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0.1. Lagrangian Floer Homology (contd). Let (M,ω) be a symplectic man-
ifold, L0, L1 compact Lagrangian submanifolds. Formally, Floer homology is
Morse theory for the action functional on the path space P(L0, L1), which has as
critical points the constant paths. More precisely, the actual functional is a map
Ã : P̃(L0, L1)→ R, where P̃(L0, L1) is the universal cover of the path space, i.e.
pairs (γ, [u]) where γ is a path between L0 and L1 and [u] is a homotopy between
γ and some fixed base path ∗. Then A(γ, [u]) =

∫
u∗ω, and for v a vector field

along γ,

dA(γ) · v =

∫
[0,1]

ω(γ̇, v)dt =

∫
[0,1]

g(J ˙γ, v)dt = 〈Jγ̇, v〉L2(1)

The critical points are contant paths γ̇ = 0, and the gradient flow lines are
J-holomorphic curves ∂γ

∂s
= −Jγ̇.

However, no one has managed to run this Morse theory rigorously. The actual
setup assumes L0, L1 are transverse, and as before, define the Novikov ring as
Λ = {

∑
aiT

λi |λi →∞} and the Floer complex CF (L0, L1) as the free Λ-module
Λ|L0∩L1| generated by L0 ∩ L1. We look at u : R × [0, 1] → M equipped with a
compatible almost-complex structure J s.t.

• ∂Ju = 0, or ∂u
∂s

+ J ∂u
∂t

= 0.
• u(s, 0) ∈ L0, u(s, 1) ∈ L1

• lims→+∞ u(s, t) = p, lims→−∞ u(s, t) = q for {p, q} ⊂ L0 ∩ L1

• E(u) =
∫
u∗ω =

∫ ∫
R×[0,1]

∣∣∂u
∂s

∣∣2 dsdt <∞.

We consider the space of solutions M(p, q, [u], J) for fixed p, q ∈ L0 ∩ L1, [u] a
homotopy class as above, and J a given almost-complex structure. The above
problem is a Fredholm problem, and the expected dimension of M = ind(∂J) is
called the Maslov index. The Maslov index comes from π1(

∧
Gr) = Z. Explicitly,

let L0, L1(t)t∈[0,1] be Lagrangian subspaces of R2n s.t. L1(0), L1(1) intersect L0

transversely. The Maslov index of (L1(t);L0) is the number of times that L1(t)
is non-transverse to L0 with mutlipliticities and signs. For instance, for L0 =
Rn ⊂ Cn, L1(t) = (eiθ1(t)R) × · · · × (eiθn(t)R) with all θi’s increasing past 0, the
Maslov index is n. In general, given a homotopy u, we can trivialize u∗TM , and
u∗|R×0(TL0), u

∗|R×1(TL1) are 2 paths of Lagrangian subspaces. We can trivialize
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so that TL0 remains constant, and ind(u) is the Maslov index of the path TL1

relative to TL0 as one goes from p to q.
Now, we want to define

∂(p) =
∑

q ∈ L0 ∩ L1

φ ∈ π2(M,L0 ∪ L1)
ind(φ) = 1

#(M(p, q, φ, J)/R)T ω(φ) · q

(2)

The issues that arise are: transversality, compactness and bubbling, the orienta-
tion of M, and whether ∂2 = 0.

Theorem 1. If [ω] · π2(M) = 0 and [ω] · π2(M,Li) = 0, then ∂ is well-defined,
∂2 = 0, and HF (L0, L1) = H∗(CF, ∂) is independent of the chosen J and in-
variant under Hamiltonian isotopies of L0 and/or L1.

Corollary 1. If [ω] · π2(M,L) = 0 and ψ is a Hamiltonian diffeomorphism s.t.
ψ(L), L are transverse, #(ψ(L) ∩ L) ≥

∑
bi(L).

This is a special case of Arnold’s conjecture: the rough idea is that H∗(L) ∼=
HF (L, ψ(L)) and rkCF ≥ rkHF .

Example. Consider T ∗S1
∼= R × S1, with L0 = {(0, θ) | θ ∈ S1 = [0, 2π)}, L1 =

{(a sin θ+b, θ)}. Then L0∩L1 = {p, q}, and the region between them decomposes
into disks u, v. Then CF (L0, L1) =

∧
p⊕
∧
q, ∂(p) = (T area(u)−T area(v))q, ∂(q) =

0. In this case (c1(TM) = 0, as is the Maslov class of Li), ∃ a Z grading on CF
(because the index is independent of [u]), e.g. deg p = 0, deg q = 1. We have
two cases:

• if area(u) = area(v), then ∂ = 0, HF (L0, L1) ∼= H∗(S1,Λ).
• if area(u) 6= area(v), then HF (L0, L1) = 0.

Return to our issues, one can achieve transversality for simple maps by picking
J generic, but for multiply covered maps, we need sophisticated techniques such
as domain-dependent J , multivalued perturbations, virtual cycles, or Kuranishi
structures. To obtain an orientation of the moduli space, we need auxiliary
data, e.g. a spin structure on L0, L1. For compactness, the Gromov compactness
theorem implies that, given an energy bound, compactness holds after adding
limiting configurations. There are three types of phenomena:

• Bubbling of spheres: if |dun| → ∞ at an interior point, the resulting
limit is a spherical bubble. The treatment is the same as in Gromov-
Witten invariants, and in good cases (if transversality is achieved), the
congurations with sphere bubbles have real codimension ≥ 2 in M.
• Bubbling of disks: if |dun| → ∞ at a boundary point, the resulting limit

is a disk bubble at the boundary. Even assuming transversality, the space
of these will have real codimension 1 in M.
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• Breaking of strips: if energy escapes towards s→ ±∞, i.e. reparameter-
izing un(· − δn, ·) for |δn| → ∞ gives different limits, the resulting limit
is a sequence of holomorphic strips (that is, what was a single holomor-
phic strip with progressively thinning “necks” becomes several separate
strips).

Finally, we want to have ∂2 = 0. Asuming no bubbling, we considerM(p, q, φ, J)/R
for J generic, φ ∈ π2, ind(φ) = 2. We expect a one-dimensional manifold, which
is compactified by adding broken trajectories, i.e.

t r ∈ L0 ∩ L1

φ1#φ2 = φ

(M(p, r, φ1, J)/R)× (M(p, r, φ2, J)/R)
(3)

The gluing theorem states that the resulting M(p, q, φ, J)/R is a manifold with
boundary. Now, the number of ends of a compact oriented 1-manifold is 0, and
thus so are the contributions to the coefficients of T ω(φ)q in ∂2(p).


