
Math 53 Homework 13 – Solutions

16.9 # 17: Let S1 be the disk x2 +y2 ≤ 1 in the xy-plane, oriented downwards. Its normal
vector is n̂ = −k̂, so ~F · n̂ = −~F · k̂ = −(x2z + y2) = −y2 (since z = 0 on S1). Hence

∫∫

S1

~F · n̂ dS =
∫∫

S1
−y2 dS = −

∫ 2π
0

∫ 1
0 (r sin θ)2 r dr dθ.

Inner:
[

1
4r4 sin2 θ

]1

0
= 1

4 sin2 θ. Outer: −
∫ 2π
0

1
4 sin2 θ dθ = −

∫ 2π
0

1
8(1 − cos 2θ) dθ = −π

4 .

Now, we apply the divergence theorem to the closed surface S ∪ S1. Observing that

div ~F = ∂
∂x(z2x) + ∂

∂y (1
3y3 + tan z) + ∂

∂z (x2z + y2) = z2 + y2 + x2, we have:
∫∫

S
~F · d~S +

∫∫

S1

~F · d~S =
∫∫∫

E x2 + y2 + z2 dV =
∫ 2π
0

∫ π/2
0

∫ 1
0 ρ2 ρ2 sinφ dρ dφ dθ

= 2π(
∫ π/2
0 sin φ dφ)(

∫ 1
0 ρ4 dρ) = (2π)(1)(1

5) = 2
5π.

Finally,
∫∫

S
~F · d~S =

∫∫∫

E div ~F dV −
∫∫

S1

~F · d~S = 2
5π − (−1

4π) = 13
20π.

16.9 # 19: The vectors that end near P1 are longer than the vectors that start near P1, so
the net flow is inward near P1 (or: the net flux out of a small disk around P1 is negative),
and so div ~F is negative at P1. Conversely, the vectors that end near P2 are longer than
those that start near P2, so the net flow is outward near P2 (or: the net flux out of a small
disk around P2 is positive), and so div ~F is positive at P2.

16.9 # 27:
∫∫

S curl ~F · d~S =
∫∫∫

E div(curl ~F ) dV , however by Theorem 11 in 16.5 we have

div(curl ~F ) = 0 (see p. 1065 for the proof), so
∫∫

S curl ~F · d~S =
∫∫∫

E 0 dV = 0.

16.8 # 3: The boundary curve C is the circle x2 +y2 = 4, z = 4 oriented counterclockwise,
so it can be parametrized by x = 2 cos t, y = 2 sin t, z = 4, 0 ≤ t ≤ 2π. Thus

∫∫

S
curl ~F · d~S =

∫

C

~F · d~r =

∫

C
x2z2 dx + y2z2 dy + xyz dz =

=

∫ 2π

0
16(2 cos t)2(−2 sin t) dt+16(2 sin t)2(2 cos t) dt+0 dt =

[

128

3
cos3 t +

128

3
sin3 t

]2π

0

= 0.

16.8 # 9: curl ~F =

∣

∣

∣

∣

∣

∣

ı̂ ̂ k̂
∂x ∂y ∂z

yz 2xz exy

∣

∣

∣

∣

∣

∣

= (xexy − 2x)̂ı − (yexy − y)̂ + (2z − z)k̂.

We take S to be the disk x2 + y2 ≤ 16, z = 5. Since C is oriented counterclockwise (from
above), we orient S upward. Then n̂ = k̂, and curl ~F · n̂ = z on S, where z = 5. Thus

∮

C

~F · d~r =

∫∫

S
curl ~F · n̂ dS =

∫∫

S
z dS =

∫∫

S
5 dS = 5 area(S) = 80π.

Problem 1. Radius of disk T : intersection of z2 = x2 + y2 (cone) and
x2 + y2 + z2 = 2 (sphere). By elimination, we get x2 + y2 = z2 = 1, i.e.
z = 1 and radius r = 1. ¡

¡¡
❅

❅❅
U

T

S✻

✲r

z

a) ~F = x̂ı+y̂ is horizontal and points radially outwards (away from the z-axis). Therefore,
the flux across S is positive (~F points out of the sphere); the flux across T is zero (~F is
parallel to the horizontal plane containing T ); the flux across U is negative (~F points out
of the cone, while the normal vector points up and into the cone).
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b) Across S (spherical cap, ρ =
√

2, φ < π
4 ): dS = ρ2 sinφ dφ dθ = 2 sinφ dφ dθ.

Unit normal n̂ = 1
ρ(x̂ı + y̂ + zk̂), hence ~F · n̂ = 1

ρ(x2 + y2) = ρ sin2 φ =
√

2 sin2 φ, and

∫∫

S

~F · n̂ dS =

∫ 2π

0

∫ π/4

0
(
√

2 sin2 φ) (2 sin φ) dφ dθ = 2
√

2 (2π)

∫ π/4

0
sin3 φ dφ

= 4π
√

2

∫ π/4

0
sinφ(1 − cos2 φ) dφ = 4π

√
2

[

− cos φ +
1

3
cos3 φ

]π/4

0

= 4π
√

2
[

(− 1√
2

+
1

6
√

2
) − (−1 +

1

3
)
]

=
(8
√

2 − 10)π

3
.

Across T : n̂ = k̂, so ~F · n̂ = 0 and

∫∫

T

~F · n̂ dS = 0.

Across U (cone, graph of f(x, y) =
√

x2 + y2 over unit disk): n̂ dS = 〈−fx,−fy, 1〉 dA =

〈−x/r,−y/r, 1〉 dA, so ~F · n̂ dS = 〈x, y, 0〉 · 〈−x/r,−y/r, 1〉 dA = (−r) (r dr dθ).

∫∫

U

~F · n̂ dS =

∫ 2π

0

∫ 1

0
−r2 dr dθ = −(2π)

1

3
= −2π

3
.

c) div ~F = ∂
∂x(x) + ∂

∂y (y) + ∂
∂z (0) = 2. Therefore, the flux out of the solid cone D1 is

∫∫

~F ·n̂ dS =

∫∫∫

D1

2 dV = 2 volume(D1) = 2 (
1

3
π) =

2π

3
. (volume = base×height /3).

Flux out of the region D2 bounded by S and U :

∫∫

~F · n̂ dS =

∫∫∫

D2

2 dV = 2

∫ 2π

0

∫ π/4

0

∫

√
2

0
ρ2 sinφ dρ dφ dθ

= 2 (2π)

∫ π/4

0

1

3
ρ3 sinφ

∣

∣

∣

∣

√
2

0

dφ

= 4π
2
√

2

3

∫ π/4

0
sinφ dφ =

8π
√

2

3
(− 1√

2
− (−1)) =

8(
√

2 − 1)π

3
.

d) Recall from part (b): taking normal vectors pointing up, the flux through the spherical
cap S is (8

√
2 − 10)π/3; the flux through the disk T is 0; the flux through the cone U is

−2π/3.

The oriented boundary of the solid cone is T − U (normal vectors should point out of the
cone, which agrees with our previous choice for T but not for U). From the direct calculation

in part (b),

∫∫

T−U

~F · n̂ dS =

∫∫

T
−

∫∫

U
= 0 +

2π

3
=

2π

3
, which agrees with (c).

Similarly, the oriented boundary of D2 is S − U . From part (b), we have
∫∫

S−U

~F · n̂ dS =

∫∫

S
−

∫∫

U
=

(8
√

2 − 10)π

3
+

2π

3
=

(8
√

2 − 8)π

3
, in agreement with (c).

Problem 2.

a) ~F =
−x ı̂ − y ̂ − z k̂

(x2 + y2 + z2)3/2
= −x ı̂ + y ̂ + z k̂

ρ3
is directed radially inward, with length 1/ρ2.
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b) From the geometric description, ~F · n̂ = −1/ρ2 = −1/a2 on the sphere ρ = a. Therefore
∫∫

S
~F · n̂ dS = − 1

a2

∫∫

S dS = − 1
a2 4πa2 = −4π.

c) ∂
∂x(−xρ−3) = −ρ−3 − x · (−3 ρx ρ−4) = −ρ−3 + 3x2ρ−5 (using ρx = x/ρ); similarly for y

and z. Therefore, div ~F = −3ρ−3 + 3(x2 + y2 + z2)ρ−5 = −3ρ−3 + 3ρ−3 = 0.

The divergence theorem cannot be used to compute the flux of ~F over the sphere ρ = a,
because ~F is not defined at every point of the interior ball (~F is not defined at the origin).
So there is no contradiction.

d) Consider S′ = the portion of a small sphere centered at the origin which
lies in the first octant, oriented outwards, and let D be the portion of the
first octant between S′ and the given surface S. The flux of ~F outwards
through S′ (into D) is 1/8 of that through the entire sphere (by symmetry),
i.e., using the result of (b), −4π/8 = −π/2.

S′

S

The boundary of D consists of S, −S′, and three flat “sides” which are portions of the coor-
dinate planes. Because ~F points radially towards the origin, it is tangent to the coordinate
planes, and the flux through the sides is zero. Moreover, div ~F = 0 by the result of (c), so
by the divergence theorem the total flux of ~F out of D is zero. So:

0 =

∫∫

S

~F · n̂ dS −
∫∫

S′

~F · n̂ dS +

∫∫

sides

~F · n̂ dS =

∫∫

S

~F · n̂ dS − (−π/2) + 0.

Hence
∫∫

S
~F · n̂ dS = −π/2.

Problem 3. a) curl ~F =

∣

∣

∣

∣

∣

∣

ı̂ ̂ k̂
∂x ∂y ∂z

−2xz 0 y2

∣

∣

∣

∣

∣

∣

= 2ŷı − 2x̂.

b) On the unit sphere, the normal vector is n̂ = x̂ı + y̂ + zk̂, so the integrand in the flux
of curl ~F is curl ~F · n̂ = 〈2y,−2x, 0〉 · 〈x, y, z〉 = 2xy − 2xy = 0. Therefore, let C be a
simple closed curve on the unit sphere, and let S be the portion of the surface of the sphere
delimited by C. Then by Stokes’ theorem,

∮

C
~F · d~r =

∫∫

S curl ~F · n̂ dS =
∫∫

S 0 dS = 0.

Problem 4.

q

q

q

q

❅
❅

❅

¡
¡

¡

◗
◗◗

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

❆❆
✑

✑
✑

✑✑✰

✲

✻

P0

P1

P2

P3x

y

z

a) For P0P1P2: from P0 to P2 to P1 back to P0. For P0P1P3: from P0 to P1 to P3 back to
P0. For P0P2P3: from P0 to P3 to P2 back to P0. For P1P2P3: P1 to P2 to P3 back to P1.

b) From P0 to P1: x = t, y = 0, z = t for 0 ≤ t ≤ 1, so

∫

P0P1

yz dy − y2 dz =

∫ 1

0
0 dt = 0.

From P1 to P3: x = 1, y = t, z = 1 − t for 0 ≤ t ≤ 1, so
∫

P1P3

yz dy − y2 dz =

∫ 1

0
t(1 − t) dt − t2 (−dt) =

∫ 1

0
t dt =

1

2
.

From P3 to P0: x = t, y = t, z = 0 for t going from 1 to 0, so

∫

P3P0

yz dy−y2 dz =

∫ 0

1
0 dt = 0.

Therefore, the total work is 0 +
1

2
+ 0 =

1

2
.
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c) ∇ × ~F = ( ∂
∂y (−y2) − ∂

∂z (yz))̂ı = −3ŷı, so by Stokes’ theorem, for each face we have
∮

C
~F · d~r =

∫∫

S(∇ × ~F ) · n̂ dS =
∫∫

S(−3ŷı) · n̂ dS. Hence we have to find the flux of the

vector field ~G = ∇× ~F = −3ŷı through each face.

Through P0P1P2: the face is contained in the xz-plane (y = 0), so the outward unit normal
is n̂ = −̂. Since ~G · n̂ = 0, the flux is zero.

Through P1P2P3: the face is contained in the plane x = 1, so the outward unit normal is
n̂ = ı̂, and ~G · n̂ = 〈−3y, 0, 0〉 · 〈1, 0, 0〉 = −3y.

∫∫

P1P2P3

~G·n̂ dS =

∫∫

P1P2P3

−3y dS =

∫ 1

0

∫ 1−y

−(1−y)
−3y dz dy =

∫ 1

0
−6y(1−y) dy =

[

−3y2+2y3
]1

0
= −1.

Through P0P1P3: a normal vector (pointing outwards) is ~N =
−−−→
P0P1 ×

−−−→
P0P3 = 〈−1, 1, 1〉, so

P0P1P3 is contained in the plane −x+ y + z = 0, i.e. the graph z = x− y of f(x, y) = x− y;
so n̂ dS = 〈−fx,−fy, 1〉 dx dy = 〈−1, 1, 1〉 dx dy.

So ~G · n̂ dS = 〈−3y, 0, 0〉 · 〈−1, 1, 1〉 dx dy = 3y dx dy. The projection of the face P0P1P3 on
the xy-plane is a triangle with vertices at (0, 0), (1, 0) and (1, 1), so

∫∫

P0P1P3

~G · n̂ dS =

∫ 1

0

∫ x

0
3y dy dx =

∫ 1

0

3

2
x2 dx =

1

2
x3

∣

∣

∣

1

0
=

1

2
.

The symmetry (x, y, z) −→ (x, y,−z) exchanges the two faces P0P1P3 and P0P2P3, so the
two normal vectors are symmetric to each other (the orientations match). Since ~G = −3ŷı
is also preserved by this symmetry, the flux through P0P2P3 is the same as through P0P1P3,
namely 1/2.

(Or: P0P2P3 is contained in the plane z = −x+y, so n̂ dS = −〈1,−1, 1〉 dx dy (the negative
sign is so n̂ points downwards) and ~G · n̂ dS = 3y dx dy. The projection of the face onto
the xy-plane is again the triangle with vertices (0, 0), (1, 0) and (1, 1), and the calculation
proceeds as previously to give 1/2.)

d) (i) When we add together the four answers from (c), we compute work along a curve that
passes twice over each of the 6 edges of the tetrahedron. However each edge is traversed once
with each orientation, so the various contributions cancel each other. For example the edge
P0P1 is encountered once for the face P0P1P2 (it is then oriented from P1 to P0) and once
for the face P0P1P3 (it is then oriented from P0 to P1); the sum of the two contributions is
zero.

(ii) For each face

∮

F · d~r =

∫∫

(curl ~F ) · n̂ dS by Stokes, so the sum of the four line

integrals is the flux of curl ~F = −3ŷı out of the tetrahedron. By the divergence theorem,
∫∫

S
(curl ~F ) · n̂ dS =

∫∫∫

D
div(curl ~F ) dV . But div(curl ~F ) = div(−3ŷı) = 0, so the total

flux is zero.
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