
Math 53 Homework 10 – Solutions

16.2 # 1: x = y3 and y = t, so

∫

C
y2 ds =

∫ 2

0
t2

√

(dx
dt )

2 + (dy
dt )

2 dt =

∫ 2

0
t3

√

(3t2)2 + 12 dt

=

∫ 2

0
t3

√

9t4 + 1 dt =

[

1

54
(9t4 + 1)3/2

]2

0

=
1

54
(1453/2 − 1).

16.2 # 3: Parametric equations for C are x = 4 cos t, y = 4 sin t, −π
2 ≤ t ≤ π

2 . So
∫

C xy4 ds =
∫ π/2
−π/2(4 cos t)(4 sin t)4

√

(−4 sin t)2 + (4 cos t)2 dt =
∫ π/2
−π/2 46 cos t sin4 t dt =

= 46
[

1
5 sin5 t

]π/2

−π/2
= 2

546 = 213

5 = 8192
5 .

16.2 # 15: On the line segment C1 from (1,0,1) to (2,3,1): a parametric equation is
x = 1 + t, y = 3t, z = 1, for 0 ≤ t ≤ 1. So dx = dt, dy = 3dt, dz = 0dt. Then
∫

C1
(x + yz) dx + 2x dy + xyz dz =

∫ 1
0 (1 + t + 3t · 1) dt + 2(1 + t) 3 dt + (1 + t)(3t)(1) · 0 dt =

=
∫ 1
0 (7 + 10t) dt =

[

7t + 5t2
]1

0
= 12.

On the line segment C2 from (2,3,1) to (2,5,2): x = 2, y = 3 + 2t, z = 1 + t for 0 ≤ t ≤ 1.
So dx = 0 dt, dy = 2 dt, dz = dt, and
∫

C2
(x+yz) dx+2x dy+xyz dz =

∫ 1
0 (2+(3+2t)(1+ t)) ·0 dt+(2 ·2) ·2 dt+2(3+2t)(1+ t) dt

=
∫ 1
0 (14 + 10t + 4t2) dt =

[

14t + 5t2 + 4
3 t3

]1

0
= 61

3 .

So
∫

C(x + yz) dx + 2x dy + xyz dz =
∫

C1
+

∫

C2
= 12 + 61

3 = 97
3 .

16.2 # 17: (a) Along the line x = −3, the vectors of ~F have positive y-components; since
the path goes upward, the integrand ~F ·T̂ is always positive. So

∫

C1

~F ·d~r =
∫

C1

~F ·T̂ ds > 0.

(b) Along the circle C2, the field vectors are all pointing in the clockwise direction, i.e.,
opposite the direction of the path. So ~F · T̂ < 0, and therefore

∫

C2

~F · d~r =
∫

C2

~F · T̂ ds < 0.

16.2 # 22: x = t, y = sin t, z = cos t, so dx = dt, dy = cos t dt, dz = − sin t dt. Hence
∫

C
~F · d~r =

∫

C z dx + y dy − x dz =
∫ π
0 cos t dt + sin t cos t dt − t(− sin t) dt.

Integration by parts yields:
∫

t sin t dt = −t cos t −
∫

1(− cos t) dt = −t cos t + sin t.

So
∫

C
~F · d~r =

∫ π
0 (cos t + sin t cos t + t sin t) dt =

[

sin t + 1
2 sin2 t − t cos t + sin t

]π

0
= π.

16.2 # 32: (a) We parametrize the circle C by: x = 2 cos t, y = 2 sin t, 0 ≤ t ≤ 2π. So
dx = −2 sin t dt, dy = 2 cos t dt, and
∫

C
~F · d~r =

∫

C x2 dx + xy dy =
∫ 2π
0 (2 cos t)2 (−2 sin t) dt + (4 cos t sin t) (2 cos t) dt

=
∫ 2π
0 (−8 cos2 t sin t + 8 cos2 t sin t) dt =

∫ 2π
0 0 dt = 0.

(b) The vector ~F (x, y) = x2̂ı + xy̂ = x(x̂ı + y̂) is parallel to the position vector x̂ı + y̂ of
the point (x, y), so it always points in the radial direction (straight away from the origin if
x > 0, straight towards the origin if x < 0). (This can be seen on a plot).

So, at every point of the circle C, the vector ~F (x, y) is perpendicular to the circle, hence
the field does no work on the moving particle. In other words, ~F · T̂ = 0 at any point along
C, and so

∫

C
~F · d~r = 0.

16.2 # 41: The line segment from (1,0,0) to (3,4,2) has parametric equations x = 1 + 2t,
y = 4t, z = 2t for 0 ≤ t ≤ 1; so dx = 2dt, dy = 4dt, dz = 2dt, and
∫

C
~F · d~r =

∫

C(y + z) dx + (x + z) dy + (x + y) dz =
∫ 1
0 (6t) 2dt + (1 + 4t) 4dt + (1 + 6t) 2dt =

∫ 1
0 (40t + 6) dt =

[

20t2 + 6t
]1

0
= 26.
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16.3 # 3: ∂
∂y (2x−3y) = −3 = ∂

∂x(−3x+4y−8), and ~F is defined in the entire plane (open

and simply connected), so ~F is conservative. So there is a function f such that ∇f = ~F ,
i.e. fx = 2x − 3y and fy = −3x + 4y − 8.

Integrating with respect to x, fx(x, y) = 2x − 3y implies f(x, y) = x2 − 3xy + g(y) for
some function g(y); differentiating both sides of this equation with respect to y gives fy =
−3x+ g′(y). Thus we should have −3x+ g′(y) = −3x+4y−8, or g′(y) = 4y−8. Therefore
g(y) = 2y2 − 8y + c where c is a constant. Hence f(x, y) = x2 − 3xy + 2y2 − 8y + c.

16.3 # 8: ∂
∂y (xy cos xy + sinxy) = x cos xy − x2y sinxy + x cos xy = 2x cos xy − x2y sinxy,

while ∂
∂x(x2 cos xy) = 2x cos xy − x2y sinxy. So ~F is defined everywhere and satisfies Py =

Qx, and hence it is conservative.

We now look for f such that ∇f = ~F , i.e. fx = xy cos xy + sinxy and fy = x2 cos xy.
Integrating with respect to y, fy = x2 cos xy implies that f(x, y) = x sinxy + g(x) for
some function g(x). Differentiating this equation with respect to x, we get fx = sinxy +
x2 cos xy + g′(x); since we want fx = xy cos xy + sinxy, we deduce that g′(x) = 0, i.e.
g(x) = c is a constant. Thus f(x, y) = x sinxy + c.

(The usual method, namely first integrating fx = P with respect to x to find f up to a
function of y, and then differentiating with respect to y to find that function, would also
work just fine. However in this example it is slightly easier to integrate Q with respect to
y than to integrate P with respect to x.)

16.3 # 15: a) fx(x, y, z) = yz implies f(x, y, z) = xyz + g(y, z), and so fy(x, y, z) =
xz + gy(y, z). But fy(x, y, z) = xz, so gy(y, z) = 0, and (integrating with respect to y)
g(y, z) = h(z). Thus f(x, y, z) = xyz + h(z), and fz(x, y, z) = xy + h′(z). But fz(x, y, z) =
xy +2z, so h′(z) = 2z, and hence h(z) = z2 + c. Thus (taking c = 0), one potential function
is f(x, y, z) = xyz + z2.

b) By the fundamental theorem,
∫

C
~F · d~r = f(4, 6, 3) − f(1, 0,−2) = 81 − 4 = 77.

16.3 # 19: Note that ~F = 〈tan y, x sec2 y〉 is only defined when y 6= π
2 + nπ. Therefore the

path C from (1, 0) to (2, π/4) can’t be arbitrary, it must lie in the region −π
2 < y < π

2 .

With this understood, we note that ∂
∂y (tan y) = sec2 y = ∂

∂x(x sec2 y), and the region

−π
2 < y < π

2 is simply connected, so ~F is conservative.

Using the usual method, we find that f(x, y) = x tan y is a potential function fo ~F .

Therefore
∫

C tan y dx + x sec2 y dy =
∫

C
~F · d~r = f(2, π/4) − f(1, 0) = 2 − 0 = 2.

16.3 # 21: ∂
∂y (2y3/2) = 3y1/2 = ∂

∂x(3x
√

y), and the region y > 0 where ~F is continuously

differentiable is simply connected. Thus ~F is conservative and can be written as ∇f for some
potential function f(x, y). The equation fx = 2y3/2 implies that f(x, y) = 2xy3/2 + g(y).
Hence fy = 3xy1/2 + g′(y) = 3xy1/2, and so g′(y) = 0, i.e. g is constant. Thus f(x, y) =
2xy3/2 is a potential function. Therefore, given any path C from (1,1) to (2,4) (in the upper
half plane y > 0),

∫

C
~F · d~r = f(2, 4) − f(1, 1) = 32 − 2 = 30.

16.3 # 23: We know that if the vector field (call it ~F ) is conservative, then around any
closed path C we must have

∫

C
~F · d~r = 0. However, take C to be a circle centered at the

origin, oriented counterclockwise. Then all of the field vectors along C point forward (have
a positive tangential component), so

∫

C
~F · d~r > 0. Therefore the field is not conservative.
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16.4 # 2: a) Let C1 = bottom edge of the rectangle from (0,0) to (3,0), C2 = right edge
from (3,0) to (3,1), C3 = top from (3,1) to (0,1), C4 = left edge from (0,1) back to (0,0).

C1: x = t, y = 0, for 0 ≤ t ≤ 3, so dx = dt, dy = 0, and
∫

C1
xy dx + x2 dy =

∫ 3
0 0 dt = 0.

C2: x = 3, y = t, for 0 ≤ t ≤ 1, so dx = 0, dy = dt, and
∫

C2
xy dx + x2 dy =

∫ 1
0 9 dt = 9.

C3: x = 3 − t, y = 1, 0 ≤ t ≤ 3; so dx = −dt, dy = 0, and
∫

C3
xy dx + x2 dy =

∫ 3
0 −(3 − t) dt =

[

−3t + 1
2 t2

]3

0
= −9/2.

C4: the integrand vanishes because x = 0, so
∫

C4
xy dx + x2 dy = 0.

Adding these together,
∮

C xy dx + x2 dy = 0 + 9 − 9
2 + 0 = 9/2.

b) by Green’s theorem,

∮

C
xy dx+x2 dy =

∫∫

R

(

∂

∂x
(x2) − ∂

∂y
(xy)

)

dA =

∫∫

R
x dA, where

R is the rectangle 0 ≤ x ≤ 3, 0 ≤ y ≤ 1. So
∫∫

R x dA =
∫ 3
0

∫ 1
0 x dy dx =

∫ 3
0 x dx = 9/2.

16.4 # 4: a) Let C1 be the segment from (0, 1) to (0, 0), C2 the segment from (0, 0) to
(1, 0), and C3 the parabola y = 1 − x2 from (1, 0) to (0, 1).

C1: x = 0, y = 1 − t for 0 ≤ t ≤ 1, so dx = 0 and dy = −dt; hence
∫

C1
x dx + y dy =

∫ 1
0 −(1 − t) dt =

[

−t + 1
2 t2

]1

0
= −1

2 .

C2: x = t, y = 0 for 0 ≤ t ≤ 1, so dx = dt and dy = 0. Hence
∫

C2
x dx + y dy =

∫ 1
0 t dt = 1

2 .

C3: x = 1 − t, y = 1 − (1 − t)2 = 2t − t2, for 0 ≤ t ≤ 1; so dx = −dt and dy = (2 − 2t) dt.
Hence

∫

C3
x dx + y dy =

∫ 1
0 −(1 − t) dt + (2t − t2)(2 − 2t) dt =

∫ 1
0 (2t3 − 6t2 + 5t − 1) dt =

[

1
2 t4 − 2t3 + 5

2 t2 − t
]1

0
= 0.

So
∮

C
~F · d~r =

∫

C1
+

∫

C2
+

∫

C3
= −1

2 + 1
2 + 0 = 0.

(Note: switching the orientations of C1 and C3 would have given slightly simpler parametriza-
tions; however one then needs to be careful about signs when adding up the three portions.)

b)
∮

C x dx + y dy =

∫∫

R

(

∂

∂x
(y) − ∂

∂y
(x)

)

dA =
∫∫

R 0 dA = 0.

16.4 # 9:
∫

C y3 dx− x3 dy =

∫∫

R

(

∂

∂x
(−x3) − ∂

∂y
(y3)

)

dA =
∫∫

R(−3x2 − 3y2) dA, where

R is the disk x2 + y2 ≤ 4.

So
∫∫

R(−3x2 − 3y2) dA =
∫ 2π
0

∫ 2
0 −3r2 r dr dθ = 2π ·

[

−3
4r4

]2

0
= −24π.

16.4 # 12: C is clockwise; its edges are parts of the lines y = 3x, x = 2, and y = 0
respectively, so C encloses the region R defined by the inequalities 0 ≤ y ≤ 3x, 0 ≤ x ≤ 2.

Therefore

∮

C

~F · d~r = −
∮

−C

~F · d~r = −
∫∫

R

(

∂

∂x
(x2 + 2y sinx) − ∂

∂y
(y2 cos x)

)

dA =

= −
∫∫

R
2x dA = −

∫ 2

0

∫ 3x

0
2x dy dx = −

∫ 2

0
6x2 dx = −

[

2x3
]2

0
= −16.

16.4 # 19: Let C1 be the arch of cycloid from (0, 0) to (2π, 0), which corresponds to
0 ≤ t ≤ 2π, and let C2 be the segment from (2π, 0) to (0, 0) (so C2 is given by x = 2π − t,
y = 0 for 0 ≤ t ≤ 2π). Then C = C1+C2 is traversed clockwise, so −C is oriented positively
and encloses the area under one arch of the cycloid. By formula (5) on p. 1058,

A =
∮

−C −y dx =
∫

C1
y dx +

∫

C2
y dx =

∫ 2π
0 (1 − cos t)(1 − cos t) dt +

∫ 2π
0 0 (−dt) =

=
∫ 2π
0 (1−2 cos t+cos2 t) dt =

∫ 2π
0 (1−2 cos t+1+cos t

2 ) dt =
[

t − 2 sin t + 1
2 t + 1

4 sin 2t
]2π

0
= 3π.
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16.4 # 25: Let D be the region enclosed by C. Then by Green’s theorem,

−ρ

3

∮

C
y3 dx = −ρ

3

∫∫

D
− ∂

∂y
(y3) dA =

ρ

3

∫∫

D
3y2 dA =

∫∫

A
y2 ρ dA = Ix.

Similarly,
ρ

3

∮

C
x3 dy =

ρ

3

∫∫

D

∂

∂x
(x3) dA =

ρ

3

∫∫

D
3x2 dA =

∫∫

A
x2 ρ dA = Iy.

Problem 1:

∫

C

~F · d~r =

∫

C
(x2y +

1

3
y3) dx =

∫ x2

x1

(

x2f(x) +
1

3
f(x)3

)

dx, and

∫∫

R
(x2 + y2) dA =

∫ x2

x1

∫ f(x)

0
(x2 + y2) dy dx =

∫ x2

x1

[

x2y +
1

3
y3

]f(x)

0

dx

=

∫ x2

x1

(

x2f(x) +
1

3
f(x)3

)

dx.

These two integrals are therefore equal.

Problem 2. a) For θ(x, y) = tan−1(y/x):
∂θ

∂x
=

1

1 + (y/x)2
−y

x2
= − y

x2 + y2
, and

∂θ

∂y
=

1

1 + (y/x)2
1

x
=

x

x2 + y2
; so ∇θ = ~F .

b) Because θ(x, y) = tan−1(y/x) is well-defined in the right half-plane (x > 0) and ~F = ∇θ,
the fundamental theorem for line integrals implies

∫

C
~F ·d~r = θ(x2, y2)−θ(x1, y1) = θ2−θ1.

c)

∫

C1

~F · d~r =

∫

C1

−y dx + x dy

x2 + y2
=

∫ π

0

(− sin θ)(− sin θ) + cos θ cos θ

cos2 θ + sin2 θ
dθ =

∫ π

0
dθ = π.

Similarly,

∫

C2

~F · d~r =

∫

−π

0
dθ = −

∫ 0

−π
dθ = −π.

(Or geometrically: length(C1) = length(C2) = π, ~F · T̂ = 1 on C1; ~F · T̂ = −1 on C2)

d) ~F is defined everywhere except at the origin, but is not conservative over its entire domain
of definition. Indeed, the two line integrals computed in (c) both run from (1,0) to (−1, 0)
but they are not equal, so path-independence fails. On the other hand, ~F is conservative
over the half-plane x > 0, where ~F = ∇θ and the fundamental theorem of calculus gives a
formula for the line integral involving only the values of θ at the end points (as seen in (b)).

e)
∂P

∂y
=

∂

∂y

( −y

x2 + y2

)

=
−(x2 + y2) + 2y2

(x2 + y2)2
=

y2 − x2

(x2 + y2)2
, while

∂Q

∂x
=

∂

∂x

(

x

x2 + y2

)

=
(x2 + y2) − 2x2

(x2 + y2)2
. So Py = Qx.

f) By Green’s theorem, if C is a simple closed curve enclosing a region R of the xy-plane

which does not contain the origin, then

∫

C

~F · d~r =

∫∫

R

(

∂Q

∂x
− ∂P

∂y

)

dA =

∫∫

R
0 dA = 0.

The argument does not apply when R contains the origin: in that case ~F is not continuously
differentiable everywhere in R, and Green’s theorem does not apply. For instance, if C is
the unit circle oriented counterclockwise, then using (c),

∫

C
~F ·d~r =

∫

C1

~F ·d~r−
∫

C2

~F ·d~r =
π − (−π) = 2π 6= 0. (This also holds for more general curves, see Example 5 on p. 1059).

Note: the fact that Py = Qx does not imply that ~F is the gradient of a well-defined potential

function everywhere! This would only be true if ~F were defined over the entire plane (or
more generally, a simply connected region). In fact, we can find a potential function for ~F
over smaller regions such as the right half-plane x > 0 (namely, the polar angle θ). However,

4



if we consider the entire plane with just the origin removed, the polar angle coordinate θ is
not well-defined as a single-valued differentiable function: its value “jumps” by 2π as we go
around the origin. This is what causes conservativeness to fail.

Problem 3: a) If ~F = rn(x ı̂ + y ̂) = P ı̂ + Q̂ then

Qx =
∂(yrn)

∂x
= nyrn−1 x

r
, while Py =

∂(xrn)

∂y
= nxrn−1 y

r
. So Py = Qx.

(Recall r =
√

x2 + y2 gives rx =
x

√

x2 + y2
=

x

r
, and similarly ry =

y

r
.)

b) If g = g(r), then gx = g′(r)
x

r
and gy = g′(r)

y

r
(by the chain rule).

So ∇g =
g′(r)

r
(x ı̂ + y ̂). We must find g such that g′(r)/r = rn, i.e. g′(r) = rn+1.

Two cases: n 6= −2: g(r) =
1

n + 2
rn+2. n = −2: g(r) = ln(r).
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