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Math 53 Homework 5 — Solutions

Ozdx  Ozdy . ‘
= dt+8 i = (2z +y)cost + (2y + x)e’ = (2sint + €') cost +
0z 0x 0z 0y
= =2 .
9 Ds + — By 0s xy? cost + 3x%y? sint
gi g:: + g; gl; —2xy3 ssint + 3x2y? scost.

£lo(0). 1050 5 = LB~ fo) g0+ ) 1),

(2,7); using the given values, dz/dt = (6)(5) + (—8)(—4) = 62.
owor owos own
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_owor owos owar
COrdy  0s0y Ot Oy

14.5 # 43: Call the sides a and b, and the angle between them #; so the area

A= %absin@ is

da
b 0—
sin i

iﬁ __bsinfda/dt +asinfdb/dt

dtob tant. So X4 = 8Ada+%@+%dj
ASSTIRCE 1O E CONSLamt: B0 "0 = 9a dat * 0b dt ' 90 dt

2asm9 Zb + ab cos 0 Z—H = 0. Solving for df/dt, we get:

. Using the given values for a,b, 0, da/dt,db/dt,

dt alicosﬁ 1 (L)
g 30-13+20.1.(-2
we get i 2030 @ =~ ~ —0.048 rad/s.
14.5 # 45: (a) chain rule: gi g; osﬁ—i—g sin 6, g@ g;(—rsinﬁ)—i—ngcosH.
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Explanation: to compute §%z/0rds, we differentiate the expression for 9z/ds with
respect to r (keeping s constant). The first step involves the product rule. The
second one is more subtle. To calculate %(g—;), we use the chain rule once more.
If this feels confusing, just set g = Jz/0x (think of this as some new function

of x and y), and note that we are trying to calculate %. The chain rule gives

% = %% + %%‘ Remembering that g = 0z/0z, the first partials of g with
respect to x and y are actually second partial derivatives of z. The chain rule is

used similarly to differentiate 0z/dy with respect to .

14.6 # 1: We can approximate the directional derivative at K by the average rate
of change of pressure between the points where the line through K and S (red on
the figure) intersects the contour lines closest to K. In this case we measure that,
going about 1/6 of the way towards S, (As =~ 50 km), the pressure drops from 1000

to 996 mb (AP ~ —4 mb). So Dy P ~ &£ ~ =4 = —0.08 (millibars per km).

14.6 #9: (a) f(z,y,2) = xe®¥* = Vf = (fu, fy, [-) = (%7, 202e%Y% 2xye?™?).

(b) at (z,y,2) = (3,0,2), Vf = (1,12,0).

(c) 4= <%, —%, %) is a unit vector, so Dy f =V f -4 = (1,12,0) - <§,—%, %> = —%.
x Y z

Va2 +y2+ 22 /22 + 2 + 227 a2+ 2 + 22

Vf(3,6,—2) = <%, g, —%} gives the direction of maximum rate of change, and the

maximum rate is Dgi vy f = [V f] = 1.

14.6 #25: Vf(r,y,2) = <

(Note: since f(z,y, z) is the distance from the origin to (z,y, ), the answer makes
sense geometrically: distance from the origin increases fastest when moving radially
outwards, and the rate of increase is 1.)

14.6 # 27: (a) Given a unit direction vector u, recall that Dy f = Vf-4 = |V f| cos6
(where 6 is the angle between Vf and 4. Since the minimum value of cosf is —1,
occurring for § = 7, the minimum value of Dy f is —|V f| and occurs when 4 is in
the opposite direction of V f.

(b) Vf = (4x3y — 2zy3, 2% — 32%y?), so at the point (2,—3) f decreases fastest in
the direction of =V f(2,-3) = —(12,—-92) = (—12,92) (or the corresponding unit
vector).

14.6 # 38: Vf(4,6) is perpendicular to the level curve of f that passes through
(4,6); so we sketch a portion of level curve through (4,6) (using the nearby level
curves as guidelines), and draw a line perpendicular to it. The direction of the
gradient vector is parallel to this line, and pointing towards increasing values of f.
(towards the lower-right, making about a 65° angle with the horizontal direction).

Next we estimate the magnitude |V f|, which equals the directional derivative of
f at (4,6) in the direction of Vf. We estimate this by finding the average rate of
change along the direction perpendicular to the level curve. The points where the
line previously drawn intersects the contour lines f = —2 and f = —3 are =~ 0.5
units apart, so Af =1 and As = 0.5, giving |V f| = % R~ = 2. Hence we sketch
the gradient vector with length 2. (Diagram omitted).

1
0.5

(Note: we could also have tried to estimate f, and f, separately and use those to
sketch V f; this is much less accurate, especially concerning the direction of Vf.)



14.6 # 41: Let f(z,y,2) = 22 — 2y? + 22 + y2: then we are considering the level
surface f = 2. Moreover, Vf = (2z, -4y + 2,2z +y), so Vf(2,1,-1) = (4, -5, —1).
(a) Vf(2,1,—-1) = (4, =5, —1) is a normal vector for the tangent plane at (2,1, —1),
so an equation of the tangent plane is 4(z—2)—5(y—1)—1(z+1) = 0 or dx—5y—=z = 4.
(b) The normal line has direction (4, —5, —1), so parametric equations are x = 2+4t,
y=1-5t 2=—-1—1t.

14.6 #47: Vf = (y,x), so Vf(3,2) = (2,3). So the tangent line has equation
(2,3) - (r—3,y—2) =0 = 2(x —3)+3(y — 2) = 0, which simplifies to 2z + 3y = 12.

V£(3,2)

123456

14.6 # 54: first note that the point (1,1,2) is on both surfaces. Let f(z,y,z) =
322 4 2y% + 22, so the ellipsoid is f = 9: then Vf = (6z,4y,2z), so the tangent
plane to the ellipsoid has normal vector Vf(1,1,2) = (6,4, 4), and an equation of the
tangent plane is 6z +4y+4z = 18 or 3z +2y+2z = 9. The sphere is the level surface
g = 0 where g(z,v, 2) = 22 +y?+2?—8r—6y—82+24, and Vg = (228, 2y—6,22—8).
So the tangent plane at (1,1,2) has normal vector Vg(1,1,2) = (—6,—4, —4), giving
the equation —6x — 4y — 4z = —18 or 3z + 2y 4+ 2z = 9. The tangent planes are the
same, so the surfaces are tangent to each other at (1,1,2).

(Note: it would have been enough to show that the normal vectors are parallel to
each other, without determining the equations of the tangent planes.)

14.7 # 3: From the contour plot, there appears to be a local minimum near (1, 1)
(enclosed by oval-shaped level curves indicating that as we move away from the
point in any direction the values of f are increasing). Moreover, the shape of the
level curves near the origin is characteristic of a saddle point at (0,0).

To verify these guesses, we have f(z,y) = 4+2®+y3—3zy = f, = 322 -3y and f, =
3y? — 3x. We have critical points when f, = f, = 0. The first equation 322 —3y = 0
gives y = 22, and substituting into the second equation gives 3(2%)? — 3z = 0, hence
3z(23—1) = 0, hence z = 0 or z = 1. So we have two critical points (0,0) and (1, 1).

The second partial derivatives are f,, = 6z, fyy = 6y, foy = —3, so D(z,y) =
fawfyy — fg?y = 36zy — 9. Then D(0,0) =0—9 < 0so f has a saddle point at (0,0);

and D(1,1) =36—9 > 0, with f;;(1,1) =6 > 0, so f has a local minimum at (1, 1).

14.7 # 7 f(z,y) =2t +y* —doy +2 = f, = 423 — 4y, f, = 493 —da, fo, = 1222,
foy = —4, fyy = 12y%. Then f, =0 <= y = 23, fy=0 &< z= y3; substituting,
we get © = 2%, or x(x® — 1) = 0, which gives the three solutions z = 0 or z = +1.
Thus the critical points are (0,0), (1,1), and (—1,—1).

D(0,0) = 0-0 — (—=4)> = —16 < 0, so the origin is a saddle point. D(1,1) =
(12)(12) — (=4)? > 0 and f,(1,1) = 12 > 0, so (1,1) is a local minimum (with



value f(1,1) = 0). Similarly, D(—1,—1) = (12)(12) — (—=4)? > 0 and fy.(—1,—1) =
12 > 0, so (—1,—1) is also a local minimum, with f(—1,—1) =0.

14.7 # 33: By 14.7 #7, the only critical point of f inside D is (1,1), a local
minimum with f(1,1) = 0. Next we consider the boundaries.

For y = 0, 0 < z < 3 (bottom edge): f(x,0) = 2* + 2, attaining its minimum at
x =0 (f(0,0) =2) and its maximum at x = 3 (f(3,0) = 83).

For z = 3, 0 < y < 2 (right edge): f(3,y) = y* — 12y + 83, a polynomial which
attains its minimum for %(y4—12y+83) =42 —12 =0o0ry = /3, with f(3,V/3) =
—9+¢/3 4 83 ~ 70, and its maximum at y = 0, f(3,0) = 83.

For y =2, 0 < x < 3 (top edge): f(z,2) = 2* — 8z + 18, attaining its minimum for
%(:L‘4 — 8z 4 18) = 42% — 8z = 0 or x = V/2, with f(V/2,2) = —6v/2 + 18 ~ 10.4,
and its maximum at x = 3, f(3,2) =75 (> f(0,2) = 18).

For z =0, 0 < y < 2 (left edge): f(0,y) = y* + 2, attaining its minimum at z = 0
(f(0,0) = 2) and its maximum at y = 2 (f(0,2) = 18).

Comparing, the absolute minimum of f on D is f(1,1) = 0, and the absolute
maximum is f(3,0) = 83.

14.7 # 34: f, = y? and fy = 2xy, and the critical points correspond to y = 0; so
there are none in the interior of D (the portion of the disk of radius v/3 lying in
the first quadrant). So the maximum and minimum occur at the boundaries. On
the z and y axes, f(z,0) = f(0,y) = 0. On the circular edge, y = V'3 — 22 so we
consider g(x) = f(x,v3 — 22) = 3z — 2% for 0 < x < /3. Then ¢/(x) =3 — 322 =0
& o = 1. We get that the maximum value on this edge is g(1) = f(1,v2) = 2, and
the minimum value is 0, occurring both at = 0 and = = v/3. Thus the absolute
maximum of f on D is f(1,4/2) = 2, and the absolute minimum is 0 which occurs
at all points along the z and y axes.

14.7 #41: We want to minimize the distance from (4,2,0) to (z,y,z2), d =
V(z —4)2+ (y —2)2 + 22, where 22 = 22 + y2. Instead, it is easier to minimize
d?> = f(z,y) = (x —4)> + (y — 2)? + (22 + 9?). Since f, = 2(x —4) + 2x = 42 — 8
and f, = 2(y — 2) + 2y = 4y — 4, the only critical point is (z,y) = (2, 1). This point
must correspond to the minimum distance (f(z,y) — oo when z and/or y become
large). For z = 2 and y = 1, the equation of the cone gives 22 = 5 or z = +/5.
Hence the points on the cone closest to (4,2,0) are (2,1, 4+/5).

14.7 #47: Let (z,y, z) be the corner opposite the origin. Since z = %(6 —x—2y)

and the volume is zyz, we want to maximize f(x,y) = zyz = %:cy(G —x —2y).

fo= %y(6—2x—2y), and fy = %x(ﬁ—w—ély). Setting f, = fy = 0 gives 2242y = 6

and x + 4y = 6, hence the only critical point is (z,y) = (2,1), which geometrically
4

must yield a maximum. Thus the volume of the largest box is V' = f(2,1) = 3.



