MIRROR SYMMETRY: LECTURE 5

DENIS AUROUX NOTES BY KARTIK VENKATRAM

1. Gromov-Witten Invariants

Recall that if $(X, \underline{\omega})$ is a symplectic manifold, J an almost-complex structure, $\beta \in H_2(X, \mathbb{Z})$, $\overline{\mathcal{M}}_{g,k}(X, J, \beta)$ is the set of (possibly nodal) J-holomorphic maps to X of genus g representing class β with k marked points up to equivalence. This is not a nice moduli space, but does have a fundamental class $[\overline{\mathcal{M}}_{g,k}(X,J,\beta)] \in H_{2d}(\overline{\mathcal{M}}_{g,k}(X,J,\beta),\mathbb{Q})$, where $2d = \langle c_1(TX),\beta \rangle + 2(n-3)(1-g)+2k$. We further have an evaluation map $\mathrm{ev} = (\mathrm{ev}_1,\ldots,\mathrm{ev}_n): \overline{\mathcal{M}}_{g,k}(X,J,\beta) \to X^k, (\Sigma,z_1,\ldots,z_k,u) \mapsto (u(z_1),\ldots,u(z_k))$. Then the Gromov-Witten invariants are defined for $\alpha_1,\ldots,\alpha_k \in H^*(X), \sum \deg \alpha_i = 2d$ by

(1)
$$\langle \alpha_1, \dots, \alpha_k \rangle_{g,\beta} = \int_{[\overline{M}_{g,k}(X,J,\beta)]} \operatorname{ev}_1^* \alpha_1 \wedge \dots \wedge \operatorname{ev}_k^* \alpha_k \in \mathbb{Q}$$

Or dually, for $\alpha_i = PD(C_i)$, $\#(\text{ev}_*[\overline{M}_{g,k}(X,J,\beta)] \cap (C_1 \times \cdots \times C_k)) \in \mathbb{Q}$. For a Calabi-Yau 3-fold, we're interested in g = 0, k = 3, so $\Sigma = (S^2, \{0, 1, \infty\})$. For deg $\alpha_i = 2, \alpha_i = PD(C_i)$, C_i cycles transverse to the evaluation map, we have

(2)
$$\langle \alpha_1, \alpha_2, \alpha_3 \rangle_{0,\beta} = \#\{u : S^2 \to X \text{ } J\text{-hol. of class } \beta, \\ u(0) \in C_1, u(1) \in C_2, u(\infty) \in C_3\} / \sim$$

Reparameterization acts transitively on triples of points, so

(3)

$$\langle \alpha_1, \alpha_2, \alpha_3 \rangle_{0,\beta} = (C_1 \cdot \beta)(C_2 \cdot \beta)(C_3 \cdot \beta) \#\{u : S^2 \to X \text{ } J\text{-hol. of class } \beta\} / \sim$$

$$= (\int_{\beta} \alpha_1)(\int_{\beta} \alpha_2)(\int_{\beta} \alpha_3) \cdot \#[\overline{\mathcal{M}}_{0,0}(X, J, \beta)]$$

We denote by $N_{\beta} \in \mathbb{Q}$ the latter number $\#[\overline{\mathcal{M}}_{0,0}(X,J,\beta)]$. This works when $\beta \neq 0$: when $\beta = 0$, we instead obtain

(4)
$$\langle \alpha_1, \alpha_2, \alpha_3 \rangle_{0,0} = \int_X \alpha_1 \wedge \alpha_2 \wedge \alpha_3$$

1.1. Yukawa coupling. Physicists write this as

(5)
$$\langle \alpha_1, \alpha_2, \alpha_3 \rangle = \int_X \alpha_1 \wedge \alpha_2 \wedge \alpha_3 + \sum_{0 \neq \beta \in H_2(X, \mathbb{Z})} \langle \alpha_1, \alpha_2, \alpha_3 \rangle_{0,\beta} e^{2\pi i \int_\beta B + i\omega}$$

We want to ignore issues of convergence, and so treat this is a formal power series

(6)
$$\langle \alpha_1, \alpha_2, \alpha_3 \rangle = \int_X \alpha_1 \wedge \alpha_2 \wedge \alpha_3 + \sum_{\beta \neq 0} \langle \alpha_1, \alpha_2, \alpha_3 \rangle_{0,\beta} q^{\beta} \in \Lambda$$

where Λ is the completion of the group ring $\mathbb{Q}[H_2(X,\mathbb{Z})] = \{\sum a_i q^{\beta_i} | a_i \in \mathbb{Q}, \beta_i \in H_2\}$. Specifically, we allow infinite sums provided that $\int_{\beta_i} \omega \to +\infty$.

1.2. Quantum cohomology. This is new product structure on $H^*(X)$ deformed by this coupling. Namely, pick a basis (η_i) of $H^*(X)$, (η^i) the dual basis, i.e. $\int_X \eta_i \wedge \eta^j = \delta_{ij}$. Set

(7)
$$a_1 * a_2 = \sum_{i} \langle \alpha_1, \alpha_2, \eta^i \rangle \eta_i = \alpha_1 \wedge \alpha_2 + \sum_{\beta \neq 0} \langle \alpha_1, \alpha_2, \eta^i \rangle_{0,\beta} q^\beta \eta_i$$

Definition 1. The quantum cohomology of X is $QH^*(X) = (H^*(X;\Lambda),*)$.

Theorem 1. This is an associative algebra.

The proof of this relies on understanding the relationship between 4 point GW invariants and various 3 point ones.

1.3. **Kähler moduli.** We can view q as the coordinates on a Kähler moduli space: for (X, J)-complex, the Kähler cone $\mathcal{K}(X, J) = \{[\omega] | \omega \text{ Kahler}\} \subset H^{1,1}(X) \cap H^2(X, \mathbb{R}) \text{ is a open, convex cone. Its real dimension is } h^{1,1}(X), \text{ and we can make it a complex manifold by adding the "B-field".$

Definition 2. Let (X, J) be a Calabi-Yau 3-fold with $h^{1,0} = 0$ (so $h^{2,0} = 0$ and $H^{1,1} = H^2$). Then the complexified Kähler moduli space is

(8)
$$\mathcal{M}_{Kah} = (H^2(X, \mathbb{R}) + i\mathcal{K}(X, J))/H^2(X, \mathbb{Z})$$
$$= \{ [B + i\omega], \omega \ Kahler \}/H^2(X, \mathbb{Z})$$

Choose a basis (e_i) of $H^2(X,\mathbb{Z})$, $e_1,\ldots,e_m\in\overline{\mathcal{K}(X,J)}$ (which exists by openness). We can write $[B+i\omega]=\sum t_ie_i,t_i\in\mathbb{C}/\mathbb{Z}$, so we have coordinates on \mathcal{M}_{Kah} given by $q_i=\exp(2\pi it_i)$. Thus, \mathcal{M}_{Kah} is an open subset of $(\mathbb{C}^*)^m$ which contains $(\mathbb{D}^*)^m$, where $\mathbb{D}^*=\{q|0<|q|<1\}$.

We now can associate q^{β} to $q_1^{d_1} \cdots q_m^{d_m}$, where $d_i = \int_{\beta} e_i$ for $e_i \geq 0$ integers (it is an integer cohomology class integrated against an integer homology class): explicitly, $q_1^{d_1} \cdots q_m^{d_m} = \exp(2\pi i \sum d_i t_i) = \exp(2\pi i \int_{\beta} B + i\omega)$. We can view $\langle \alpha_1, \alpha_2, \alpha_3 \rangle$ as a power series in the q_i , though we still do not know about convergence.

1.4. Gromov-Witten invariants vs. numbers of curves. We have, for $\alpha_1, \alpha_2, \alpha_3 \in H^2(X)$,

(9)
$$\langle \alpha_1, \alpha_2, \alpha_3 \rangle = \int_X \alpha_1 \wedge \alpha_2 \wedge \alpha_3 + \sum_{\beta \neq 0} \langle \alpha_1, \alpha_2, \alpha_3 \rangle_{0,\beta} q^{\beta}$$
$$= \int_X \alpha_1 \wedge \alpha_2 \wedge \alpha_3 + \sum_{\beta \neq 0} (\int_\beta \alpha_1) (\int_\beta \alpha_2) (\int_\beta \alpha_3) N_\beta q^{\beta}$$

This is much like our formula from the first class, except the latter term had the form $n_{\beta} \frac{q^{\beta}}{1-q^{\beta}}$ and n_{β} as the number of "rational curves of class β ". The discrepancy comes from the existence of multiple covers. Let $C \subset X$ be an embedded rational curve in a Calabi-Yau 3-fold. A theorem of Grothendieck says that a holomorphic bundle over \mathbb{P}^1 splits as $\bigoplus \mathcal{O}_{\mathbb{P}^1}(d_i)$, where $\mathcal{O}(d)$ is the sheaf whose sections are homogeneous degree d holomorphic functions on \mathbb{C}^2 and $\mathcal{O}(-1)$ is the tautological bundle. Writing $NC \cong \mathcal{O}_{\mathbb{P}^1}(d_1) \oplus \mathcal{O}_{\mathbb{P}^1}(d_2)$, we obtain

(10)
$$0 = c_1(TX)[C] = c_1(NC)[C] + c_1(TC)[C] = d_1 + d_2 + 2$$

so $d_1 + d_2 = -2$. The "generic case" is $d_1 = d_2 = -1$, in which case C is automatically regular as a J-holomorphic curve. The contribution of C to the Gromov-Witten invariant $N_{[C]}$ is precisely 1. On the other hand, there is a component $\mathcal{M}(kC) \subset \mathcal{M}_{0,0}(X, J, k[C])$ consisting of k-fold covers of C. What is $\#[\mathcal{M}(kC)]$?

Theorem 2. If $NC \cong \mathcal{O}(-1) \oplus \mathcal{O}(-1)$, then the contribution of C to $N_{k[C]}$ is $\frac{1}{k^3}$.

There are various proofs, all of which are somewhat difficult. For instance, Voisin shows that \exists perturbed $\overline{\partial}$ -equations $\overline{\partial}_J u = \nu(z, u(z))$ s.t. the moduli space $\tilde{M}M_3(kC)$ (of perturbed J-holomorphic maps with 3 marked points representing k[C] and whose image lies in a neighborhood of C) is smooth and has real dimension 6. Moreover, $(\mathrm{ev}_1 \times \mathrm{ev}_2 \times \mathrm{ev}_3)_* [\tilde{\mathcal{M}}_3(kC)] = [C \times C \times C] \in H_6(X \times X \times X)$. Then the contribution of C to $\langle \alpha_1, \alpha_2, \alpha_3 \rangle_{0,k[C]}$ is

(11)
$$\int_{ev_*[\tilde{\mathcal{M}}_3]} \alpha_1 \times \alpha_2 \times \alpha_3 = \left(\int_C \alpha_1\right) \left(\int_C \alpha_2\right) \left(\int_C \alpha_3\right) = \frac{1}{k^3} \left(\int_{kC} \alpha_1\right) \left(\int_{kC} \alpha_2\right) \left(\int_{kC} \alpha_3\right)$$

We expect that (*) $N_{\beta} = \sum_{\beta=k\gamma} \frac{1}{k^3} n_{\gamma}$.

Remark. We do not know if n_{γ} is what we think it is, but we use this formula as a definition; see the Gopakumar-Vafa conjecture, which claims that $n_{\gamma} \in \mathbb{Z}$, and the theory of Donaldson-Thomas invariants and MNOP conjectures.

Assuming (*), we have

(12)
$$\sum_{\beta} (\int_{\beta} \alpha_1) (\int_{\beta} \alpha_2) (\int_{\beta} \alpha_3) N_{\beta} q^{\beta} = \sum_{k,\gamma} (\int_{k\gamma} \alpha_1) (\int_{k\gamma} \alpha_2) (\int_{k\gamma} \alpha_3) \frac{n_{\gamma}}{k^3} q^{k\gamma}$$
$$= \sum_{\gamma} (\int_{\gamma} \alpha_1) (\int_{\gamma} \alpha_2) (\int_{\gamma} \alpha_3) n_{\gamma} \sum_{k>1} k^{k\gamma}$$

Where we are headed: we correspond this pairing to

(13)
$$\langle \theta_1, \theta_2, \theta_3 \rangle = \int_X \Omega \wedge (\nabla_{\theta_1} \nabla_{\theta_2} \nabla_{\theta_3} \Omega)$$
 on $H^{2,1}(\check{X})$.