The theory of manifolds Lecture 1

In this lecture we will discuss two generalizations of the inverse function theorem. We'll begin by reviewing some linear algebra. Let

$$
A: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}
$$

be a linear mapping and $\left[a_{i, j}\right]$ the $n \times m$ matrix associated with A. Then

$$
A^{t}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}
$$

is the linear mapping associated with the transpose matrix $\left[a_{j, i}\right]$. For $k<n$ we define the canonical submersions

$$
\pi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}
$$

to be the map $\pi\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{k}\right)$ and the canonical immersion

$$
\iota: \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}
$$

to be the map, $\iota\left(x_{1}, \ldots, x_{k}\right)=\left(x_{1}, \ldots x_{k}, 0, \ldots 0\right)$. We leave for you to check that $\pi^{t}=\iota$.

Proposition 1. If $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ is onto, there exists a bijective linear map $B: \mathbb{R}^{n} \rightarrow$ \mathbb{R}^{n} such that $A B=\pi$.

We'll leave the proof of this as an exercise.
Hint: Show that one can choose a basis, v_{1}, \ldots, v_{n} of \mathbb{R}^{n} such that

$$
A v_{i}=e_{i}, \quad i=1, \ldots, k
$$

is the standard basis of \mathbb{R}^{k} and

$$
A v_{i}=0, \quad i>k .
$$

Let e_{1}, \ldots, e_{n} be the standard basis of \mathbb{R}^{n} and set $B e_{i}=v_{i}$.
Proposition 2. If $A: \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}$ is one-one, there exists a bijective linear map $C: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that $C A=\iota$.

Proof. The rank of $\left[a_{i, j}\right]$ is equal to the rank of $\left[a_{j, i}\right]$, so if if A is one-one, there exists a bijective linear map $B: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that $A^{t} B=\pi$.

Letting $C=B^{t}$ and taking transposes we get $\iota=\pi^{t}=C B$

Immersions and submersions

Let U be an open subset of \mathbb{R}^{n} and $f: U \rightarrow \mathbb{R}^{k}$ a \mathcal{C}^{∞} map. f is a submersion at $p \in U$ if

$$
D f(p): \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}
$$

is onto. Our first main result in this lecture is a non-linear version of Proposition 1.
Theorem 1 (Canonical submersion theorem). If f is a submersion at p and $f(p)=0$, there exists a neighborhood, U_{0} of p in U, a neighborhood, V, of 0 in \mathbb{R}^{n} and a \mathcal{C}^{∞} diffeomorphism, $g:(V,-0) \rightarrow\left(U_{0}, p\right)$ such that $f \circ g=\pi$.

Proof. Let $\tau_{p}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be the map, $x \rightarrow x+p$. Replacing f by $f \circ \tau_{p}$ we can assume $p=0$. Let A be the linear map

$$
D f(0): \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}
$$

By assumption this map is onto, so there exists a bijective linear map

$$
B: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

such that $A B=\pi$. Replacing f by $f \circ B$ we can assume that

$$
D f(0)=\pi .
$$

Let $h: U \rightarrow \mathbb{R}^{n}$ be the map

$$
h\left(x_{1}, \ldots, x_{n}\right)=\left(f_{1}(x), \ldots, f_{k}(x), x_{k+1}, \ldots, x_{n}\right)
$$

where the f_{i} 's are the coordinate functions of f. I'll leave for you to check that

$$
\begin{equation*}
D h(0)=I \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\pi \circ h=f \tag{2}
\end{equation*}
$$

By (1) $D h(0)$ is bijective, so by the inverse function theorem h maps a neighborhood, U_{0} of 0 in U diffeomorphically onto a neighborhood, V, of 0 in \mathbb{R}^{n}. Letting $g=f^{-1}$ we get from (2) $\pi=f \circ g$.

Our second main result is a non-linear version of Proposition 2. Let U be an open neighborhood of 0 in \mathbb{R}^{k} and $f: U \rightarrow \mathbb{R}^{n}$ a \mathcal{C}^{∞}-map.

Theorem 2 (Canonical immersion theorem). If f is an immersion at 0 , there exists a neighborhood, V, of $f(0)$ in \mathbb{R}^{n}, a neighborhood, W, of 0 in \mathbb{R}^{n} and a \mathcal{C}^{∞} diffeomorphism $g: V \rightarrow W$ such that $\iota^{-1}(W) \subseteq U$ and $g \circ f=\iota$.

Proof. Let $p=f(0)$. Replacing f by $\tau_{-p} \circ f$ we can assume that $f(0)=0$. Since $D f(0): \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}$ is injective there exists a bijective linear map, $B: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that $B D f(0)=\iota$, so if we replace f by $B \circ f$ we can assume that $D f(0)=\iota$. Let $\ell=n-k$ and let

$$
h: U \times \mathbb{R}^{\ell} \rightarrow \mathbb{R}^{n}
$$

be the map

$$
h\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{1}, \ldots, x_{k}\right)+\left(0, \ldots, 0 x_{k+1}, \ldots, x_{n}\right) .
$$

I'll leave for you to check that

$$
\begin{equation*}
D h(0)=I \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
h \circ \iota=f . \tag{4}
\end{equation*}
$$

By (3) $D h(0)$ is bijective, so by the inverse function theorem, h maps a neighborhood, W, of 0 in $U \times \mathbb{R}^{\ell}$ diffeomorphically onto a neighborhood, V, of 0 in \mathbb{R}^{n}. Let $g: V \rightarrow W$ be the inverse map. Then by (4), $\iota=g \circ f$.

Problem set

1. Prove Proposition 1.

2. Prove Proposition 2.
3. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be the map

$$
\left(x_{1}, x_{2}, x_{3}\right) \rightarrow\left(x_{1}^{2}-x_{2}^{2}, x_{2}^{2}-x_{3}^{2}\right) .
$$

At what points $p \in \mathbb{R}^{3}$ is f a submersion?
4. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be the map

$$
\left(x_{1}, x_{2}\right) \rightarrow\left(x_{1}, x_{2}, x_{1}^{2}, x_{2}^{2}\right)
$$

At what points, $p \in \mathbb{R}^{2}$, is f an immersion?
5. Let U and V be open subsets of \mathbb{R}^{m} and \mathbb{R}^{n}, respectively, and let $f: U \rightarrow V$ and $g: V \rightarrow \mathbb{R}^{k}$ be C^{1}-maps. Prove that if f is a submersion at $p \in U$ and g a submersion at $q=f(p)$ then $g \circ f$ is a submersion at p.
6. Let f and g be as in exercise 5. Suppose that g is a submersion at q. Show that $g \circ f$ is a submersion at p if and only if

$$
T_{q} \mathbb{R}^{n}=\text { Image } d f_{p}+\text { Kernel } d g_{q}
$$

i.e., if and only if every vector, $\mathrm{v} \in T_{q} \mathbb{R}^{n}$ can be written as a sum, $\mathrm{v}=\mathrm{v}_{1}+\mathrm{v}_{2}$, where v_{1} is in the image of $d f_{p}$ and $d g_{q}\left(\mathrm{v}_{2}\right)=0$.

