
MIRROR SYMMETRY: LECTURE 7

DENIS AUROUX
NOTES BY KARTIK VENKATRAM

1. Degenerations and Monodromy (contd.)

Last time, we considered families X π→ D2 where for t 6= 0, Xt
∼= X (with

varying J) and for t = 0, X0 is typically singular. We saw that monodromy
around t = 0 induces φ∗ ∈ Aut(Hn(Xt0 ,Z)).

Theorem 1. All eigenvalues of φ∗ are roots of unity: thus ∃N, k s.t. (φN∗ −
id )k = 0. Moreover, k ≤ n+ 1.

Replacing φ by φN (the “base change” X ′t = XtN ), we can assume that φ∗ is
unipotent, i.e. (φ∗ − id)k = 0. It is maximally unipotent if k = n + 1. We can
further define a weight filtration associated to a unipotent φ∗ coming from the
Jordan block decomposition of φ∗: letting

N = log(φ∗) = (φ∗ − id)− (φ∗ − id)2

2
+ · · ·+ (−1)n+1 (φ∗ − id)n

n
(1)

act on V = Hn(X,Q), we obtain a filtration 0 ⊆ W0 ⊆ · · · ⊆ W2n = V s.t.

N(Wi) ⊂ Wi−2 and Nk : Wn+k/Wn+k−1
∼→ Wn−k/Wn−k−1. We construct this as

follows:

• First, Nn : W2n/W2n−1
∼→ W0 so W0 = im (Nn),W2n−1 = Ker (Nn).

• Then let V ′ = W2n−1/W0, so N induces N ′ ∈ End(V ′) (since W2n−1 =
Ker Nn ⊇ im N and W0 = im (Nn) ⊆ Ker N) with (N ′)n = 0. By
induction, we obtain

0 ⊆ W ′
0
∼= W1/W0 ⊆ · · · ⊆ W ′

2n−2
∼= W2n−1/W0 = V ′(2)

and

W2n−2 = {v |Nn−1(v) ∈ W0 = im Nn} ⊇ im N(3)

so W2n
N→ W2n−2. Finally, W1 = {Nn−1(v) |Nn(v) = 0} ⊂ Ker N so

W1
N→ 0, and we obtain Wk → Wk−2 by induction.

Example. For the elliptic curves from last time, with φ =

(
1 1
0 1

)
= exp

(
0 1
0 0

)
,

we have 0 ⊆ W0 ⊆ W1 ⊆ W2 = H1(C,Q) ∼= Q2, with W0 = W1 = im N =
Ker N = Span(a) being the direction invariant by monodromy.
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Note that if N is the (n+ 1)× (n+ 1) Jordan block with 0’s on the diagonal and
1s above (with columns ei), then W0 = Span(e1),W2n−1 = Span(e1 · · · en), and
we can reduce to the equivalent (n − 1) × (n − 1) Jordan block and repead the
process with W1 = W0,W2n−2 = W2n−1, · · · ,W2k−2 = W2k−1 = Span(e1 · · · ek).
There is a similar story if N is a sum of such Jordan blocks.

Remark. In fact, the interplay of weight filtration with Hodge filtration

F p = Hn,0 ⊕ · · · ⊕Hp,n−p (Hn = F 0 ⊇ F 1 ⊇ · · · , F p/F p+1 ∼= Hp,n−p)(4)

(with Griffiths transversality giving ∇F p ⊆ F p−1 under deformations) gives a
notion of “mixed Hodge structure”. By [Schmid], there exists a limiting Hodge
filtration as t→ 0, but we won’t say any more about those.

Now consider a multidimensional family X → (D2)s smooth over (D∗)S where
D∗ = D2 r{0}. Then we have s monodromies φ1, . . . , φs ∈ AutHn(X), [φi, φj] =
0 (since π1((D∗)s) = Zs is abelian), so Ni = log φi also commute.

Theorem 2 (Cattani-Kaplan). All the elements of the form
∑
λiNi, λi > 0 have

the same monodromy weight filtration.

We want to consider a “universal family” of Calabi-Yau manifolds near a “deep-
est corner”, caled a “large complex structure limit point” in the moduli space.

Definition 1 (Morrison). Given a family of Calabi-Yau n-folds X → (D∗)S ⊂
(D2)s, s = hn−1,1(X), s.t. the Kodaira-Spencer map T∗(D

∗)s → H1(TXt) is an
isomorphism at every point of (D∗)s, we say that 0 ∈ (D2)s is a large complex
structure limit (LCSL) point if

(1) The monodromies φj around each factor are all unipotent.
(2) Let Nj = log φj, N =

∑
λjNj for λj > 0 arbitrary. Then the weight fil-

tration 0 ⊆ W0 ⊆ W1 ⊆ · · · ⊆ W2n = Hn(X,Q) has dim W0 = dim W1 =
1, dim W2 = dim W3 = s+ 1.

(3) Let α∗0 be the generator of W0, α∗1, · · · , α∗s the rest of a basis for W2. Then
∃mjk ∈ Q s.t. Nj(α

∗
k) = mjkα

∗
0, i.e. φj(α

∗
k) = α∗k + mjkα

∗
0. We further

require that (mjk) is an invertible matrix.

This essentially says that the family is locally a “full deformation”, that we
single out a one-dimensional subspace Span(α∨0 ) of Hn(X) preserved by the mon-
odromy, and that, for each factor D2, we get a class α̃∗j s.t. φj(α̃

∗
j ) = α̃∗j + α∗0

and α̃∗j is invariant under the other φi.

Remark. If hn−1,1 = s = 1, then this is equivalent to the statement that the
monodromy around zero is maximally unipotent. For instance, the family of
elliptic curves seen last time is an LCSL point.
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Now, for a family of Calabi-Yau 3-folds, we have by definition

0 ⊂ W0 = W1︸ ︷︷ ︸
dim =1

⊂ W2 = W3︸ ︷︷ ︸
dim =s+1=h2,1+1

⊂ W4 = W5︸ ︷︷ ︸
dim =2s+1

⊂ W6 = H3(X; Q)︸ ︷︷ ︸
dim =2s+2

(5)

where we use Nk : Wn+k/Wn+k−1
∼→ Wn−k/Wn−k−1 to get the dimensions of

W3,W4,W5. Now, H3(X) carries an intersection pairing preserved by φ∗, so
N = log φ∗ is in the Lie algebra, i.e. (x,Ny) + (Nx, y) = 0.

Lemma 1. W4−2i = W⊥
2i .

Proof. Since W0 = im N3,W4 = W5 = Ker N3, (x,N3y) = −(N3x, y) = 0 for
x ∈ W4, N

3y ∈ W0 and the dimensions match. Furthermore, N(W4) = W2 (it

is onto since N : W4/W3
∼→ W2/W1 and W0 = im N3 = N(im N2)): thus,

for x,Ny ∈ W2, (x,Ny) = −(Nx, y) = 0 (since W0 ⊥ W4) and the dimensions
match. �

Finally, passing to H3(X,Q) by Poincaré duality, let Si = PD(Wi) (or equiv-
alently, viewing H3 = (H3)∗, Si is the annihilator of W4−2i).

Proposition 1. Given an LCSL point in the moduli space of Calabi-Yau 3 folds
with h2,1 = s, ∃ a Z-basis (α0, . . . , αS, β0, . . . , βS) of H3(X,Z) s.t. β0 ∈ S0,
β1, . . . , βs ∈ S2, α1, . . . , αs ∈ S4, α0 ∈ S6 = H3(X) s.t. (αi, αj) = (βi, βj) =
0, (αi, βj) = δij.

Proof. Let β0 be the Z generator of S0 (unique up to sign), which we extend to a
Z-basis βi of S2. By the lemma, S2 is Lagrangian w.r.t. the intersection product,
so (βi, βj) = 0. Let β∗i be the dual basis of S∗2 = H3/W2, i.e. β∗i βj = δij, and let
αi ∈ H3 be the Poincaré dual of some lift of β∗i to H3. Then (αi, βj) = δij. We
can make (αi, αj) = 0 inductively by replacing αi with αi−

∑
(αi, αj)βj. Finally,

α1, . . . , αs ∈ S4 since (αi, β0) = 0 and S4 = S⊥0 . �

We now define canonical coordinates on our moduli space. Given X → (D∗)s

LCSL, let Ω(t1, . . . , ts) be the holomorphic volume form on X(t1,...,ts), normalized
so that

∫
β0

Ω(t1, . . . , ts) = 1. Set wi(t1, . . . , ts) =
∫
βi

Ω(t1, . . . , ts). This is not

quite a coordinate because of monodromy: as tj goes around the origin, βi 7→
φj(βi) = βi−mjiβ0 for some mji ∈ Z (an integer since these are integer classes).
In fact, these are the mji from the definition of LCSL. Instead, we set qi =
exp(2πiwi): these are well-defined functions on (D∗)s, and are canonical once
the basis {βi} is chosen. Note that qi is a zero of order −mji (i.e. a pole of order
mji) along tj = 0; if the mji’s are nonpositive, then we get coordinates on (D2)s,
and can choose a basis of S2 appropriately.

Example. For our elliptic curves from last time, q = exp(2πiτ(t)), τ(t) =
∫
b
Ω

where
∫
a

Ω = 1.
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If ei is a basis of H2(X̌,Z), ei in the Kähler cone, we obtain coordinates on the
complexified Kähler moduli space: if [B + iω] =

∑
ťiei, let q̌i = exp(2πiťi), ťi =∫

e∗i
B + iω.

Example. In example above, we have q̌ = exp(2πi
∫
T 2 B + iω).

Conjecture 1 (Mirror Symmetry). Let f : X → (D∗)S be a family of Calabi-
Yau 3-folds with LCSL at 0. Then ∃ a Calabi-Yau 3-fold X̌ and choices of
bases α0, . . . , αS, β0, . . . , βS of H3(X,Z), e1, . . . , eS of H2(X,Z) s.t. under the
map m : (D∗)S → MKah(X̌), (q1, . . . , qS) 7→ (q̌i, . . . , q̌S), q̌i = qi, we have a
coincidence of Yukawa couplings

〈 ∂
∂qi

,
∂

∂qj
,
∂

∂qk
〉Xp = 〈 ∂

∂q̌i
,
∂

∂q̌j
,
∂

∂q̌k
〉X̌m(p)(6)

where the LHS corresponds to
∫
X

Ω ∧ ( ∂
∂qi

∂
∂qj

∂
∂qk

Ω) and the RHS to a (1, 1)-

coupling, i.e. the Gromov-Witten invariants 〈ei, ej, ek〉X̌0,β (since 2πiq̌i
∂
∂q̌i

= ∂
∂ťi

=

ei ∈ H1,1).


