
Math 53 Homework 1 – Solutions

(These solutions are not necessarily complete; in particular some diagrams have
been omitted for convenience and brevity.)

10.1 # 11: (a) x = sin θ, y = cos θ, so x2 + y2 = sin2 θ + cos2 θ = 1.

(b) right half of the unit circle, traced clockwise from (sin 0, cos 0) = (0, 1) to
(sin π, cos π) = (0,−1).

10.1 # 13: (a) x = sin t, y = 1/ sin t, so xy = 1.

(b) as t increases from 0 to π/2, x increases from 0 to 1; hence, we get the portion
of the hyperbola y = 1/x for 0 < x < 1, traced from left to right (downwards).

10.1 # 31: (a) x = x1 +(x2 −x1)t, y = y1 +(y2 − y1)t, 0 ≤ t ≤ 1: the curve clearly
passes through P1 (x1, y1) at t = 0 and through P2 (x2, y2) at t = 1. Since x and
y each vary at a constant rate, the trajectory is along a straight line. (Or, more
explicitly, we can eliminate t: t = x−x1

x2−x1
, so y = y1 + y2−y1

x2−x1
(x− x1), which is indeed

a line). Moreover, because the range of values of x for 0 ≤ t ≤ 1 is precisely from
x1 to x2 (or similarly for y), the trajectory is the line segment from P1 to P2.

(b) x = −2 + (3 − (−2))t = −2 + 5t and y = 7 + (−1 − 7)t = 7 − 8t.

10.1 # 33: the circle of radius 2 centered at (0, 1) can be parametrized by x =
2 cos t, y = 1+2 sin t where, as t varies from 0 to 2π, the trajectory goes around the
circle counterclockwise, starting at (2, 1), and hitting (0, 3) at t = π/2. Hence:

(a) to get a clockwise orientation, we should change t to −t; this yields x = 2 cos t,
y = 1 − 2 sin t, 0 ≤ t ≤ 2π (or any interval between consecutive multiples of 2π).

(b) x = 2 cos t, y = 1 + 2 sin t, 0 ≤ t ≤ 6π.

(c) x = 2 cos t, y = 1 + 2 sin t, π/2 ≤ t ≤ 3π/2.

10.1 # 45: (a) There are two intersection points, one at (−3, 0) and the other near
(−2.1, 1.4).
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(b) the intersection at (−3, 0) is a collision point, since it is hit by the first particle
at t = 3π/2 and by the second one at the same time t = 3π/2. On the other hand,
the intersection near (−2.1, 1.4) is hit by the first particle (which moves clockwise
on the large ellipse) at some time t1 with 3π/2 < t1 < 2π; while the second particle
passes through it for some time t2 with 0 < t2 < π/2; since the particles are never
there at the same time, it is not a collision point.

Or, more systematically: a collision point corresponds to t such that x1(t) = x2(t)
and y1(t) = y2(t), i.e. 3 sin t = −3 + cos t and 2 cos t = 1 + sin t. From the first
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equation we get that cos t = 3 + 3 sin t, and plugging into the second equation we
obtain 5 + 5 sin t = 0; this yields sin t = −1, which corresponds to t = 3π/2, indeed
a solution of both equations.

(c) the circle is now centered at (3, 1) instead of (−3, 1). There are still two inter-
sections, at (3, 0) and near (2.1, 1.4); but there are no collision points (for instance
because the equations 3 sin t = 3+cos t and 2 cos t = 1+sin t imply that sin t = 7/5
and cos t = 6/5, impossible.)

10.2 # 7: (a) x = 1 + ln t, y = t2 + 2:
dy

dx
=

dy/dt

dx/dt
=

2t

1/t
= 2t2. The point (1, 3)

is hit at t = 1, so dy/dx = 2, and the tangent is y − 3 = 2(x − 1), or y = 2x + 1.

(b) t = ex−1, so y = e2x−2 + 2, and dy/dx = 2e2x−2; when x = 1 we have dy/dx =
2e0 = 2, and the equation of the tangent follows as in (a).

10.2 # 19: x = 2 cos θ, y = sin 2θ: to find horizontal tangents, we compute dy/dθ =
2 cos 2θ, so dy/dθ = 0 if and only if 2θ = π

2
+ nπ (n integer), i.e. θ = π

4
+ nπ

2
. This

corresponds to the four points (x, y) = (±
√

2,±1) where the curve has horizontal
tangencies.

Similarly, for vertical tangents, we find θ for which dx/dθ = −2 sin θ = 0, i.e. θ = nπ
(n integer), which gives the two points (±2, 0).
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10.2 # 33: The curve lies above the x-axis for 0 ≤ t ≤ 1, and x increases with t,
so the area is

∫ e+1

2
y dx =

∫

1

0
(t − t2) et dt. Using integration by parts twice, we find

∫

1

0

(t − t2) et dt = (t − t2) et
∣

∣

1

0
−

∫

1

0

(1 − 2t) et dt =

=

∫

1

0

(2t − 1)et dt = (2t − 1)et
∣

∣

1

0
−

∫

1

0

2et dt = (2t − 3)et
∣

∣

1

0
= −e + 3.

10.2 # 41: dx/dt = 6t and dy/dt = 6t2, so (dx/dt)2 + (dy/dt)2 = 36t2 + 36t4, and
thus L =

∫

1

0

√
36t2 + 36t4 dt =

∫

1

0
6t
√

1 + t2 dt. Substituting u = 1 + t2,

L =

∫

1

0

6t
√

1 + t2 dt =

∫

2

1

3
√

u du = 2u3/2

∣

∣

∣

2

1
= 2(2

√
2 − 1).

10.2 # 73: The coordinates of T (see figure in the book) are (r cos θ, r sin θ). Since
TP was unwound from the arc TA, TP has length rθ. Also, TP is perpendicular
to OT , so makes an angle θ − π

2
with the x-axis (or θ with the negative y axis).

So P has coordinates x = r cos θ + rθ cos(θ − π
2
) = r cos θ + rθ sin θ and y =

r sin θ + rθ sin(θ − π
2
) = r sin θ − rθ cos θ.
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Problem 1. (a) Let Q be the center of the rolling cir-
cle: since |OQ| = 2a and the line OQ passes through the
contact point, the coordinates of Q are (2a cos θ, 2a sin θ).

To find the position of P , observe that 6 OQP = θ: since
one circle rolls on the other the arc lengths from S to R and
from P to R are equal. So the line QP makes an angle of 2θ
with the negative x-axis, and |QP | = a. So the coordinates
of P are:

P

Q

R

O
a
θ

S

x = 2a cos θ − a cos 2θ, y = 2a sin θ − a sin 2θ.

(b) dx/dθ = 2a(− sin θ + sin 2θ), and dy/dθ = 2a(cos θ − cos 2θ), so

(

dx

dθ

)2

+

(

dy

dθ

)2

= 4a2(sin2 θ+sin2 2θ−2 sin θ sin 2θ+cos2 θ+cos2 2θ−2 cos θ cos 2θ)

which simplifies (using sin2 + cos2 = 1) to 4a2(2 − 2 sin θ sin 2θ − 2 cos θ cos 2θ) =
4a2(2 − 2 cos(2θ − θ)) = 4a2(2 − 2 cos θ). So L =

∫

2π
0

2a
√

2 − 2 cos θ dθ.

Recall that cos θ = 1 − 2 sin2(θ/2), so 2 − 2 cos θ = 4 sin2(θ/2),
and L =

∫

2π
0

4a sin(θ/2) dθ = −8a cos(θ/2)|2π
0

= −8a((−1) − 1) = 16a.

10.3 # 17: r = 3 sin θ ⇒ r2 = 3r sin θ ⇔ x2 + y2 = 3y, i.e. x2 + (y − 3

2
)2 = (3

2
)2,

circle of radius 3

2
centered at (0, 3

2
). (Note: multiplying both sides by r in the first

step adds the extra solution r = 0, which corresponds to the origin; however the
origin already lies on the circle, so this is of no consequence).

10.3 # 19: r = csc θ ⇔ r sin θ = 1 ⇔ y = 1 (horizontal line through (0, 1)).

10.3 # 29: θ = −π/6: 10.3 # 30: r2 − 3r + 2 = 0 ⇔ r = 1 or r = 2:

(or the entire line if we allow r < 0)

10.3 # 53: To show that x = 1 is an asymptote we must prove that x → 1 as r → ∞.
r → ∞ corresponds to sin θ tan θ → ∞, i.e. θ → ±π/2. (Note: r(θ + π) = −r(θ),

so if we allow all values of θ we trace the curve twice; instead we
restrict ourselves to −π/2 < θ < π/2, for which r ≥ 0). Now,
x = r cos θ = (sin θ tan θ) cos θ = sin2 θ, which does tend to 1 as
θ → ±π/2. (Note: θ → (π/2)− corresponds to x → 1, y → +∞,
while θ → (−π/2)+ correspond to x → 1, y → −∞).
Since x = sin2 θ takes values ranging between 0 and 1, the curve
is contained in the strip 0 ≤ x ≤ 1 (and x = 1 is never reached).
And, since r(−θ) = r(θ), the curve is symmetric about the x-axis.
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10.3 # 63: r = 3 cos θ gives: x = r cos θ = 3 cos2 θ, y = r sin θ = 3 cos θ sin θ.
Horizontal tangencies occur when dy/dθ = −3 sin2 θ + 3 cos2 θ = 3

2
cos 2θ = 0, so for

2θ = π
2
+nπ or θ = π

4
+nπ

2
. Vertical tangencies occur when dx/dθ = −6 sin θ cos θ =

−3 sin 2θ = 0, so for 2θ = nπ or θ = nπ
2
.

We only need to consider θ between −π/2 and π/2 (where r ≥ 0), the range π
2

< θ <
3π
2

traces the same curve again (r(θ+π) = −r(θ)). Hence: the tangent is horizontal
for θ = ±π

4
(recalling that the curve is the circle of radius 3

2
centered at (3

2
, 0), these

are the top and bottom points (3

2
,±3

2
)); and vertical for θ = 0 (the rightmost point

(3, 0)) and θ = ±π/2 (at the origin).

10.4 # 7: A =
∫ π/2

−π/2

1

2
(4 + 3 sin θ)2 dθ = 1

2

∫ π/2

−π/2
(16 + 24 sin θ + 9 sin2 θ) dθ.

Using parity, the portions of the integral from −π/2 to 0 and 0 to π/2 cancel out
for sin θ, while they are equal for the other terms of the integrand; so

A =
∫ π/2

0
(16+9 sin2 θ) dθ =

∫ π/2

0
(16+ 9

2
(1− cos 2θ)) dθ =

[

41

2
θ − 9

4
sin 2θ

]π/2

0
= 41π

4
.

10.4 # 23: Inside r = 2 cos θ, outside r = 1: the curves intersect when 2 cos θ = 1,
θ = cos−1(1

2
) = ±π/3. We subtract the unshaded area from the shaded area:

A =
∫ π/3

−π/3

1

2
(2 cos θ)2 dθ −

∫ π/3

−π/3

1

2
dθ =

∫ π/3

−π/3
(2 cos2 θ − 1

2
) dθ =

∫ π/3

−π/3
(cos 2θ + 1

2
) dθ

=
[

1

2
sin 2θ + 1

2
θ
]π/3

−π/3
= (

√
3

4
+ π

6
) − (−

√
3

4
− π

6
) =

√
3

2
+ π

3
.

r = 2 cos θr = 1

θ = π/3

10.4 # 35: r = 1

2
+ cos θ is positive for cos θ > −1

2
, i.e. −2π

3
< θ < 2π

3
; this

corresponds to the large loop; r is negative for 2π
3

< θ < 4π
3

, the small loop.

The area in the large loop is 2
∫

2π/3

0

1

2
(1

2
+cos θ)2 dθ =

∫

2π/3

0
(1

4
+cos θ +cos2 θ) dθ =

∫

2π/3

0
(3

4
+ cos θ + 1

2
cos 2θ) dθ =

[

3

4
θ + sin θ + 1

4
sin 2θ

]2π/3

0
= (π

2
+

√
3

2
− 1

4

√
3

2
) − 0 =

π
2

+ 3
√

3

8
.

Similarly, the area in the small loop is

2
∫ π
2π/3

1

2
(1

2
+ cos θ)2 dθ =

[

3

4
θ + sin θ + 1

4
sin 2θ

]π

2π/3
= (3π

4
) − (π

2
+ 3

√
3

8
) = π

4
− 3

√
3

8
.

Subtracting, the desired area is (π
2

+ 3
√

3

8
) − (π

4
− 3

√
3

8
) = π

4
+ 3

√
3

4
.

10.4 # 45: using equation (5) on p.652,

L =
∫ π/3

0

√

r2 + (dr/dθ)2 dθ =
∫ π/3

0

√

(3 sin θ)2 + (3 cos θ)2 dθ =
∫ π/3

0
3 dθ = π.
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12.1 # 13: The radius of the sphere is the distance between (4,3,-1) and (3,8,1),
namely r =

√

(3 − 4)2 + (8 − 3)2 + (1 − (−1))2 =
√

30. Hence, an equation of the
sphere is (x − 3)2 + (y − 8)2 + (z − 1)2 = 30.

12.1 # 31: x2 + z2 ≤ 9: a cylinder of radius 3 centered on the y-axis. (The
intersection of this solid in the xz-plane is the disk x2 + z2 ≤ 9 of radius 3 centered
at the origin; since the equation does not involve y, it intersects every plane parallel
to the xz-plane in the same manner).

12.1 # 39: P (x, y, z) satisfies |AP | = |BP | if and only if
√

(x + 1)2 + (y − 5)2 + (z − 3)2 =
√

(x − 6)2 + (y − 2)2 + (z + 2)2.
Squaring both sides and expanding, we get:

x2 +2x+1+ y2 − 10y +25+ z2 − 6z +9 = x2 − 12x+36+ y2 − 4y +4+ z4 +4z +4,
which simplifies to 14x − 6y − 10z = 9. This is a plane – in fact, the plane perpen-
dicular to the line segment AB through its midpoint, for symmetry reasons.

12.2 # 29: The two forces are given by the vectors ~F1 = 〈−300, 0〉 and ~F2 =
〈200 cos 60o, 200 sin 60o〉 = 〈100, 100

√
3〉. The resultant force is ~F = ~F1 + ~F2 =

〈−300 + 100, 100
√

3〉 = 〈−200, 100
√

3〉.
Its magnitude is |~F | =

√

(−200)2 + (100
√

3)2 = 100
√

4 + 3 = 100
√

7 ≃ 264.6 N.

The angle with the positive x-axis is determined by tan θ = (100
√

3)/(−200) = −
√

3

2
.

tan−1(−
√

3/2) ≃ −0.714 radians (or −40.9o). However, the vector points into the
upper-left quadrant, so we must add π, and the angle is ≃ 3.855 radians or 139.1o.

12.2 # 39: (a),(b)

~b

t~b

~a

s~a

~c

(c) from the sketch, we estimate that s ≃ 1.3 and t ≃ 1.6.

(d) s~a+ t~b = 〈3s+2t, 2s− t〉, so s~a+ t~b ⇔ 3s+2t = 7 and 2s− t = 1. Solving these
equations gives s = 9

7
and t = 11

7
.

12.2 # 45: Consider the triangle ABC, and let D and E be the midpoints of AB

and AC. Then
−−→
BC =

−→
AC − −−→

AB, and
−−→
DE =

−→
AE − −−→

AD = 1

2

−→
AC − 1

2

−−→
AB = 1

2

−−→
BC.

Therefore
−−→
BC and

−−→
DE are parallel, and |−−→DE| = 1

2
|−−→BC|.

A

E

C

D B
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