MIRROR SYMMETRY: LECTURE 11

DENIS AUROUX NOTES BY KARTIK VENKATRAM

0.1. Lagrangian Floer Homology (contd). Let (M, ω) be a symplectic manifold, L_0, L_1 compact Lagrangian submanifolds. Formally, Floer homology is Morse theory for the action functional on the path space $\mathcal{P}(L_0, L_1)$, which has as critical points the constant paths. More precisely, the actual functional is a map $A: \mathcal{P}(L_0, L_1) \to \mathbb{R}$, where $\mathcal{P}(L_0, L_1)$ is the universal cover of the path space, i.e. pairs $(\gamma, [u])$ where γ is a path between L_0 and L_1 and [u] is a homotopy between γ and some fixed base path *. Then $\mathcal{A}(\gamma, [u]) = \int u^* \omega$, and for v a vector field along γ ,

(1)
$$d\mathcal{A}(\gamma) \cdot v = \int_{[0,1]} \omega(\dot{\gamma}, v) dt = \int_{[0,1]} g(J\gamma, v) dt = \langle J\dot{\gamma}, v \rangle_{L^2}$$

The critical points are contant paths $\dot{\gamma} = 0$, and the gradient flow lines are J-holomorphic curves $\frac{\partial \gamma}{\partial s} = -J\dot{\gamma}$.

However, no one has managed to run this Morse theory rigorously. The actual setup assumes L_0, L_1 are transverse, and as before, define the Novikov ring as $\Lambda = \{ \sum a_i T^{\lambda_i} \mid \lambda_i \to \infty \}$ and the Floer complex $CF(L_0, L_1)$ as the free Λ -module $\Lambda^{|L_0\cap L_1|}$ generated by $L_0\cap L_1$. We look at $u:\mathbb{R}\times [0,1]\to M$ equipped with a compatible almost-complex structure J s.t.

- $\overline{\partial}_J u = 0$, or $\frac{\partial u}{\partial s} + J \frac{\partial u}{\partial t} = 0$. $u(s,0) \in L_0, u(s,1) \in L_1$
- $\lim_{s \to +\infty} u(s,t) = p$, $\lim_{s \to -\infty} u(s,t) = q$ for $\{p,q\} \subset L_0 \cap L_1$ $E(u) = \int u^* \omega = \int \int_{\mathbb{R} \times [0,1]} \left| \frac{\partial u}{\partial s} \right|^2 ds dt < \infty$.

We consider the space of solutions $\mathcal{M}(p,q,[u],J)$ for fixed $p,q\in L_0\cap L_1,[u]$ a homotopy class as above, and J a given almost-complex structure. The above problem is a Fredholm problem, and the expected dimension of $\mathcal{M} = \operatorname{ind}(\partial_J)$ is called the Maslov index. The Maslov index comes from $\pi_1(\Lambda \text{ Gr}) = \mathbb{Z}$. Explicitly, let $L_0, L_1(t)_{t \in [0,1]}$ be Lagrangian subspaces of \mathbb{R}^{2n} s.t. $L_1(0), L_1(1)$ intersect L_0 transversely. The Maslov index of $(L_1(t); L_0)$ is the number of times that $L_1(t)$ is non-transverse to L_0 with mutlipliticities and signs. For instance, for L_0 $\mathbb{R}^n \subset \mathbb{C}^n$, $L_1(t) = (e^{i\theta_1(t)}\mathbb{R}) \times \cdots \times (e^{i\theta_n(t)}\mathbb{R})$ with all θ_i 's increasing past 0, the Maslov index is n. In general, given a homotopy u, we can trivialize u^*TM , and $u^*|_{\mathbb{R}\times 0}(TL_0), u^*|_{\mathbb{R}\times 1}(TL_1)$ are 2 paths of Lagrangian subspaces. We can trivialize so that TL_0 remains constant, and $\operatorname{ind}(u)$ is the Maslov index of the path TL_1 relative to TL_0 as one goes from p to q.

Now, we want to define

(2)
$$\partial(p) = \sum_{\substack{q \in L_0 \cap L_1 \\ \phi \in \pi_2(M, L_0 \cup L_1) \\ \operatorname{ind}(\phi) = 1}} \#(\mathcal{M}(p, q, \phi, J) / \mathbb{R}) T^{\omega(\phi)} \cdot q$$

The issues that arise are: transversality, compactness and bubbling, the orientation of \mathcal{M} , and whether $\partial^2 = 0$.

Theorem 1. If $[\omega] \cdot \pi_2(M) = 0$ and $[\omega] \cdot \pi_2(M, L_i) = 0$, then ∂ is well-defined, $\partial^2 = 0$, and $HF(L_0, L_1) = H^*(CF, \partial)$ is independent of the chosen J and invariant under Hamiltonian isotopies of L_0 and/or L_1 .

Corollary 1. If $[\omega] \cdot \pi_2(M, L) = 0$ and ψ is a Hamiltonian diffeomorphism s.t. $\psi(L), L$ are transverse, $\#(\psi(L) \cap L) \ge \sum b_i(L)$.

This is a special case of Arnold's conjecture: the rough idea is that $H^*(L) \cong HF(L, \psi(L))$ and $\operatorname{rk} CF \geq \operatorname{rk} HF$.

Example. Consider $T^*S_1 \cong \mathbb{R} \times S^1$, with $L_0 = \{(0,\theta) \mid \theta \in S^1 = [0,2\pi)\}$, $L_1 = \{(a\sin\theta+b,\theta)\}$. Then $L_0 \cap L_1 = \{p,q\}$, and the region between them decomposes into disks u,v. Then $CF(L_0,L_1) = \bigwedge p \oplus \bigwedge q$, $\partial(p) = (T^{area(u)} - T^{area(v)})q$, $\partial(q) = 0$. In this case $(c_1(TM) = 0)$, as is the Maslov class of L_i), \exists a \mathbb{Z} grading on CF (because the index is independent of [u]), e.g. deg p = 0, deg q = 1. We have two cases:

- if area(u) = area(v), then $\partial = 0, HF(L_0, L_1) \cong H^*(S^1, \Lambda)$.
- if $area(u) \neq area(v)$, then $HF(L_0, L_1) = 0$.

Return to our issues, one can achieve transversality for simple maps by picking J generic, but for multiply covered maps, we need sophisticated techniques such as domain-dependent J, multivalued perturbations, virtual cycles, or Kuranishi structures. To obtain an orientation of the moduli space, we need auxiliary data, e.g. a spin structure on L_0, L_1 . For compactness, the Gromov compactness theorem implies that, given an energy bound, compactness holds after adding limiting configurations. There are three types of phenomena:

- Bubbling of spheres: if $|du_n| \to \infty$ at an interior point, the resulting limit is a spherical bubble. The treatment is the same as in Gromov-Witten invariants, and in good cases (if transversality is achieved), the congurations with sphere bubbles have real codimension ≥ 2 in $\overline{\mathcal{M}}$.
- Bubbling of disks: if $|du_n| \to \infty$ at a boundary point, the resulting limit is a disk bubble at the boundary. Even assuming transversality, the space of these will have real codimension 1 in $\overline{\mathcal{M}}$.

• Breaking of strips: if energy escapes towards $s \to \pm \infty$, i.e. reparameterizing $u_n(\cdot - \delta_n, \cdot)$ for $|\delta_n| \to \infty$ gives different limits, the resulting limit is a sequence of holomorphic strips (that is, what was a single holomorphic strip with progressively thinning "necks" becomes several separate strips).

Finally, we want to have $\partial^2 = 0$. Assuming no bubbling, we consider $\mathcal{M}(p, q, \phi, J)/\mathbb{R}$ for J generic, $\phi \in \pi_2$, $\operatorname{ind}(\phi) = 2$. We expect a one-dimensional manifold, which is compactified by adding broken trajectories, i.e.

(3)
$$U \xrightarrow{r \in L_0 \cap L_1} (\mathcal{M}(p, r, \phi_1, J)/\mathbb{R}) \times (\mathcal{M}(p, r, \phi_2, J)/\mathbb{R})$$
$$\phi_1 \# \phi_2 = \phi$$

The gluing theorem states that the resulting $\overline{\mathcal{M}(p,q,\phi,J)/\mathbb{R}}$ is a manifold with boundary. Now, the number of ends of a compact oriented 1-manifold is 0, and thus so are the contributions to the coefficients of $T^{\omega(\phi)}q$ in $\partial^2(p)$.