
Math 53 Homework 5 – Solutions

14.5 # 1:
dz

dt
=

∂z

∂x

dx

dt
+

∂z

∂y

dy

dt
= (2x + y) cos t + (2y + x)et = (2 sin t + et) cos t +

(2et + sin t)et.

14.5 # 7:
∂z

∂s
=

∂z

∂x

∂x

∂s
+

∂z

∂y

∂y

∂s
= 2xy3 cos t + 3x2y2 sin t.

∂z

∂t
=

∂z

∂x

∂x

∂t
+

∂z

∂y

∂y

∂t
= −2xy3 s sin t + 3x2y2 s cos t.

14.5 # 13: z = f(g(t), h(t)), so
dz

dt
=

∂f

∂x

dg

dt
+

∂f

∂y

dh

dt
= fx(x, y) g′(t)+fy(x, y)h′(t).

At t = 3, (x, y) = (2, 7); using the given values, dz/dt = (6)(5) + (−8)(−4) = 62.

14.5 # 19:
∂w

∂x
=

∂w

∂r

∂r

∂x
+

∂w

∂s

∂s

∂x
+

∂w

∂t

∂t

∂x
;

∂w

∂y
=

∂w

∂r

∂r

∂y
+

∂w

∂s

∂s

∂y
+

∂w

∂t

∂t

∂y
.

14.5 # 43: Call the sides a and b, and the angle between them θ; so the area

A = 1
2ab sin θ is assumed to be constant. So

dA

dt
=

∂A

∂a

da

dt
+

∂A

∂b

db

dt
+

∂A

∂θ

dθ

dt
= 0,

i.e., 1
2b sin θ

da

dt
+ 1

2a sin θ
db

dt
+ 1

2ab cos θ
dθ

dt
= 0. Solving for dθ/dt, we get:

dθ

dt
= −b sin θ da/dt + a sin θ db/dt

ab cos θ
. Using the given values for a, b, θ, da/dt, db/dt,

we get
dθ

dt
= −30 · 1

2 · 3 + 20 · 1
2 · (−2)

20 · 30 ·
√

3
2

= − 5
60

√
3
≈ −0.048 rad/s.

14.5 # 45: (a) chain rule:
∂z

∂r
=

∂z

∂x
cos θ+

∂z

∂y
sin θ,

∂z

∂θ
=

∂z

∂x
(−r sin θ)+

∂z

∂y
r cos θ.

(b)

(

∂z

∂r

)2

=

(

∂z

∂x

)2

cos2 θ + 2
∂z

∂x

∂z

∂y
cos θ sin θ +

(

∂z

∂y

)2

sin2 θ, and

(

∂z

∂θ

)2

=

(

∂z

∂x

)2

r2 sin2 θ − 2
∂z

∂x

∂z

∂y
r2 cos θ sin θ +

(

∂z

∂y

)2

r2 cos2 θ. So

(

∂z

∂r

)2

+
1

r2

(

∂z

∂θ

)2

=

[

(

∂z

∂x

)2

+

(

∂z

∂y

)2
]

(cos2 θ + sin2 θ) =

(

∂z

∂x

)2

+

(

∂z

∂y

)2

.

14.5 # 51:
∂z

∂s
=

∂z

∂x

∂x

∂s
+

∂z

∂y

∂y

∂s
= 2s

∂z

∂x
+ 2r

∂z

∂y
. So

∂2z

∂r∂s
=

∂

∂r

(

2s
∂z

∂x

)

+
∂

∂r

(

2r
∂z

∂y

)

= 2s
∂

∂r

(

∂z

∂x

)

+ 2r
∂

∂r

(

∂z

∂y

)

+ 2
∂z

∂y

= 2s

(

∂

∂x

(

∂z

∂x

)

∂x

∂r
+

∂

∂y

(

∂z

∂x

)

∂y

∂r

)

+2r

(

∂

∂x

(

∂z

∂y

)

∂x

∂r
+

∂

∂y

(

∂z

∂y

)

∂y

∂r

)

+2
∂z

∂y

= 4rs
∂2z

∂x2
+ 4s2 ∂2z

∂y∂x
+ 4r2 ∂2z

∂x∂y
+ 4rs

∂2z

∂y2
+ 2

∂z

∂y

= 4rs

(

∂2z

∂x2
+

∂2z

∂y2

)

+ 4(r2 + s2)
∂2z

∂x∂y
+ 2

∂z

∂y
.
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Explanation: to compute ∂2z/∂r∂s, we differentiate the expression for ∂z/∂s with
respect to r (keeping s constant). The first step involves the product rule. The
second one is more subtle. To calculate ∂

∂r
( ∂z

∂x
), we use the chain rule once more.

If this feels confusing, just set g = ∂z/∂x (think of this as some new function
of x and y), and note that we are trying to calculate ∂g

∂r
. The chain rule gives

∂g
∂r

= ∂g
∂x

∂x
∂r

+ ∂g
∂y

∂y
∂r

. Remembering that g = ∂z/∂x, the first partials of g with
respect to x and y are actually second partial derivatives of z. The chain rule is
used similarly to differentiate ∂z/∂y with respect to r.

14.6 # 1: We can approximate the directional derivative at K by the average rate
of change of pressure between the points where the line through K and S (red on
the figure) intersects the contour lines closest to K. In this case we measure that,
going about 1/6 of the way towards S, (∆s ≈ 50 km), the pressure drops from 1000
to 996 mb (∆P ≈ −4 mb). So DûP ≈ ∆P

∆s
≈ −4

50 = −0.08 (millibars per km).

14.6 # 9: (a) f(x, y, z) = xe2yz ⇒ ∇f = 〈fx, fy, fz〉 = 〈e2yz, 2xze2yz, 2xye2xz〉.
(b) at (x, y, z) = (3, 0, 2), ∇f = 〈1, 12, 0〉.
(c) û = 〈2

3 ,−2
3 , 1

3〉 is a unit vector, so Dûf = ∇f · û = 〈1, 12, 0〉 · 〈2
3 ,−2

3 , 1
3〉 = −22

3 .

14.6 # 25: ∇f(x, y, z) =
〈 x

√

x2 + y2 + z2
,

y
√

x2 + y2 + z2
,

z
√

x2 + y2 + z2

〉

.

∇f(3, 6,−2) = 〈3
7 , 6

7 ,−2
7〉 gives the direction of maximum rate of change, and the

maximum rate is Ddir(∇f)f = |∇f | = 1.

(Note: since f(x, y, z) is the distance from the origin to (x, y, z), the answer makes
sense geometrically: distance from the origin increases fastest when moving radially
outwards, and the rate of increase is 1.)

14.6 # 27: (a) Given a unit direction vector û, recall that Dûf = ∇f ·û = |∇f | cos θ
(where θ is the angle between ∇f and û. Since the minimum value of cos θ is −1,
occurring for θ = π, the minimum value of Dûf is −|∇f | and occurs when û is in
the opposite direction of ∇f .

(b) ∇f = 〈4x3y − 2xy3, x4 − 3x2y2〉, so at the point (2,−3) f decreases fastest in
the direction of −∇f(2,−3) = −〈12,−92〉 = 〈−12, 92〉 (or the corresponding unit
vector).

14.6 # 38: ∇f(4, 6) is perpendicular to the level curve of f that passes through
(4, 6); so we sketch a portion of level curve through (4, 6) (using the nearby level
curves as guidelines), and draw a line perpendicular to it. The direction of the
gradient vector is parallel to this line, and pointing towards increasing values of f .
(towards the lower-right, making about a 65◦ angle with the horizontal direction).

Next we estimate the magnitude |∇f |, which equals the directional derivative of
f at (4,6) in the direction of ∇f . We estimate this by finding the average rate of
change along the direction perpendicular to the level curve. The points where the
line previously drawn intersects the contour lines f = −2 and f = −3 are ≈ 0.5
units apart, so ∆f = 1 and ∆s ≈ 0.5, giving |∇f | ≈ ∆f

∆s
≈ 1

0.5 = 2. Hence we sketch
the gradient vector with length 2. (Diagram omitted).

(Note: we could also have tried to estimate fx and fy separately and use those to
sketch ∇f ; this is much less accurate, especially concerning the direction of ∇f .)
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14.6 # 41: Let f(x, y, z) = x2 − 2y2 + z2 + yz: then we are considering the level
surface f = 2. Moreover, ∇f = 〈2x,−4y + z, 2z + y〉, so ∇f(2, 1,−1) = 〈4,−5,−1〉.
(a) ∇f(2, 1,−1) = 〈4,−5,−1〉 is a normal vector for the tangent plane at (2, 1,−1),
so an equation of the tangent plane is 4(x−2)−5(y−1)−1(z+1) = 0 or 4x−5y−z = 4.

(b) The normal line has direction 〈4,−5,−1〉, so parametric equations are x = 2+4t,
y = 1 − 5t, z = −1 − t.

14.6 # 47: ∇f = 〈y, x〉, so ∇f(3, 2) = 〈2, 3〉. So the tangent line has equation
〈2, 3〉 · 〈x− 3, y− 2〉 = 0 ⇒ 2(x− 3)+3(y− 2) = 0, which simplifies to 2x+3y = 12.

1 2 3 4 5 6

1

2

3

4

5

y

x

∇f(3, 2)

14.6 # 54: first note that the point (1, 1, 2) is on both surfaces. Let f(x, y, z) =
3x2 + 2y2 + z2, so the ellipsoid is f = 9: then ∇f = 〈6x, 4y, 2z〉, so the tangent
plane to the ellipsoid has normal vector ∇f(1, 1, 2) = 〈6, 4, 4〉, and an equation of the
tangent plane is 6x+4y+4z = 18 or 3x+2y+2z = 9. The sphere is the level surface
g = 0 where g(x, y, z) = x2+y2+z2−8x−6y−8z+24, and ∇g = 〈2x−8, 2y−6, 2z−8〉.
So the tangent plane at (1,1,2) has normal vector ∇g(1, 1, 2) = 〈−6,−4,−4〉, giving
the equation −6x− 4y − 4z = −18 or 3x + 2y + 2z = 9. The tangent planes are the
same, so the surfaces are tangent to each other at (1,1,2).

(Note: it would have been enough to show that the normal vectors are parallel to
each other, without determining the equations of the tangent planes.)

14.7 # 3: From the contour plot, there appears to be a local minimum near (1, 1)
(enclosed by oval-shaped level curves indicating that as we move away from the
point in any direction the values of f are increasing). Moreover, the shape of the
level curves near the origin is characteristic of a saddle point at (0, 0).

To verify these guesses, we have f(x, y) = 4+x3+y3−3xy ⇒ fx = 3x2−3y and fy =
3y2−3x. We have critical points when fx = fy = 0. The first equation 3x2−3y = 0
gives y = x2, and substituting into the second equation gives 3(x2)2−3x = 0, hence
3x(x3−1) = 0, hence x = 0 or x = 1. So we have two critical points (0, 0) and (1, 1).

The second partial derivatives are fxx = 6x, fyy = 6y, fxy = −3, so D(x, y) =
fxxfyy − f2

xy = 36xy − 9. Then D(0, 0) = 0− 9 < 0 so f has a saddle point at (0,0);
and D(1, 1) = 36−9 > 0, with fxx(1, 1) = 6 > 0, so f has a local minimum at (1, 1).

14.7 # 7: f(x, y) = x4 + y4 − 4xy + 2 ⇒ fx = 4x3 − 4y, fy = 4y3 − 4x, fxx = 12x2,
fxy = −4, fyy = 12y2. Then fx = 0 ⇐⇒ y = x3, fy = 0 ⇐⇒ x = y3; substituting,
we get x = x9, or x(x8 − 1) = 0, which gives the three solutions x = 0 or x = ±1.
Thus the critical points are (0, 0), (1, 1), and (−1,−1).

D(0, 0) = 0 · 0 − (−4)2 = −16 < 0, so the origin is a saddle point. D(1, 1) =
(12)(12) − (−4)2 > 0 and fxx(1, 1) = 12 > 0, so (1, 1) is a local minimum (with
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value f(1, 1) = 0). Similarly, D(−1,−1) = (12)(12)− (−4)2 > 0 and fxx(−1,−1) =
12 > 0, so (−1,−1) is also a local minimum, with f(−1,−1) = 0.

14.7 # 33: By 14.7 # 7, the only critical point of f inside D is (1, 1), a local
minimum with f(1, 1) = 0. Next we consider the boundaries.

For y = 0, 0 ≤ x ≤ 3 (bottom edge): f(x, 0) = x4 + 2, attaining its minimum at
x = 0 (f(0, 0) = 2) and its maximum at x = 3 (f(3, 0) = 83).

For x = 3, 0 ≤ y ≤ 2 (right edge): f(3, y) = y4 − 12y + 83, a polynomial which
attains its minimum for d

dy
(y4−12y+83) = 4y3−12 = 0 or y = 3

√
3, with f(3, 3

√
3) =

−9 3
√

3 + 83 ≈ 70, and its maximum at y = 0, f(3, 0) = 83.

For y = 2, 0 ≤ x ≤ 3 (top edge): f(x, 2) = x4 − 8x + 18, attaining its minimum for
d
dx

(x4 − 8x + 18) = 4x3 − 8x = 0 or x = 3
√

2, with f( 3
√

2, 2) = −6 3
√

2 + 18 ≈ 10.4,
and its maximum at x = 3, f(3, 2) = 75 (> f(0, 2) = 18).

For x = 0, 0 ≤ y ≤ 2 (left edge): f(0, y) = y4 + 2, attaining its minimum at x = 0
(f(0, 0) = 2) and its maximum at y = 2 (f(0, 2) = 18).

Comparing, the absolute minimum of f on D is f(1, 1) = 0, and the absolute
maximum is f(3, 0) = 83.

14.7 # 34: fx = y2 and fy = 2xy, and the critical points correspond to y = 0; so
there are none in the interior of D (the portion of the disk of radius

√
3 lying in

the first quadrant). So the maximum and minimum occur at the boundaries. On
the x and y axes, f(x, 0) = f(0, y) = 0. On the circular edge, y =

√
3 − x2 so we

consider g(x) = f(x,
√

3 − x2) = 3x− x3 for 0 ≤ x ≤
√

3. Then g′(x) = 3− 3x2 = 0
⇔ x = 1. We get that the maximum value on this edge is g(1) = f(1,

√
2) = 2, and

the minimum value is 0, occurring both at x = 0 and x =
√

3. Thus the absolute
maximum of f on D is f(1,

√
2) = 2, and the absolute minimum is 0 which occurs

at all points along the x and y axes.

14.7 # 41: We want to minimize the distance from (4, 2, 0) to (x, y, z), d =
√

(x − 4)2 + (y − 2)2 + z2, where z2 = x2 + y2. Instead, it is easier to minimize
d2 = f(x, y) = (x − 4)2 + (y − 2)2 + (x2 + y2). Since fx = 2(x − 4) + 2x = 4x − 8
and fy = 2(y − 2) + 2y = 4y − 4, the only critical point is (x, y) = (2, 1). This point
must correspond to the minimum distance (f(x, y) → ∞ when x and/or y become
large). For x = 2 and y = 1, the equation of the cone gives z2 = 5 or z = ±

√
5.

Hence the points on the cone closest to (4, 2, 0) are (2, 1,±
√

5).

14.7 # 47: Let (x, y, z) be the corner opposite the origin. Since z = 1
3(6 − x − 2y)

and the volume is xyz, we want to maximize f(x, y) = xyz = 1
3xy(6 − x − 2y).

fx = 1
3y(6−2x−2y), and fy = 1

3x(6−x−4y). Setting fx = fy = 0 gives 2x+2y = 6
and x + 4y = 6, hence the only critical point is (x, y) = (2, 1), which geometrically
must yield a maximum. Thus the volume of the largest box is V = f(2, 1) = 4

3 .
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