. a) The triangle splits into 6 right triangles, two with area $\frac{1}{2} \cot \frac{\alpha}{2}$, two with area $\frac{1}{2} \cot \frac{\beta}{2}$, and the last two with area $\frac{1}{2} \cot \frac{\gamma}{2}$. Hence

$$A = \cot\frac{\alpha}{2} + \cot\frac{\beta}{2} + \cot\frac{\gamma}{2}.$$

 $\begin{aligned} \alpha + \beta + \gamma &= \pi \Rightarrow \cot \frac{\gamma}{2} = \cot(\frac{\pi}{2} - \frac{\alpha + \beta}{2}) = \tan(\frac{\alpha + \beta}{2}). \\ \text{So } A &= \cot \frac{\alpha}{2} + \cot \frac{\beta}{2} + \tan \frac{\alpha + \beta}{2}. \end{aligned}$

b) The set of possible values for the angles is given by $\alpha > 0$, $\beta > 0$, $\alpha + \beta < \pi$. This is a triangular region in the (α, β) coordinates, with boundaries $\alpha = 0$, $\beta = 0$, and $\alpha + \beta = \pi$.

$$\frac{\partial A}{\partial \alpha} = -\frac{1}{2}\csc^2\frac{\alpha}{2} + \frac{1}{2}\sec^2\frac{\alpha+\beta}{2} \text{ and } \frac{\partial A}{\partial \beta} = -\frac{1}{2}\csc^2\frac{\beta}{2} + \frac{1}{2}\sec^2\frac{\alpha+\beta}{2}.$$

So the critical points are solutions of $-\csc^2 \frac{\alpha}{2} = \csc^2 \frac{\beta}{2} = \sec^2 \frac{\alpha+\beta}{2}$, or equivalently $\sin^2 \frac{\alpha}{2} = \sin^2 \frac{\beta}{2} = \cos^2 \frac{\alpha+\beta}{2}$. Since these angles are between 0 and $\pi/2$, this implies $\alpha/2 = \beta/2 = \pi/2 - (\alpha+\beta)/2$. Hence the only critical point is $\alpha = \beta = \pi/3$.

c) At the critical point $\alpha = \beta = \frac{\pi}{3}$ we have $A = 3\sqrt{3}$. The boundary of the (triangular) domain where A is defined consists of three parts: near the boundary $\alpha = 0$, the term $\cot \frac{\alpha}{2}$ increases to infinity. Similarly, $\cot \frac{\beta}{2}$ increases to infinity when β approaches 0. Finally, near $\alpha + \beta = \pi$ the last term $\tan \frac{\alpha+\beta}{2}$ increases to infinity. So, no matter which boundary of the domain we consider, the value of A increases to infinity as we approach it.

By comparing the values of A at the critical point and near the boundary, the minimum of A is $3\sqrt{3}$, reached for $\alpha = \beta = \gamma = \frac{\pi}{3}$, corresponding to an equilateral triangle. On the other hand, the value of A can become arbitrarily large when one of α , β or γ approaches zero, corresponding to the degenerate case of a very long and thin triangle, with two sides almost parallel to each other and intersecting at a vertex that lies very far from the incenter.

Problem 2. a) At $(\frac{3}{2}, \frac{1}{2})$, changing x while keeping y fixed results in lower values of f if x increases, and higher values if x decreases, so $f_x < 0$. Similarly, $f_y > 0$.

At the point (1,1), $f_x < 0$ (same argument); and $f_y = 0$ (the line parallel to the y-axis through (1,1) is tangent to the level curve f = 0, and the value of f(1,y) passes through a maximum for y = 1, so at this point we have $f_y = 0$).

b) The directional derivative $D_{\hat{u}}f = \nabla f \cdot \hat{u}$ is zero when \hat{u} is perpendicular to ∇f , i.e. tangent to the level curve through $(\frac{3}{2}, \frac{1}{2})$ (whose shape we can estimate from the neighboring ones). Hence, the two directions in which $D_{\hat{u}}f = 0$ are the two unit vectors along the tangent line to the level curve at $(\frac{3}{2}, \frac{1}{2})$. (One is about 30° counterclockwise from \hat{i} , the other is in the opposite direction i.e. about 150° clockwise from \hat{i}).

c) The two critical points where $f_x = f_y = 0$ are near $P_1 = (0.3, 0.7)$ and $P_2 = (1.5, 1.25)$. The level curve through P_1 only consists of P_1 itself (for slightly lower values of f, the level curves are small ovals, shrinking to the point P_1 as one ap-

proaches the local maximum). The level curve through P_2 has two branches that intersect each other at P_2 . Starting from P_1 , the value of f decreases in every direction. P_1 is a local maximum. Starting from P_2 , the value of f decreases if we move North or South, but increases if we move East or West. P_2 is a saddle point.

Problem 3. a) $f_x = 3x^2 - 6x + y + 1$, and $f_y = x - 2y + 1$, so $f_x(\frac{3}{2}, \frac{1}{2}) = -\frac{3}{4}$, $f_y(\frac{3}{2}, \frac{1}{2}) = \frac{3}{2}$; $f_x(1, 1) = -1$, $f_y(1, 1) = 0$.

b) From part (a), $\nabla f(\frac{3}{2}, \frac{1}{2}) = \langle -\frac{3}{4}, \frac{3}{2} \rangle$. The directions in which $D_{\hat{u}}f = \nabla f \cdot \hat{u} = 0$ are perpendicular to $\langle -\frac{3}{4}, \frac{3}{2} \rangle$. Rotating this vector by 90° in either direction gives us the two vectors $\langle \frac{3}{2}, \frac{3}{4} \rangle$ and $\langle -\frac{3}{2}, -\frac{3}{4} \rangle$; or, scaling down to unit length, the corresponding unit vectors are $\langle \frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}} \rangle$ and $\langle -\frac{2}{\sqrt{5}}, -\frac{1}{\sqrt{5}} \rangle$.

c) $f_y = x - 2y + 1 = 0$ gives x = 2y - 1, and then $f_x = 3x^2 - 6x + y + 1 = 0$ can be rewritten as: $3(2y - 1)^2 - 6(2y - 1) + y + 1 = 0$, or $12y^2 - 23y + 10 = 0$. The two roots of this quadratic are $(23 \pm \sqrt{49})/24$, i.e. $\frac{2}{3}$ and $\frac{5}{4}$. Remembering that x = 2y - 1, this gives the two critical points $(\frac{1}{3}, \frac{2}{3})$ and $(\frac{3}{2}, \frac{5}{4})$.

Next we calculate $f_{xx} = 6x - 6$, $f_{xy} = f_{yx} = 1$, and $f_{yy} = -2$.

At $(\frac{1}{3}, \frac{2}{3})$: $f_{xx} = -4$, $f_{xy} = 1$, $f_{yy} = -2$, so $f_{xx}f_{yy} - f_{xy}^2 = (-4)(-2) - 1^2 = 7 > 0$, and $f_{xx} < 0$: hence we have a local maximum.

At $(\frac{3}{2}, \frac{5}{4})$: $f_{xx} = 3$, $f_{xy} = 1$, $f_{yy} = -2$, so $f_{xx}f_{yy} - f_{xy}^2 = 3(-2) - 1^2 = -7 < 0$, hence we have a saddle point.

Problem 4.

a) $\nabla g = \langle g_x, g_y, g_z \rangle = \langle 2x, 2y, -6 \rangle = \langle 8, 4, -6 \rangle$ at (4, 2, 3). The direction of greatest decrease is that of $-\nabla g$, i.e. the unit vector $-\frac{\nabla g}{|\nabla g|} = \frac{\langle -8, -4, 6 \rangle}{\sqrt{116}} = \frac{\langle -4, -2, 3 \rangle}{\sqrt{29}}$. b) Let $\Delta x = x - 4$, $\Delta y = y - 2$, $\Delta z = z - 3$; then the line in the direction of $\langle -4, -2, 3 \rangle$ can be parametrized by $\Delta x = -4t$, $\Delta y = -2t$, $\Delta z = 3t$. (Dividing by $\sqrt{29}$ is unnecessary and makes calculations more complicated.) At $P_0 = (4, 2, 3)$, we have g = 2, and $\nabla g = \langle 8, 4, -6 \rangle$ (from part (a)), so linear approximation gives

$$g(x, y, z) \approx g(P_0) + \nabla g(P_0) \cdot \langle \Delta x, \Delta y, \Delta z \rangle = 2 + 8\Delta x + 4\Delta y - 6\Delta z$$

= 2 + 8(-4t) + 4(-2t) - 6(3t) = 2 - 58t.

Therefore, g = 0 when $2 - 58t \approx 0$, or $t \approx 1/29$. At t = 1/29, $(x, y, z) = (4 - 4t, 2 - 2t, 3 + 3t) = (4 - \frac{4}{29}, 2 - \frac{2}{29}, 3 + \frac{3}{29})$. Evaluating g at this point, we find ≈ 0.024 , fairly close to 0.

Problem 5. a) Minimizing $f(x, y, z) = (x - 4)^2 + (y - 2)^2 + (z - 3)^2$ subject to the constraint $g(x, y, z) = x^2 + y^2 - 6z = 0$ gives the Lagrange multiplier equations $\nabla f = \lambda \nabla g$, or

$$2(x-4) = \lambda(2x)$$

$$2(y-2) = \lambda(2y)$$

$$2(z-3) = \lambda(-6)$$

The system now has four variables, so we also need to remember a fourth equation, the constraint equation, $x^2 + y^2 - 6z = 0$.

$$\begin{aligned} x - 4 &= \lambda x \iff (1 - \lambda)x = 4 \iff x = 4/(1 - \lambda) \\ y - 2 &= \lambda y \iff (1 - \lambda)y = 2 \iff y = 2/(1 - \lambda) \\ z - 3 &= -3\lambda \iff z = 3(1 - \lambda) \end{aligned}$$

Thus $x = \frac{12}{z}$, $y = \frac{6}{z}$, and the constraint equation becomes $\left(\frac{12}{z}\right)^2 + \left(\frac{6}{z}\right)^2 - 6z = 0$. So $180/z^2 = 6z$, or $z^3 = 30$: so $z = \sqrt[3]{30} \approx 3.10723$. Using x = 12/z and y = 6/z one finds

$$(x, y, z) = \left(\frac{12}{\sqrt[3]{30}}, \frac{6}{\sqrt[3]{30}}, \sqrt[3]{30}\right) \approx (3.86196, 1.93098, 3.10723)$$

The answer found in Problem 3 was $(4-\frac{4}{29}, 2-\frac{2}{29}, 3+\frac{3}{29}) \approx (3.86207, 1.93103, 3.10345)$ which is within 1/100 of the exact solution (the largest difference is $\Delta z \approx 0.00378$).

Answers to Problem 6.

a) Denoting by V the fixed volume and by A the area of the base (also fixed), the height h of the pyramid is determined by $V = \frac{1}{3}Ah$. But then the coordinates of P must satisfy z = h.

Denoting by P_1, P_2, P_3 the three vertices of the base triangle, the quantity to minimize is $\frac{1}{2}|\overrightarrow{P_1P_2} \times \overrightarrow{P_1P}| + \frac{1}{2}|\overrightarrow{P_2P_3} \times \overrightarrow{P_2P}| + \frac{1}{2}|\overrightarrow{P_3P_1} \times \overrightarrow{P_3P}|$, which once expressed in coordinates becomes a very complicated expression. A computer algebra system can find the minimum, but the answer will be very hard to interpret.

b) The area A of the base triangle $P_1P_2P_3$ is the sum of the areas of P_1P_2Q , P_2P_3Q and P_3P_1Q . These smaller triangles have base a_i and height u_i , so the constraint is $g(u_1, u_2, u_3) = \frac{1}{2}a_1u_1 + \frac{1}{2}a_2u_2 + \frac{1}{2}a_3u_3 = A$.

Denoting by *h* the height of the pyramid (determined by *A* and the volume, see (a)), each side face is a triangle with base a_i and height $\sqrt{u_i^2 + h^2}$. So the quantity to minimize is $f(u_1, u_2, u_3) = \frac{1}{2}a_1\sqrt{u_1^2 + h^2} + \frac{1}{2}a_2\sqrt{u_2^2 + h^2} + \frac{1}{3}a_3\sqrt{u_3^2 + h^2}$. c) $\partial f/\partial u_i = \frac{1}{2}a_iu_i(u_i^2 + h^2)^{-1/2}$, while $\partial g/\partial u_i = \frac{1}{2}a_i$. So $\nabla f = \lambda \nabla g$ yields: $\frac{u_1}{\sqrt{u_1^2 + h^2}} = \frac{u_2}{\sqrt{u_2^2 + h^2}} = \frac{u_3}{\sqrt{u_3^2 + h^2}} = \lambda$.

Since the quantity $\frac{u}{\sqrt{u^2 + h^2}}$ is a monotonically increasing function of u, this implies that $u_1 = u_2 = u_3$. Hence Q is at the same distance from all three sides of the triangle, i.e. it lies at the incenter. (In conclusion: the apex of the pyramid should lie directly above the incenter).