
MIRROR SYMMETRY: LECTURE 8

DENIS AUROUX
NOTES BY KARTIK VENKATRAM

Last time: 18.06 Linear Algebra.
Today: 18.02 Multivariable Calculus. / 18.04 Complex Variables
Thursday: 18.03 Differential Equations

1. Mirror Symmetry Conjecture

Last time, we said that if we have a large complex structure limit (LCSL)
degeneration, then we have a special basis (α0, . . . , αS, β0, . . . , βS) of H3(X,Z)
s.t. β0 is invariant under monodromy and β1, . . . , βs are mapped by monodromy

by βi
φj→ βi −mjiβ0 for mji ∈ Z. We decided that we would normalize so that∫

β0
Ω = 1, and let wi =

∫
βi

Ω (wi
φj→ wi −mji) and qi = exp(2πiwi) (which we

called canonical coordinates).

Example. Given a family of tori T 2 with monodromy

(
1 1
0 1

)
,
∫
a

Ω = 1,
∫
b
Ω =

τ (precisely what you get identifying the elliptic curve with R2/Z ⊕ τZ), q =
exp(2πiτ).

If ei is a basis of H2(X̌,Z), ei in the Kähler cone, we obtain coordinates on the
complexified Kähler moduli space: if [B + iω] =

∑
ťiei, let q̌i = exp(2πiťi), ťi =∫

e∗i
B + iω.

Example. Returning to our example, q̌ = exp(2πi
∫
T 2 B + iω).

Conjecture 1 (Mirror Symmetry). Let f : X → (D∗)S be a family of Calabi-
Yau 3-folds with LCSL at 0. Then ∃ a Calabi-Yau 3-fold X̌ and choices of
bases α0, . . . , αS, β0, . . . , βS of H3(X,Z), e1, . . . , eS of H2(X,Z) s.t. under the
map m : (D∗)S → MKah(X̌), (q1, . . . , qS) 7→ (q̌i, . . . , q̌S), q̌i = qi, we have a
coincidence of Yukawa couplings

〈 ∂
∂qi

,
∂

∂qj
,
∂

∂qk
〉Xp = 〈 ∂

∂q̌i
,
∂

∂q̌j
,
∂

∂q̌k
〉X̌m(p)(1)

where the LHS corresponds to
∫
X

Ω ∧ ( ∂
∂qi

∂
∂qj

∂
∂qk

Ω) and the RHS to a (1, 1)-

coupling, i.e. the Gromov-Witten invariants 〈ei, ej, ek〉X̌0,β (since 2πiq̌i
∂
∂q̌i

= ∂
∂ťi

=

ei ∈ H1,1 etc.).
1
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Remark. A more grown-up version of mirror symmetry would give you an equiv-
alence between H∗(X,

∧
TX) with its usual product structure and H∗(X̌,C)

with the quantum twisted product structure as Frobenius algebras (making this
concrete would require more work).

1.1. Application to the Quintic (See Gross-Huybrechts-Joyce, after
Candelas-de la Ossa-Greene-Parkes). Last time, we defined

Xψ = {(x0 : · · · : x4) ∈ P4 | fψ =
4∑
0

x5
i − 5ψx0x1x2x3x4 = 0}(2)

with

G = {(a0, . . . , a4) ∈ (Z/5Z)5 |
∑

ai = 0}/{(a, a, a, a, a)} ∼= (Z/5Z)3(3)

acting by diagonal multiplication xi 7→ xiξ
ai , ξ = e2πi/5. We obtained a crepant

resolution X̌ψ of Xψ/G (its singularities are Cij = {xi = xj = 0}/G), which has
h1,1 = 101, h2,1 = 1, and h3 = 4. The map (x0 : . . . : x4) 7→ (ξax0 : x1 : . . . : x4)
gives Xψ

∼= Xξφ, so let z = (5ξ)−5. Then z → 0, i.e. ψ → ∞, gives a toric
degeneration of Xψ to {x0x1x2x3x4 = 0}. This is maximally unipotent, as the
monodromy on H3 is given by 

1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1

(4)

so it is LCSL. We want to compute the periods of the holomorphic volume form
on X̌ψ. There is a volume form Ω̌ψ on X̌ψ induced by the G-invariant volume
form Ωψ on Xψ by pullback via π : X̌ψ → Xψ/G. We want to find a 3-cycle
β0 ∈ H3(X̌ψ) that survives the degeneration. For z = 0, {

∏
xi = 0} contains

tori in component P3’s, e.g.

T0 = {(x0 : · · · : x4) |x4 = 1, |x0| = |x1| = |x2| = δ, x3 = 0}(5)

We want to extend it to z 6= 0. Take x4 = 1, |x0| = |x1| = |x2| = δ: then x3

should be given by the root of fψ which tends to 0 as ψ →∞. We need to show
that there is only one such value (giving us a simple degeneration rather than a
branched covering). Explicitly, set x3 = (ψx0x1x2)1/4y:

fψ = 0⇔ x5
0 + x5

1 + x5
2 + (ψx0x1x2)5/4y5 + 1− 5(ψx0x1x2)5/4y(6)

i.e.

y =
y5

5
+
x5

0 + x5
1 + x5

2 + 1

5(ψx0x1x2)5/4
(7)
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One root is y ∼ ψ−5/4 → 0, with the other four roots converging to 4
√

5. So
for x3, we have one root ∼ ψ−1, and 4 roots ∼ ψ1/4. Now, G acts freely on
T0 ⊂ Xψ, and T0/G is contained in the smooth part of Xψ/G and gives a torus
Ť0 ⊂ X̌ψ, β0 = [Ť0]. Because T0, Ť0 still make sense at z = 0, their class is
preserved by the monodromy.

Next, we want to get the required holomorphic volume form. In the affine
subset x4 = 1, let Ωψ be the 3-form on Xψ characterized uniquely by

Ωψ ∧ dfψ = 5ψdx0 ∧ dx1 ∧ dx2 ∧ dx3(8)

at each point of Xψ. At a point where
∂fψ
∂x3
6= 0, (x0, x1, x2) are local coordinates,

and

Ωψ =
5ψdx0 ∧ dx1 ∧ dx2

∂fψ
∂x3

=
5ψdx0 ∧ dx1 ∧ dx2

5x4
3 − 5ψx0x1x2

(9)

Defining it in terms of other coordinates, we get the same formula on restrictions.
We need to extend this to where x4 = 0. We could rewrite this using homogeneous
coordinates, but note that the corresponding divisor is just the canonical divisor:
since Xψ is Calabi-Yau, this divisor has no zeroes or poles at x4 = 0. Since Ωψ

is G-invariant, it induces a 3-form on (Xψ/G)nonsing and lifts and extends to Ω̌ψ

on X̌ψ with ∫
Ť0

Ω̌ψ =
1

53

∫
T0

Ωψ(10)

Tool: we have the residue formula

1

2πi

∫
S1

f(z)dz =
∑

zi poles of f∈D2

resf (zi)(11)

So let T 4 = {|x0| = |x1| = |x2| = |x3| = δ, x4 = 1}. Then

1

2πi

∫
T 4

5ψdx0dx1dx2dx3

fψ
=

∫
T 3
x0x1x2

(
1

2πi

∫
S1

5ψdx3

fψ

)
dx0dx1dx2(12)

where fψ has a unique pole at x3. The residue is precisely 5ψ
(∂f/∂x3)

, giving us

=

∫
T0

5ψ

(∂f/∂x3)
dx0dx1dx2 =

∫
T0

Ωψ(13)
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So ∫
T0

Ωψ =
1

2πi

∫
T 4

dx0dx1dx2dx3

(5ψ)−1(x5
0 + x5

1 + x5
2 + x5

3 + 1)− x0x1x2x3

= − 1

2πi

∫
T 4

dx0dx1dx2dx3

x0x1x2x3

(
1− (5ψ)−1x

5
0 + x5

1 + x5
2 + x5

3 + 1

x0x1x2x3

)−1

= − 1

2πi

∞∑
n=0

∫
T 4

dx0dx1dx2dx3

x0x1x2x3

· (x5
0 + x5

1 + x5
2 + x5

3 + 1)m

(5ψ)m(x0x1x2x3)m

(14)

We want to find the coefficient of 1 in the latter term. We obviously need
m = 5n (the numerator only has powers which are a multiple of 5), and want

the coefficient of x5n
0 x

5n
1 x

5n
2 x

5n
3 in (x5

0 + x5
1 + x5

2 + x5
3 + 1)5n, which is (5n)!

(n!)5
. We

finally obtain ∫
T0

Ωψ = −(2πi)3

∞∑
n=0

(5n)!

(n!)5(5ψ)5n
(15)

In terms of z = (5ψ)−5, the period is proportional to

φ0(z) =
∞∑
n=0

(5n)!

(n!)5
zn(16)

Set an = (5n)!
(n!)5

. Then

(n+ 1)4an+1 =
(5n+ 5)!

(n!)5(n+ 1)
= 5(5n+ 4)(5n+ 3)(5n+ 2)(5n+ 1)an(17)

Setting Θ = z d
dz

: Θ(
∑
cnz

n) =
∑
ncnz

n, giving us the Picard-Fuchs equation

Θ4φ0 = 5z(5Θ + 1)(5Θ + 2)(5Θ + 3)(5Θ + 4)φ0(18)

Next time, we will show that there is a unique regular solution, and a unique
solution with logarithmic poles to our original problem.


