Math 53 Homework 1 — Solutions

(These solutions are not necessarily complete; in particular some diagrams have
been omitted for convenience and brevity.)

10.1 #11: (a) z =siné, y = cos b, so 22 + y? = sin® O + cos? § = 1.
(b) right half of the unit circle, traced clockwise from (sin0,cos0) = (0,1) to
(sinm,cosm) = (0,—1).

10.1 #13: (a) z =sint, y = 1/sint, so zy = 1.
(b) as t increases from 0 to 7/2, = increases from 0 to 1; hence, we get the portion
of the hyperbola y = 1/x for 0 < x < 1, traced from left to right (downwards).

10.1 #31: (a) z =21+ (w2 — 1)t y = y1+ (y2 —y1)t, 0 < t < 1: the curve clearly
passes through P (z1,y1) at ¢ = 0 and through P (z2,y2) at t = 1. Since x and
y each vary at a constant rate, the trajectory is along a straight line. (Or, more
explicitly, we can eliminate ¢: ¢ = =21 soy = y; + %(aﬁ — x1), which is indeed
a line). Moreover, because the range of values of x for 0 < ¢ < 1 is precisely from

x1 to xe (or similarly for y), the trajectory is the line segment from P to P;.
b)z=-24+B—-(-2)t=-2+btandy=7+(-1-T7)t=7—8t.

10.1 # 33: the circle of radius 2 centered at (0,1) can be parametrized by =z =
2cost, y = 1+ 2sint where, as t varies from 0 to 27, the trajectory goes around the
circle counterclockwise, starting at (2, 1), and hitting (0, 3) at ¢t = 7/2. Hence:

(a) to get a clockwise orientation, we should change ¢t to —t; this yields x = 2cost,
y=1—2sint, 0 <t < 27 (or any interval between consecutive multiples of 27).
(b) © =2cost, y =1+ 2sint, 0 < t < 6.

(¢c) x =2cost,y =1+ 2sint, 7/2 <t < 37/2.

10.1 # 45: (a) There are two intersection points, one at (—3,0) and the other near
(—2.1,1.4).

(b) the intersection at (—3,0) is a collision point, since it is hit by the first particle
at t = 37/2 and by the second one at the same time ¢ = 37/2. On the other hand,
the intersection near (—2.1,1.4) is hit by the first particle (which moves clockwise
on the large ellipse) at some time ¢; with 37/2 < ¢; < 27; while the second particle
passes through it for some time to with 0 < to < 7/2; since the particles are never
there at the same time, it is not a collision point.

Or, more systematically: a collision point corresponds to ¢ such that 1 (t) = x2(t)
and yi(t) = ya(t), i.e. 3sint = —3 4 cost and 2cost = 1 + sint. From the first



equation we get that cost = 3 + 3sint, and plugging into the second equation we
obtain 5 + 5sint = 0; this yields sint = —1, which corresponds to ¢ = 37/2, indeed
a solution of both equations.

(c) the circle is now centered at (3,1) instead of (—3,1). There are still two inter-
sections, at (3,0) and near (2.1,1.4); but there are no collision points (for instance
because the equations 3sint = 3+ cost and 2cost = 1 +sint imply that sint = 7/5
and cost = 6/5, impossible.)

102 #7: (a) x=1+Int, y=t>+2 % = Zi;f; = 12/7; = 2t%. The point (1, 3)
is hit at ¢t = 1, so dy/dx = 2, and the tangent is y — 3 =2(xz — 1), or y = 2z + 1.
(b) t =71, 50 y = €2*72 + 2, and dy/dx = 2¢**~2; when x = 1 we have dy/dz =
2¢Y = 2, and the equation of the tangent follows as in (a).

10.2 #19: = 2cos 6, y = sin 20: to find horizontal tangents, we compute dy/df =
2cos 20, so dy/df = 0 if and only if 20 = § + nm (n integer), i.e. § = § +n3. This
corresponds to the four points (x,y) = (£v/2,%1) where the curve has horizontal
tangencies.

Similarly, for vertical tangents, we find 6 for which dz/df = —2sinf = 0, i.e. 6 = nx
(n integer), which gives the two points (£2,0).

10.2 # 33: The curve lies above the z-axis for 0 < t < 1, and z increases with ¢,
so the area is f;H ydr = fol(t —t?) et dt. Using integration by parts twice, we find
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:/0 (2t — 1)el dt = (2t—1)et\0—/0 2¢' dt = (2t — 3)e'|, = —e + 3.

10.2 # 41: dx/dt = 6t and dy/dt = 6t2, so (dx/dt)? + (dy/dt)? = 36t> + 36t*, and
thus L = [ V362 + 36t* dt = [, 6t/1 + 2 dt. Substituting u = 1+ t2,
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10.2 # 73: The coordinates of T' (see figure in the book) are (r cosd,rsinf). Since
TP was unwound from the arc T'A, TP has length 8. Also, TP is perpendicular
to OT, so makes an angle § — 5 with the z-axis (or ¢ with the negative y axis).
So P has coordinates x = rcosf + rfl cos(f — §) = rcosf + rfsinf and y =
rsinf +rf sin(f — §) = rsinf — rf cos 6.



Problem 1. (a) Let @ be the center of the rolling cir-
cle: since |OQ| = 2a and the line OQ passes through the Q
contact point, the coordinates of @ are (2a cos 6, 2asin6).

To find the position of P, observe that /OQP = 0: since

from P to R are equal. So the line QP makes an angle of 26
with the negative xz-axis, and |QP| = a. So the coordinates
of P are:

one circle rolls on the other the arc lengths from S to R and C 6

= 2acost —acos20, y=2asinf — asin26.

(b) dx/df = 2a(—sin 6 + sin 260), and dy/df = 2a(cos — cos 20), so

de\?  (dy\?
(C;) +<d§) = 4a®(sin” O +sin? 20 — 2 sin 0 sin 20+ cos? O 4-cos? 20 —2 cos O cos 20)

which simplifies (using sin? 4+ cos? = 1) to 4a?(2 — 2sinfsin 20 — 2 cosf cos 20) =
4a%(2 — 2 cos(26 — 0)) = 4a*(2 — 2cosh). So L = [7™ 2ay/2 — 2 cos B d6.

Recall that cos@ = 1 — 2sin?(0/2), so 2 — 2cos § = 4sin?(6/2),

and L = [2" 4asin(6/2) d§ = —8acos(d/2)[2" = —8a((—1) — 1) = 16a.

10.3 #17: r = 3sinf = r> = 3rsind < 22 +y? = 3y, ie. 22 + (y — 3)? = ()2,
circle of radius % centered at (0, %) (Note: multiplying both sides by r in the first
step adds the extra solution r = 0, which corresponds to the origin; however the
origin already lies on the circle, so this is of no consequence).

10.3 #19: r =cscl < rsinf =1 < y = 1 (horizontal line through (0, 1)).

10.3 #29: 0 = —7/6: 10.3 #30: 2 —3r4+2=0<r=1orr=2:

(or the entire line if we allow r < 0)

10.3 # 53: To show that x = 1 is an asymptote we must prove that + — 1 asr — oo.
r — oo corresponds to sinftanf — oo, i.e. § — +m/2. (Note: (6 + 7) = —r(0),
so if we allow all values of # we trace the curve twice; instead we
restrict ourselves to —7m/2 < 6 < /2, for which » > 0). Now,
r = rcosf = (sinftanf)cosf = sin? @, which does tend to 1 as
0 — +7m/2. (Note: § — (w/2)~ corresponds to z — 1, y — +o0,
while § — (—7/2)" correspond to z — 1, y — —00).

Since = = sin?# takes values ranging between 0 and 1, the curve
is contained in the strip 0 < z < 1 (and = = 1 is never reached).
And, since r(—60) = r(0), the curve is symmetric about the z-axis.




10.3 #63: r = 3cosf gives: = rcosf = 3cos’, y = rsinf = 3cosfsind.
Horizontal tangencies occur when dy/df = —3sin? 0 + 3 cos? § = %cos 20 = 0, so for
20 = 5 +nmor 0 = T +ng. Vertical tangencies occur when dx/df = —6sin6 cos =
—3sin 26 = 0, so for 20 = n7w or § = n3.

We only need to consider 6 between —7/2 and 7/2 (where > 0), the range § < 6 <
3T traces the same curve again (r(6+m) = —r(6)). Hence: the tangent is horizontal
for § = £7 (recalling that the curve is the circle of radius % centered at ( %, 0), these
are the top and bottom points (%, i%)); and vertical for § = 0 (the rightmost point
(3,0)) and 6 = £7/2 (at the origin).

104 #7: A= fi{%% (4+ 3sin6)?dd = § fﬂ/z 16 + 24 sin 6 + 9sin? 0) df.

Using parity, the portions of the integral from —7/2 to 0 and 0 to m/2 cancel out
for sin #, while they are equal for the other terms of the integrand; so

fW/Q 16 +9sin% ) df = 7r/2(16—1— (1—cos20))df = [46 — Zsm?@] /2 =4z
10.4 # 23: Inside r = 2cosf, outside r = 1: the curves intersect when 2cosf = 1,
0 = cos™'(3) = £m/3. We subtract the unshaded area from the shaded area:
A= ™5 L(2c0s0)2df — [T, Ldo = [/3 (2cos20 — L) df = [™/3, (cos20 + 1) db

7r/32 w/3 2 w/3 /3
/3 T T s
= [4sin20 4+ 30)7 = (B4 7 - (- -H =L +75.
//9271'/3
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10.4 #35: r = ; + cosf is positive for cosé? > —%, 1e -5 <0< 2;; this
corresponds to the large loop; r is negative for 2% < 6 < 3 , the small loop.

The area in the large loop is 2 f%/g 3(3+cos0)?df = 27r/3( +cosf +cos? 0) df =

f02ﬂ/3(1+cos0+§cos29)d9—[9+S1n«9+4sm26’]27r/3 (—i—i—%i) 0=

3v3
5+ 7%

Similarly, the area in the small loop is
2f2ﬂ/3 3 +cos€)2d9 = [ 0 + sinf + 1 I sm29]2 I3 = (%T”)

3[) (E_M):g_,_ﬁ'

Subtracting, the desired area is (5 a %

10.4 # 45: using equation (5) on p.652,

— [T /T (dr]dB)? df = ”/3\/3sin9)2+(3cos9)2d9=f0”/33d0=7r.




12.1 # 13: The radius of the sphere is the distance between (4,3,-1) and (3,8,1),
namely r = /(3 —4)2 + (8 —3)2+ (1 — (—1))2 = v/30. Hence, an equation of the
sphere is (z — 3)2 + (y — 8)%2 + (2 — 1)? = 30.

12.1 #31: 22 + 22 < 9: a cylinder of radius 3 centered on the y-axis. (The
intersection of this solid in the xz-plane is the disk 22 + 22 < 9 of radius 3 centered
at the origin; since the equation does not involve y, it intersects every plane parallel
to the zz-plane in the same manner).

12.1 # 39: P (x,y, z) satisfies |AP| = |BP)| if and only if

VE+1)?+ -5+ (-3 =/(@-6P+{y -2+ (:+2)
Squaring both sides and expanding, we get:
22420+ 1492 —10y+254+ 22 —62+9 =22 —120+36+9% —dy + 4+ 2* + 42 + 4,
which simplifies to 14x — 6y — 10z = 9. This is a plane — in fact, the plane perpen-
dicular to the line segment AB through its midpoint, for symmetry reasons.

12.2 #29: The two forces are given by the vectors Fi = (—300,0) and B =
(200 cos 60°,200 sin 60°) = (100,100v/3). The resultant force is F' = [} + Fy =
(—300 + 100, 100v/3) = (—200, 100+/3).

Its magnitude is |F| = \/(—200)2 + (100v/3)2 = 100v/4 + 3 = 100V/7 ~ 264.6 N.

The angle with the positive z-axis is determined by tan § = (100+/3)/(—200) = —?.
tan~!(—+/3/2) ~ —0.714 radians (or —40.9°). However, the vector points into the
upper-left quadrant, so we must add m, and the angle is ~ 3.855 radians or 139.1°.

12.2 #39: (a),(b)

tg ..... i
(c) from the sketch, we estimate that s ~ 1.3 and ¢t ~ 1.6.
(d) s@+1tb = (35+2t,25 — 1), 50 sd@+tb < 3s+2t = 7 and 25 —t = 1. Solving these

equations gives s = % and t = 1—71

12.2 # 45: Consider the triangle ABC', and let D and E be the midpoints of AB
— — — — — — — — —
and AC. Then BC = AC — AB, and DE = AE — AD = $AC — $AB = {BC.
Therefore BC and DE are parallel, and |17E | = %|B—C)' |.
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