Math 53 Homework 10 — Solutions

16.2 #1: =y and y = t, so/y ds—/tQ\/dz H)2dt = /t‘%\/ (3t2)2 4+ 124t
:/ 3Vt 4 1dt = [ 9t4+1)3/2} :54(1453/2 1).
0

0

16.2 # 3: Parametric equations for C' are x = 4cost, y = 4sint, —5 <t < 5. So

Jozytds = [T //2(4cost)(4smt) V/(—4sint)? + (4cost)2dt = f:/iQ 48 costsint t dt =
™/2 2 23 _ 8192
=40 [5sin 1] 0, = 54° = % = 52

16.2 # 15: On the line segment C; from (1,0,1) to (2,3,1): a parametric equation is
r=14+t,y=3t, z=1,for 0 <t < 1. So dr = dt, dy = 3dt, dz = 0dt. Then

Jo (@ +y2) do + 2w dy + wyzdz = [ (1443t 1) dt+2(1+1)3dt + (L+)(3t)(1) - 0dt =
= (7 10t) dt = [Tt + 51%] = 12.
On the line segment Co from (2,3,1) to (2,5,2): =2, y=3+2t,z=1+tfor 0 <t < 1.
So dx = 0dt, dy = 2dt, dz = dt, and
fc2(:v—|—yz)dx+2$dy+xyzdz:f01(2—|—(3+2t)(1—|—t))-Odt—l—(2-2)-2dt+2(3+2t)(1+t)dt
= [)(14+ 10t + 462) dt = [14¢ + 5¢% + 463 ) = 6L,
So [o(z +yz)de + 2z dy + wyzdz = [ + [, =12+ G = 5.

16.2 #17: (a) Along the line x = —3, the vectors of F' have positive y-components; since
the path goes upward, the integrand FTis always positive. So fC1 Fdi = fCl F-Tds>0.
(b) Along the circle Cy, the field vectors are all pointing in the clockwise direction, i.e.,
opposite the direction of the path. So F-T < 0, and therefore sz F.di = fc2 F.Tds < 0.

16.2 #22: x =t, y =sint, z = cost, so dx = dt, dy = costdt, dz = —sintdt. Hence
fcﬁ-df': Jozde+ydy —xdz = [ costdt +sintcostdt — t(—sint) dt.
Integration by parts yields: [tsintdt = —tcost — [1(—cost)dt = —tcost + sint.
So fcﬁ-df': Jo (cost +sintcost + tsint) dt = [sint +  sin®t — tcost + sint]; = .
16.2 # 32: (a) We parametrize the circle C' by: x = 2cost, y = 2sint, 0 < t < 27. So
dxr = —2sintdt, dy = 2costdt, and
Jo F.di = Joa?de +aydy = f02”(2 cos t)2 (—2sint) dt + (4costsint) (2cost) dt

= 0 "(—8cos?tsint + 8cos? tsint) dt = 27TOdt:O.
(b) The vector ﬁ(m, y) = 221+ 2yj = x(2i + yj) is parallel to the position vector xi + yj of

the point (z,y), so it always points in the radial direction (straight away from the origin if
x > 0, straight towards the origin if < 0). (This can be seen on a plot).

So, at every point of the circle C', the vector F (z,y) is perpendicular to the circle, hence
the field does no work on the moving particle. In other words, F'-T = 0 at any point along
C, and so fC,F-dT_": 0.

16.2 # 41: The line segment from (1,0,0) to (3,4,2) has parametric equations = = 1 + 2¢,
y=4t, z =2t for 0 <t < 1; so de = 2dt, dy = 4dt, dz = 2dt, and

[ F-di = [,(y+2)da+ (ﬂi—I—z) dy + (z+y) dz = [} (6t) 2dt + (1 +4t) 4dt + (1 + 6t) 2dt =
Jo (40t + 6) dt = [202 + 6t] , = 26.



16.3 # 3: 6%(296 —3y)=-3= %(—31’4—4];—8), and F is defined in the entire plane (open
and simply connected), so F' is conservative. So there is a function f such that Vf = F,
ie. f =22 — 3y and fy, = —3x + 4y — 8.

Integrating with respect to z, f.(z,y) = 2z — 3y implies f(z,y) = x? — 3zy + g(y) for
some function g(y); differentiating both sides of this equation with respect to y gives f, =
—3z+¢'(y). Thus we should have —3z+ ¢'(y) = —3x +4y — 8, or ¢'(y) = 4y — 8. Therefore
g(y) = 2y? — 8y + ¢ where c is a constant. Hence f(z,y) = 2% — 32y + 2% — S8y + .

16.3 # 8: %(my cos zy +sinzy) = x cos vy — x2ysin xy +  cos Ty = 2x cos vy — 2y sin zy,
while a%(a:2 cos ry) = 2z coszy — x>y sinzy. So F' is defined everywhere and satisfies P, =

Q., and hence it is conservative.

We now look for f such that Vf = F, ie. fr = mycoszy + sinxy and f, = 2% cosxy.
Integrating with respect to y, f, = x%coszy implies that f(z,y) = xsinzy + g(z) for
some function g(x). Differentiating this equation with respect to z, we get f, = sinzy +
x?cosxy + ¢'(x); since we want f, = xycosxy + sinzy, we deduce that ¢/(z) = 0, i.e.
g(x) = cis a constant. Thus f(z,y) = zsinzy + c.

(The usual method, namely first integrating f, = P with respect to = to find f up to a
function of y, and then differentiating with respect to y to find that function, would also
work just fine. However in this example it is slightly easier to integrate () with respect to

y than to integrate P with respect to x.)

16.3 #15: a) fu(z,y,2) = yz implies f(z,y,2) = zyz + g(y, 2), and so fy(z,y,2) =
xz + gy(y,2). But fy(x,y,2) = 2z, so gy(y,z) = 0, and (integrating with respect to y)
g(y,z) = h(z). Thus f(x,y,2) = xyz + h(z), and f,(x,y,2) = zy + h'(2). But f.(z,y,z2) =
xy+ 22, s0 h'(z) = 2z, and hence h(z) = 2% +c. Thus (taking ¢ = 0), one potential function
is f(z,y,2) = 2yz + 22

b) By the fundamental theorem, fcﬁ -dr'= f(4,6,3) — f(1,0,—2) =81 —4=177.

16.3 # 19: Note that F= (tany, x sec? y) is only defined when y # 5 +nm. Therefore the
path C from (1,0) to (2,7/4) can’t be arbitrary, it must lie in the region —§ <y < 7.

With this understood, we note that %(tany) = sec’y = 8%(:1: sec?y), and the region

- o . .
—5 <y < 5 is simply connected, so F'is conservative.

Using the usual method, we find that f(x,y) = xtany is a potential function fo F.
Therefore [, tany dx + zsec® y dy = fcﬁ dr = f(2,7/4) — f(1,0) =2 —-0=2.

16.3 # 21: %(2y3/2) =3yl/2 = a%(Sx\/gj), and the region y > 0 where F is continuously
differentiable is simply connected. Thus F'is conservative and can be written as V f for some
potential function f(z,y). The equation f, = 2y*/? implies that f(z,y) = 2zy3/? + g(y).
Hence f, = 3zy"/? + ¢'(y) = 3zy"/?, and so ¢'(y) = 0, i.e. g is constant. Thus f(z,y) =
2213/2 is a potential function. Therefore, given any path C from (1,1) to (2,4) (in the upper
half plane y > 0), [, F - di = f(2,4) — f(1,1) = 32 — 2 = 30.

16.3 # 23: We know that if the vector field (call it F ) is conservative, then around any
closed path C' we must have fC F.dF = 0. However, take C' to be a circle centered at the
origin, oriented counterclockwise. Then all of the field vectors along C' point forward (have
a positive tangential component), so fo F - di > 0. Therefore the field is not conservative.



16.4 # 2: a) Let C; = bottom edge of the rectangle from (0,0) to (3,0), Co = right edge
from (3,0) to (3,1), C3 = top from (3,1) to (0,1), Cs = left edge from (0,1) back to (0,0).
Ci:x=t,y=0,for 0<t<3,s0de=dtdy=0,and [, :nyda:—i—xQdy:ngOdt:O.
Cyz=3,y=t for0<t <1, s0dr=0,dy=dt and fCQ:Uydm+x2dy:f019dt:9.
Cy:z=3—-t,y=1,0<t<3;s0der=—dt,dy=0, and

Joywyde +a?dy = [ —(3 - t)dt = [-3t + 37]3 = ~9/2.
Cy: the integrand vanishes because x = 0, so fc4 zydr + 2% dy = 0.
Adding these together, §. zydx + 22dy=0+9— % +0=9/2.

b) by Green’s theorem, % zyde+z? dy = // g(a)Z) — 2(:L"y) dA = // x dA, where
c R \Oz Ay R

R is the rectangle 0 < 2 <3,0<y < 1. So ffodA = f03f01xdyd:v = fogxdx =9/2.
16.4 # 4: a) Let C be the segment from (0,1) to (0,0), Cy the segment from (0,0) to
(1,0), and C3 the parabola y = 1 — 22 from (1,0) to (0,1).
Ci: 2=0,y=1—-tfor 0 <t <1, s0der =0 and dy = —dt; hence fclxdm+ydy =
Jo ~(=tyde = [=t+ 388, = =3,
Cy. x=t,y=0for 0 <t <1, sodx=dtand dy =0. Hence fCQ:de+ydy: foltdt: %
Cs:z=1-t, y—l—(l—t) =2t —t2 for 0 <t < 1; sodz——dtanddy:(2—2t)dt
Hence [, wdz +ydy = [y —(1—t)dt + (2t — 13)(2 — 2t)dt = [} (2% — 6t + bt — 1) dt =
5

[2 — 27 + 517 — ]0 =0.

AR 1,1
So o F'-dir= [o, + [o, + Jo, = —3+ 3 +0=0.
(Note: switching the orientations of C; and C3 would have given slightly simpler parametriza-
tions; however one then needs to be careful about signs when adding up the three portions.)

fcxdx—l—ydy—// <3x ay( )) dA = [[,0dA = 0.

16.4 #9: [y’ de — 2’ dy = // (;;(_xs) - c‘z(yg)) dA = [[p(=32° = 3y?) dA, where
R

R is the disk 22 + 2% < 4.

So [[p(—3x* —3y*)dA = f fo —3r?rdrdf =2m- |- 47'4](2) — —24r.

16.4 # 12: C is clockwise; its edges are parts of the lines y = 3z, x = 2, and y = 0
respectively, so C' encloses the region R defined by the inequalities 0 <y < 3x, 0 < x < 2.

Therefore 7{ F.dr= —7{ // ( (2% + 2ysinz) — 0 —(y? COSl‘)) dA =
c Ay
3z 2 9
—// 2di:—/ / 2xdyd:v:—/ 6:62d:c:—[2x3]0:—16.
R o Jo 0

16.4 #19: Let C; be the arch of cycloid from (0,0) to (2m,0), which corresponds to
0 <t < 2m, and let Cy be the segment from (27,0) to (0,0) (so Cy is given by x = 27w — t,
y=0for0 <t <2m). Then C = C1+C4 is traversed clockwise, so —C' is oriented positively
and encloses the area under one arch of the cycloid. By formula (5) on p. 1058,

A=9¢ —yde= [, yde+ [, yde= OZW(l —cost)(1 — cost) dt + fo% 0(—dt) =

= 02”(1_2 cost+cos?t) dt = 027r(1—2 cos t—l—#) dt = [t — 2sint + %t + isin 2t| 5” = 3.



16.4 # 25: Let D be the region enclosed by C'. Then by Green’s theorem,

5 : p// 1 ’0// 2 // :
—74 dr = —= — dA == 3y dA = dA = 1,.
3 )" 3 Day(y) 3J)p™ P
Similarly, gjix?’ dy = g//Daax(x?’)dA = g//D&rQ dA ——/[4m2pdA =1,

F.df = / (z%y + 1y?’) dr = /I2 (a:2f(:z:) + 1f(:c)3> dr, and
C T

Problem 1: /
3 . 3

C

These two integrals are therefore equal.

Problem 2. a) For 0(z,y) = tan™!(y/z):
00 1 —y Y 00 1 1 x -
o TR i My T Tr el 2 Y
b) Because 0(z,y) = tan~(y/x) is well-defined in the right half-plane (z > 0) and F = V0,
the fundamental theorem for line integrals implies fC F-dr=0(z2,y2) —0(x1,y1) = 02— 6.

C)/ ﬁ-dF:/ —yd2x+3;dy:/ (-sm@)(—:mﬁ)'-1-200590050d0:/ g —
Cy c, Tty 0 cos? § + sin” 0 0

- 0
Similarly, F.dr= / do = —/ df = —m.
Co 0

—T

(Or geometrically: length(Cy) = length(Cs) = m, F-T=1onCy; F-T=-10n Cy)

d) F'is defined everywhere except at the origin, but is not conservative over its entire domain
of definition. Indeed, the two line integrals computed in (c¢) both run from (1,0) to (—1,0)
but they are not equal, so path-independence fails. On the other hand, F is conservative
over the half-plane x > 0, where F = V6 and the fundamental theorem of calculus gives a
formula for the line integral involving only the values of 6 at the end points (as seen in (b)).

e) or - 9 —Y - — (2% +y?) + 2y = y —a while
Oy Oy \z%+y? (22 +y?)? (22 +y?)?’
oQ 0 T (2P 4 y?) — 227 _
8968:1:<x2+y2) (249422 S0 By = Q.

f) By Green’s theorem, if C' is a simple closed curve enclosing a region R of the xy-plane

which does not contain the origin, then / F.dr= // a—Q — a—P dA = // 0dA = 0.
c r \ Oz dy R

The argument does not apply when R contains the origin: in that case F is not continuously
differentiable everywhere in R, and Green’s theorem does not apply. For instance, if C' is
the unit circle oriented counterclockwise, then using (c), [ F.di = e, F-di— e, F.di =
m — (—m) =27 # 0. (This also holds for more general curves, see Example 5 on p. 1059).

Note: the fact that P, = @, does not imply that F is the gradient of a well-defined potential
function everywhere! This would only be true if F were defined over the entire plane (or
more generally, a simply connected region). In fact, we can find a potential function for F
over smaller regions such as the right half-plane z > 0 (namely, the polar angle #). However,



if we consider the entire plane with just the origin removed, the polar angle coordinate 6 is
not well-defined as a single-valued differentiable function: its value “jumps” by 27 as we go
around the origin. This is what causes conservativeness to fail.

Problem 3: a) If F = "(zi+ yj) = Pi+ Qj then

a(yr™ O(zr™
Qz = (") = nyr"_lf, while P, = (zr") = n:m“”_ly. So Py = Q.
61’ T 8y r
(Recall r = /a2 + y2 gives r, = L f, and similarly r,, = g.)
/12 + y2 r r
b) If g = g(r), then g, = ¢'(r) T and gy =4 (r) Y (by the chain rule).
r r
/
So Vg = g(r) (r1+yj). We must find g such that ¢'(r)/r = r", ie. ¢'(r) = r"*L.
r
1
Two cases: n # —2: g(r) = P2, n=—2: g(r) =In(r).

n+2



