Math 53 Homework 1 – Solutions

(These solutions are not necessarily complete; in particular some diagrams have been omitted for convenience and brevity.)

10.1 #11: (a) $x = \sin \theta$, $y = \cos \theta$, so $x^2 + y^2 = \sin^2 \theta + \cos^2 \theta = 1$.

(b) right half of the unit circle, traced clockwise from $(\sin 0, \cos 0) = (0, 1)$ to $(\sin \pi, \cos \pi) = (0, -1)$.

10.1 # 13: (a) $x = \sin t$, $y = 1/\sin t$, so xy = 1.

(b) as t increases from 0 to $\pi/2$, x increases from 0 to 1; hence, we get the portion of the hyperbola y = 1/x for 0 < x < 1, traced from left to right (downwards).

10.1 # **31:** (a) $x = x_1 + (x_2 - x_1)t$, $y = y_1 + (y_2 - y_1)t$, $0 \le t \le 1$: the curve clearly passes through $P_1(x_1, y_1)$ at t = 0 and through $P_2(x_2, y_2)$ at t = 1. Since x and y each vary at a constant rate, the trajectory is along a straight line. (Or, more explicitly, we can eliminate $t: t = \frac{x - x_1}{x_2 - x_1}$, so $y = y_1 + \frac{y_2 - y_1}{x_2 - x_1}(x - x_1)$, which is indeed a line). Moreover, because the range of values of x for $0 \le t \le 1$ is precisely from x_1 to x_2 (or similarly for y), the trajectory is the line segment from P_1 to P_2 . (b) x = -2 + (3 - (-2))t = -2 + 5t and y = 7 + (-1 - 7)t = 7 - 8t.

10.1 # **33:** the circle of radius 2 centered at (0, 1) can be parametrized by $x = 2 \cos t$, $y = 1 + 2 \sin t$ where, as t varies from 0 to 2π , the trajectory goes around the circle counterclockwise, starting at (2, 1), and hitting (0, 3) at $t = \pi/2$. Hence:

(a) to get a clockwise orientation, we should change t to -t; this yields $x = 2 \cos t$, $y = 1 - 2 \sin t$, $0 \le t \le 2\pi$ (or any interval between consecutive multiples of 2π). (b) $x = 2 \cos t$, $y = 1 + 2 \sin t$, $0 \le t \le 6\pi$.

(c) $x = 2\cos t, y = 1 + 2\sin t, \pi/2 \le t \le 3\pi/2.$

10.1 #45: (a) There are two intersection points, one at (-3, 0) and the other near (-2.1, 1.4).

(b) the intersection at (-3, 0) is a collision point, since it is hit by the first particle at $t = 3\pi/2$ and by the second one at the same time $t = 3\pi/2$. On the other hand, the intersection near (-2.1, 1.4) is hit by the first particle (which moves clockwise on the large ellipse) at some time t_1 with $3\pi/2 < t_1 < 2\pi$; while the second particle passes through it for some time t_2 with $0 < t_2 < \pi/2$; since the particles are never there at the same time, it is not a collision point.

Or, more systematically: a collision point corresponds to t such that $x_1(t) = x_2(t)$ and $y_1(t) = y_2(t)$, i.e. $3 \sin t = -3 + \cos t$ and $2 \cos t = 1 + \sin t$. From the first equation we get that $\cos t = 3 + 3 \sin t$, and plugging into the second equation we obtain $5 + 5 \sin t = 0$; this yields $\sin t = -1$, which corresponds to $t = 3\pi/2$, indeed a solution of both equations.

(c) the circle is now centered at (3, 1) instead of (-3, 1). There are still two intersections, at (3, 0) and near (2.1, 1.4); but there are no collision points (for instance because the equations $3 \sin t = 3 + \cos t$ and $2 \cos t = 1 + \sin t$ imply that $\sin t = 7/5$ and $\cos t = 6/5$, impossible.)

10.2 #7: (a) $x = 1 + \ln t$, $y = t^2 + 2$: $\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{2t}{1/t} = 2t^2$. The point (1,3) is hit at t = 1, so dy/dx = 2, and the tangent is y - 3 = 2(x - 1), or y = 2x + 1. (b) $t = e^{x-1}$, so $y = e^{2x-2} + 2$, and $dy/dx = 2e^{2x-2}$; when x = 1 we have $dy/dx = 2e^0 = 2$, and the equation of the tangent follows as in (a).

10.2 # **19:** $x = 2\cos\theta$, $y = \sin 2\theta$: to find horizontal tangents, we compute $dy/d\theta = 2\cos 2\theta$, so $dy/d\theta = 0$ if and only if $2\theta = \frac{\pi}{2} + n\pi$ (*n* integer), i.e. $\theta = \frac{\pi}{4} + n\frac{\pi}{2}$. This corresponds to the four points $(x, y) = (\pm\sqrt{2}, \pm 1)$ where the curve has horizontal tangencies.

Similarly, for vertical tangents, we find θ for which $dx/d\theta = -2\sin\theta = 0$, i.e. $\theta = n\pi$ (*n* integer), which gives the two points (±2,0).

10.2 # **33:** The curve lies above the x-axis for $0 \le t \le 1$, and x increases with t, so the area is $\int_2^{e+1} y \, dx = \int_0^1 (t - t^2) e^t \, dt$. Using integration by parts twice, we find

$$\int_0^1 (t - t^2) e^t dt = (t - t^2) e^t \Big|_0^1 - \int_0^1 (1 - 2t) e^t dt =$$

= $\int_0^1 (2t - 1) e^t dt = (2t - 1) e^t \Big|_0^1 - \int_0^1 2e^t dt = (2t - 3) e^t \Big|_0^1 = -e + 3.$

10.2 # **41:** dx/dt = 6t and $dy/dt = 6t^2$, so $(dx/dt)^2 + (dy/dt)^2 = 36t^2 + 36t^4$, and thus $L = \int_0^1 \sqrt{36t^2 + 36t^4} dt = \int_0^1 6t\sqrt{1+t^2} dt$. Substituting $u = 1 + t^2$,

$$L = \int_0^1 6t\sqrt{1+t^2} \, dt = \int_1^2 3\sqrt{u} \, du = \left. 2u^{3/2} \right|_1^2 = 2(2\sqrt{2}-1).$$

10.2 # **73:** The coordinates of *T* (see figure in the book) are $(r \cos \theta, r \sin \theta)$. Since *TP* was unwound from the arc *TA*, *TP* has length $r\theta$. Also, *TP* is perpendicular to *OT*, so makes an angle $\theta - \frac{\pi}{2}$ with the *x*-axis (or θ with the negative *y* axis). So *P* has coordinates $x = r \cos \theta + r\theta \cos(\theta - \frac{\pi}{2}) = r \cos \theta + r\theta \sin \theta$ and $y = r \sin \theta + r\theta \sin(\theta - \frac{\pi}{2}) = r \sin \theta - r\theta \cos \theta$.

Problem 1. (a) Let Q be the center of the rolling circle: since |OQ| = 2a and the line OQ passes through the contact point, the coordinates of Q are $(2a\cos\theta, 2a\sin\theta)$.

To find the position of P, observe that $\angle OQP = \theta$: since one circle rolls on the other the arc lengths from S to R and from P to R are equal. So the line QP makes an angle of 2θ with the negative x-axis, and |QP| = a. So the coordinates of P are:

$$x = 2a\cos\theta - a\cos 2\theta, \quad y = 2a\sin\theta - a\sin 2\theta.$$

(b) $dx/d\theta = 2a(-\sin\theta + \sin 2\theta)$, and $dy/d\theta = 2a(\cos\theta - \cos 2\theta)$, so

$$\left(\frac{dx}{d\theta}\right)^2 + \left(\frac{dy}{d\theta}\right)^2 = 4a^2(\sin^2\theta + \sin^22\theta - 2\sin\theta\sin2\theta + \cos^2\theta + \cos^22\theta - 2\cos\theta\cos2\theta)$$

which simplifies (using $\sin^2 + \cos^2 = 1$) to $4a^2(2 - 2\sin\theta\sin 2\theta - 2\cos\theta\cos 2\theta) = 4a^2(2 - 2\cos(2\theta - \theta)) = 4a^2(2 - 2\cos\theta)$. So $L = \int_0^{2\pi} 2a\sqrt{2 - 2\cos\theta} \, d\theta$. Recall that $\cos \theta = 1 - 2\sin^2(\theta/2)$, so $2 - 2\cos \theta = 4\sin^2(\theta/2)$, and $L = \int_0^{2\pi} 4a\sin(\theta/2) d\theta = -8a\cos(\theta/2)|_0^{2\pi} = -8a((-1) - 1) = 16a$.

10.3 # **17:** $r = 3\sin\theta \Rightarrow r^2 = 3r\sin\theta \Leftrightarrow x^2 + y^2 = 3y$, i.e. $x^2 + (y - \frac{3}{2})^2 = (\frac{3}{2})^2$, circle of radius $\frac{3}{2}$ centered at $(0, \frac{3}{2})$. (Note: multiplying both sides by r in the first step adds the extra solution r = 0, which corresponds to the origin; however the origin already lies on the circle, so this is of no consequence).

10.3 # **19:** $r = \csc \theta \Leftrightarrow r \sin \theta = 1 \Leftrightarrow y = 1$ (horizontal line through (0, 1)).

(or the entire line if we allow r < 0)

10.3 # 53: To show that x = 1 is an asymptote we must prove that $x \to 1$ as $r \to \infty$. $r \to \infty$ corresponds to $\sin\theta \tan\theta \to \infty$, i.e. $\theta \to \pm \pi/2$. (Note: $r(\theta + \pi) = -r(\theta)$, so if we allow all values of θ we trace the curve twice; instead we restrict ourselves to $-\pi/2 < \theta < \pi/2$, for which $r \ge 0$). Now, $x = r \cos \theta = (\sin \theta \tan \theta) \cos \theta = \sin^2 \theta$, which does tend to 1 as $\theta \to \pm \pi/2$. (Note: $\theta \to (\pi/2)^-$ corresponds to $x \to 1, y \to +\infty$, while $\theta \to (-\pi/2)^+$ correspond to $x \to 1, y \to -\infty$).

Since $x = \sin^2 \theta$ takes values ranging between 0 and 1, the curve is contained in the strip $0 \le x \le 1$ (and x = 1 is never reached). And, since $r(-\theta) = r(\theta)$, the curve is symmetric about the x-axis.

10.3 #**63:** $r = 3\cos\theta$ gives: $x = r\cos\theta = 3\cos^2\theta$, $y = r\sin\theta = 3\cos\theta\sin\theta$. Horizontal tangencies occur when $dy/d\theta = -3\sin^2\theta + 3\cos^2\theta = \frac{3}{2}\cos 2\theta = 0$, so for $2\theta = \frac{\pi}{2} + n\pi$ or $\theta = \frac{\pi}{4} + n\frac{\pi}{2}$. Vertical tangencies occur when $dx/d\theta = -6\sin\theta\cos\theta = -3\sin 2\theta = 0$, so for $2\theta = n\pi$ or $\theta = n\frac{\pi}{2}$.

We only need to consider θ between $-\pi/2$ and $\pi/2$ (where $r \ge 0$), the range $\frac{\pi}{2} < \theta < \frac{3\pi}{2}$ traces the same curve again $(r(\theta + \pi) = -r(\theta))$. Hence: the tangent is horizontal for $\theta = \pm \frac{\pi}{4}$ (recalling that the curve is the circle of radius $\frac{3}{2}$ centered at $(\frac{3}{2}, 0)$, these are the top and bottom points $(\frac{3}{2}, \pm \frac{3}{2})$); and vertical for $\theta = 0$ (the rightmost point (3, 0)) and $\theta = \pm \pi/2$ (at the origin).

10.4 #7:
$$A = \int_{-\pi/2}^{\pi/2} \frac{1}{2} (4 + 3\sin\theta)^2 d\theta = \frac{1}{2} \int_{-\pi/2}^{\pi/2} (16 + 24\sin\theta + 9\sin^2\theta) d\theta.$$

Using parity, the portions of the integral from $-\pi/2$ to 0 and 0 to $\pi/2$ cancel out for $\sin \theta$, while they are equal for the other terms of the integrand; so

$$A = \int_0^{\pi/2} (16 + 9\sin^2\theta) \, d\theta = \int_0^{\pi/2} (16 + \frac{9}{2}(1 - \cos 2\theta)) \, d\theta = \left[\frac{41}{2}\theta - \frac{9}{4}\sin 2\theta\right]_0^{\pi/2} = \frac{41\pi}{4}.$$

10.4 # **23:** Inside $r = 2\cos\theta$, outside r = 1: the curves intersect when $2\cos\theta = 1$, $\theta = \cos^{-1}(\frac{1}{2}) = \pm \pi/3$. We subtract the unshaded area from the shaded area: $A = \int_{-\pi/3}^{\pi/3} \frac{1}{2}(2\cos\theta)^2 d\theta - \int_{-\pi/3}^{\pi/3} \frac{1}{2} d\theta = \int_{-\pi/3}^{\pi/3} (2\cos^2\theta - \frac{1}{2}) d\theta = \int_{-\pi/3}^{\pi/3} (\cos 2\theta + \frac{1}{2}) d\theta$ $= [\frac{1}{2}\sin 2\theta + \frac{1}{2}\theta]_{-\pi/3}^{\pi/3} = (\frac{\sqrt{3}}{4} + \frac{\pi}{6}) - (-\frac{\sqrt{3}}{4} - \frac{\pi}{6}) = \frac{\sqrt{3}}{2} + \frac{\pi}{3}.$

10.4 #35: $r = \frac{1}{2} + \cos \theta$ is positive for $\cos \theta > -\frac{1}{2}$, i.e. $-\frac{2\pi}{3} < \theta < \frac{2\pi}{3}$; this corresponds to the large loop; r is negative for $\frac{2\pi}{3} < \theta < \frac{4\pi}{3}$, the small loop.

The area in the large loop is $2 \int_0^{2\pi/3} \frac{1}{2} (\frac{1}{2} + \cos\theta)^2 d\theta = \int_0^{2\pi/3} (\frac{1}{4} + \cos\theta + \cos^2\theta) d\theta = \int_0^{2\pi/3} (\frac{3}{4} + \cos\theta + \frac{1}{2}\cos 2\theta) d\theta = \left[\frac{3}{4}\theta + \sin\theta + \frac{1}{4}\sin 2\theta\right]_0^{2\pi/3} = (\frac{\pi}{2} + \frac{\sqrt{3}}{2} - \frac{1}{4}\frac{\sqrt{3}}{2}) - 0 = \frac{\pi}{2} + \frac{3\sqrt{3}}{8}.$

Similarly, the area in the small loop is

 $2\int_{2\pi/3}^{\pi} \frac{1}{2}(\frac{1}{2} + \cos\theta)^2 \, d\theta = \left[\frac{3}{4}\theta + \sin\theta + \frac{1}{4}\sin 2\theta\right]_{2\pi/3}^{\pi} = \left(\frac{3\pi}{4}\right) - \left(\frac{\pi}{2} + \frac{3\sqrt{3}}{8}\right) = \frac{\pi}{4} - \frac{3\sqrt{3}}{8}.$ Subtracting, the desired area is $\left(\frac{\pi}{2} + \frac{3\sqrt{3}}{8}\right) - \left(\frac{\pi}{4} - \frac{3\sqrt{3}}{8}\right) = \frac{\pi}{4} + \frac{3\sqrt{3}}{4}.$

10.4 #45: using equation (5) on p.652,
$$L = \int_0^{\pi/3} \sqrt{r^2 + (dr/d\theta)^2} \, d\theta = \int_0^{\pi/3} \sqrt{(3\sin\theta)^2 + (3\cos\theta)^2} \, d\theta = \int_0^{\pi/3} 3 \, d\theta = \pi.$$

12.1 #13: The radius of the sphere is the distance between (4,3,-1) and (3,8,1), namely $r = \sqrt{(3-4)^2 + (8-3)^2 + (1-(-1))^2} = \sqrt{30}$. Hence, an equation of the sphere is $(x-3)^2 + (y-8)^2 + (z-1)^2 = 30$.

12.1 # **31:** $x^2 + z^2 \leq 9$: a cylinder of radius 3 centered on the *y*-axis. (The intersection of this solid in the *xz*-plane is the disk $x^2 + z^2 \leq 9$ of radius 3 centered at the origin; since the equation does not involve *y*, it intersects every plane parallel to the *xz*-plane in the same manner).

12.1 # **39:** P(x, y, z) satisfies |AP| = |BP| if and only if $\sqrt{(x+1)^2 + (y-5)^2 + (z-3)^2} = \sqrt{(x-6)^2 + (y-2)^2 + (z+2)^2}$.

Squaring both sides and expanding, we get:

12.2 #39: (a),(b)

 $x^2 + 2x + 1 + y^2 - 10y + 25 + z^2 - 6z + 9 = x^2 - 12x + 36 + y^2 - 4y + 4 + z^4 + 4z + 4$, which simplifies to 14x - 6y - 10z = 9. This is a plane – in fact, the plane perpendicular to the line segment AB through its midpoint, for symmetry reasons.

12.2 # 29: The two forces are given by the vectors $\vec{F_1} = \langle -300, 0 \rangle$ and $\vec{F_2} = \langle 200 \cos 60^\circ, 200 \sin 60^\circ \rangle = \langle 100, 100\sqrt{3} \rangle$. The resultant force is $\vec{F} = \vec{F_1} + \vec{F_2} = \langle -300 + 100, 100\sqrt{3} \rangle = \langle -200, 100\sqrt{3} \rangle$.

Its magnitude is $|\vec{F}| = \sqrt{(-200)^2 + (100\sqrt{3})^2} = 100\sqrt{4+3} = 100\sqrt{7} \simeq 264.6$ N.

The angle with the positive x-axis is determined by $\tan \theta = (100\sqrt{3})/(-200) = -\frac{\sqrt{3}}{2}$. $\tan^{-1}(-\sqrt{3}/2) \simeq -0.714$ radians (or -40.9°). However, the vector points into the upper-left quadrant, so we must add π , and the angle is $\simeq 3.855$ radians or 139.1° .

(c) from the sketch, we estimate that $s \simeq 1.3$ and $t \simeq 1.6$.

(d) $s\vec{a} + t\vec{b} = \langle 3s + 2t, 2s - t \rangle$, so $s\vec{a} + t\vec{b} \Leftrightarrow 3s + 2t = 7$ and 2s - t = 1. Solving these equations gives $s = \frac{9}{7}$ and $t = \frac{11}{7}$.

12.2 # **45:** Consider the triangle *ABC*, and let *D* and *E* be the midpoints of *AB* and *AC*. Then $\overrightarrow{BC} = \overrightarrow{AC} - \overrightarrow{AB}$, and $\overrightarrow{DE} = \overrightarrow{AE} - \overrightarrow{AD} = \frac{1}{2}\overrightarrow{AC} - \frac{1}{2}\overrightarrow{AB} = \frac{1}{2}\overrightarrow{BC}$. Therefore \overrightarrow{BC} and \overrightarrow{DE} are parallel, and $|\overrightarrow{DE}| = \frac{1}{2}|\overrightarrow{BC}|$.

