
Math 53 Homework 4 – Solutions

14.1 # 26: z = 3−x2−y2: a paraboloid
with its highest point at (0, 0, 3) and
intersecting the xy-plane at the circle
x2 + y2 = 3 of radius

√
3. (or: rotate

the parabola z = 3 − y2 in the yz-plane
about the z-axis).

14.1 # 29: z =
√

x2 + y2: the top half
of a right circular cone (the height z is
equal to the distance

√

x2 + y2 from the
z-axis). (or: rotate the half-line z = y,
y ≥ 0 in the yz-plane about the z-axis).
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14.1 # 32: If we start at the origin and move along, say, the x-axis, the z-values
of a cone with its vertex at the origin increase at a constant rate, so we expect the
level curves to be equally spaced. A paraboloid centered on the z-axis, on the other
hand, has z-values which change slowly near the origin and more quickly as we move
further away; thus we expect the level curves to be spaced more widely apart near
the origin and more closely together further away. (See pictures above). So contour
map I must correspond to the paraboloid, and map II to the cone.

14.1 # 34: 2 maxima on the y-axis; 2
saddle points on the x-axis surrounding
a local min at (0, 0) (not directly visible
but implied by the picture).

14.1 # 42: ey/x = c ⇔ y/x = ln c.
So the level curve f(x, y) = c is a
straight line with slope ln c through the
origin.
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14.1 # 55: graph C and contour map II: indeed, the function is the same if x is
interchanged with y, so the graph and contour map are symmetric about the plane
x = y; moreover the function is constant over each hyperbola xy =constant (since
its value only depends on that of xy), and its values oscillate between −1 and 1.

14.1 # 62: the level sets x2 + 3y2 + 5z2 = c form a family of ellipsoids for c > 0
(and the origin for c = 0).
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14.2 # 9: Let f(x, y) = y4/(x4 + 3y4). On the x-axis, f(x, 0) = 0 for x 6= 0, so
f(x, y) → 0 as (x, y) → (0, 0) along the x-axis. On the other hand, approaching
(0,0) along the y-axis, f(0, y) = 1/3, so f(x, y) → 1/3 along the y-axis. Since f has
two different limits along two different lines, the limit does not exist.

14.2 # 13: f(x, y) =
xy

√

x2 + y2
. We can see that the limit along any line through

(0,0) is 0, as well as along various other paths approaching (0,0). So it is reasonable
to expect that the limit exists and equals 0. One way to prove it is to notice that,

since |y| =
√

y2 ≤
√

x2 + y2, we have 0 ≤
∣

∣

∣

∣

∣

xy
√

x2 + y2

∣

∣

∣

∣

∣

≤ |x|. Since |x| → 0 as

(x, y) → (0, 0), this bound implies that f(x, y) → 0 as (x, y) → (0, 0).

(Alternative solution: in polar coordinates, f(r cos θ, r sin θ) =
(r cos θ)(r sin θ)

r
=

r cos θ sin θ, so indeed |f(x, y)| ≤ r and f(x, y) → 0 as (x, y) → (0, 0).)

14.2 # 39:

lim
(x,y)→(0,0)

x3 + y3

x2 + y2
= lim

r→0+

(r cos θ)3 + (r sin θ)3

r2
= lim

r→0+
(r cos3 θ + r sin3 θ) = 0.

14.3 # 10: Starting at (2, 1), where f(2, 1) = 10, and moving in the positive x-
direction, we reach the next contour line (f = 12) after approximately 0.6 units.
This represents an average rate of change of ∆f

∆x ≈ 2
0.6 ≈ 3.3. Or, moving in the

negative x-direction, we reach the next contour line (f = 8) after about 0.8 units,
representing an average rate of change of ∆f

∆x ≈ −2
−0.8 = 2.5. Either of these (or even

better, their average) would be a reasonable estimate of fx(2, 1).

Similarly for fy: moving in the positive y-direction the value of f decreases from 10

to 8 after approximately 0.9 units, a rate of change of ∆f
∆y ≈ −2

0.9 ≈ −2.2. Or, moving
in the negative y-direction, f increases from 10 to 12 after about 1 unit, which
corresponds to ∆f

∆y ≈ 2
−1 = −2. Either value is a reasonable estimate of fy(2, 1).

14.3 # 21: f(x, y) =
x − y

x + y
⇒ fx =

(1)(x + y) − (x − y)(1)

(x + y)2
=

2y

(x + y)2
(by the

quotient rule) and fy =
(−1)(x + y) − (x − y)(1)

(x + y)2
=

−2x

(x + y)2
.

14.3 # 40: f(x, y) = tan−1( y
x): fx =

−y

x2
· 1

1 + (y/x)2
=

−y

x2 + y2
, so fx(2, 3) = −3

13 .

14.3 # 45: Differentiating x2 + y2 + z2 = 3xyz with respect to x gives:
∂

∂x
(x2 + y2 + z2) =

∂

∂x
(3xyz), so 2x + 0 + 2z

∂z

∂x
= 3yz + 3xy

∂z

∂x
.

(Note: x and y are independent variables, while z is implicitly a function of x, y).

Therefore: (2z − 3xy)
∂z

∂x
= 3yz − 2x, so

∂z

∂x
=

3yz − 2x

2z − 3xy
.

Similarly,
∂

∂y
(x2 + y2 + z2) =

∂

∂y
(3xyz), so 2y + 2z

∂z

∂y
= 3xz + 3xy

∂z

∂y
, which gives

∂z

∂y
=

3xz − 2y

2z − 3xy
.
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14.3 # 51: f(x, y) = x3y5 + 2x4y, so fx = 3x2y5 + 8x3y and fy = 5x3y4 + 2x4.
Differentiating fx, we get fxx = 6xy5+24x2y and fxy = 15x2y4+8x3; differentiating
fy, we get fyx = 15x2y4 +8x3 and fyy = 20x3y3. (Note that fxy = fyx as expected.)

14.3 # 73: u(x, y, z) = (x2 + y2 + z2)−1/2 ⇒ ux = −1
2 (2x) (x2 + y2 + z2)−3/2 =

−x(x2+y2+z2)−3/2, and uxx = −(x2+y2+z2)−3/2−x·(−3
2)(2x)(x2+y2+z2)−5/2 =

−(x2 + y2 + z2) + 3x2

(x2 + y2 + z2)5/2
=

2x2 − y2 − z2

(x2 + y2 + z2)5/2
.

By symmetry, uyy =
2y2 − x2 − z2

(x2 + y2 + z2)5/2
and uzz =

2z2 − x2 − y2

(x2 + y2 + z2)5/2
; thus

uxx + uyy + uzz =
2x2 − y2 − z2 + 2y2 − x2 − z2 + 2z2 − x2 − y2

(x2 + y2 + z2)5/2
= 0.

(Note: if you’ve already taken Physics 7B, you might know that the electric potential
solves the Laplace equation in regions of space that contain no electric charges. The
calculation we just did confirms this for the electric potential of a charged particle
at the origin, which is a constant multiple of (x2 + y2 + z2)−1/2.)

14.3 # 75: By the (single variable) chain rule, ∂
∂x(f(x + at)) = f ′(x + at), while

∂
∂t(f(x + at)) = ∂(x+at)

∂t f ′(x + at) = af ′(x + at). Similarly for the partial derivatives

of g(x − at), ∂
∂x(g(x − at)) = g′(x − at) and ∂

∂t(g(x − at)) = −ag′(x − at).

Given u(x, t) = f(x + at) + g(x − at), we have ut = af ′(x + at) − ag′(x − at), and,
differentiating again, utt = a2f ′′(x + at) + a2g′′(x− at); similarly, ux = f ′(x + at) +
g′(x − at) and uxx = f ′′(x + at) + g′′(x − at). So utt = a2uxx.

(Note: physically, f(x + at) represents a wave whose shape is given by f and which
travels towards negative x at speed a: indeed, for fixed t, the graph of f(x + at)
is obtained from that of f(x) by shifting by at to the left. Similarly, g(x − at)
represents a wave with profile g and travelling towards positive x at speed a. The
given u(x, t) is the superposition of a left-moving and a right-moving wave.)

14.3 # 82: Note: the equation PV = mRT can be used to solve for any one of
P, V, T as a function of the two others. The notation ∂P/∂V means that we view
P as a function of V and T , and consider the rate of change of P with respect to V
(with T fixed). Similarly for the other partials in the statement of the problem.

With this understood: P = mRT/V , so ∂P/∂V = −mRT/V 2; V = mRT/P , so
∂V/∂T = mR/P ; and T = PV/mR, so ∂V/∂P = V/mR. Multiplying, we get

∂P

∂V

∂V

∂T

∂T

∂P
=

−mRT

V 2

mR

P

V

mR
= −mRT

PV
= −1.

This apparently paradoxical equality is actually a special case of a more general
identity (see 14.5 problem # 58). It illustrates the dangers of relying on notation
(no, you can’t simplify products of partial derivatives!). The reason why there is no
paradox is that each individual quantity in the product corresponds to a different

situation: ∂P/∂V assumes we vary V (and hence P ) keeping T fixed, while for
∂V/∂T it is P that is kept fixed, and for ∂T/∂P it is V that remains constant.
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14.3 # 87: If fx = x + 4y then fxy = 4; however, if fy = 3x − y then fyx = 3.
Since fxy and fyx are continuous everywhere but fxy(x, y) 6= fyx(x, y), the existence
of such a function f would contradict Clairaut’s theorem.

14.4 # 5: Differentiating z = f(x, y) = y cos(x− y), we get fx = −y sin(x− y) and
fy = cos(x − y) + y sin(x − y); so fx(2, 2) = 0 and fy(2, 2) = 1, and the tangent
plane is z − 2 = 0(x − 2) + 1(y − 2), or z = y.

14.4 # 17: Let f(x, y) =
2x + 3

4y + 1
, so fx = 2/(4y+1) and fy = −4(2x+3)/(4y+1)2.

Evaluating at (0, 0): f(0, 0) = 3, fx(0, 0) = 2 and fy(0, 0) = −12. So the linear
approximation is f(0, 0) + fx(0, 0) · x + fy(0, 0) · y = 3 + 2x − 12y.

14.4 # 21: fx = 1
2(2x)(x2 + y2 + z2)−1/2 = x(x2 + y2 + z2)−1/2; fy = y(x2 + y2 +

z2)−1/2 and fz = z(x2 + y2 + z2)−1/2. Evaluating at (x, y, z) = (3, 2, 6), where f =√
9 + 4 + 36 = 7, we get fx(3, 2, 6) = 3/7, fy(3, 2, 6) = 2/7, and fz(3, 2, 6) = 6/7.

So the linear approximation is: f(x, y, z) ≈ 7 + 3
7(x − 3) + 2

7(y − 2) + 6
7(z − 7).

Evaluating at (3.02, 1.97, 5.99): 7+ 3
7(0.02)+ 2

7(−0.03)+ 6
7(−0.01) = 7− 0.06

7 ≈ 6.9914.

14.4 # 28: T (u, v, w) =
v

1 + uvw
, so dT =

∂T

∂u
du +

∂T

∂v
dv +

∂T

∂w
dw =

−v · vw

(1 + uvw)2
du+

((1 + uvw) − v · uw

(1 + uvw)2
dv+

−v · uv

(1 + uvw)2
dw =

−v2w du + dv − uv2 dw

(1 + uvw)2
.

14.4 # 33: Let x and y be the two sides; then the area is A(x, y) = xy. Since dA =
∂A
∂x dx + ∂A

∂y dy = y dx + x dy, at (x, y) = (30, 24) we have the linear approximation
∆A ≈ y∆x+x∆y = 24∆x+30∆y. Given |∆x| ≤ 0.1 and |∆y| ≤ 0.1, the maximum
error in the area is about ∆A ≃ 24(0.1) + 30(0.1) = 5.4 cm2.

14.4 # 38: Here P = 8.31 T/V , so dP = (8.31/V ) dT − (8.31 T/V 2) dV , hence

∆P ≈ 8.31
(∆T

V
− T∆V

V 2

)

= 8.31
(−5

12
− 310 · 0.3

122

)

≈ −8.83.

The pressure will decrease by about 8.83 kPa.
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