The theory of manifolds Lecture 1

In this lecture we will discuss two generalizations of the inverse function theorem.
We'll begin by reviewing some linear algebra. Let

A:R™—R"
be a linear mapping and [a; ;| the n x m matrix associated with A. Then
AR — R™

is the linear mapping associated with the transpose matrix [a;;]. For k < n we define
the canonical submersions

7:R" - R*
to be the map w(x1,...,x,) = (x1,..., 7)) and the canonical immersion
L RF SR

to be the map, t(z1,...,2x) = (x1,...2%,0,...0). We leave for you to check that
7t =1

Proposition 1. If A : R" — R* is onto, there exists a bijective linear map B : R" —
R™ such that AB = .

We'll leave the proof of this as an exercise.
Hint: Show that one can choose a basis, vy, ..., v, of R” such that

Avi:ei, Zzl,,k
is the standard basis of R¥ and
Av, =0, 1> k.
Let eq,...,e, be the standard basis of R™ and set Be; = v;.

Proposition 2. If A : R* — R" is one-one, there erists a bijective linear map
C:R" - R" such that CA = ..

Proof. The rank of [a; ;] is equal to the rank of [a;,], so if if A is one-one, there exists
a bijective linear map B : R"” — R" such that A'B = .
Letting C' = B* and taking transposes we get « = 7' = C'B



Immersions and submersions

Let U be an open subset of R” and f : U — R* a C® map. f is a submersion at
peUif
Df(p) : R* — R*

is onto. Our first main result in this lecture is a non-linear version of Proposition 1.

Theorem 1 (Canonical submersion theorem). If f is a submersion at p and f(p) =0,
there exists a neighborhood, Uy of p in U, a neighborhood, V', of 0 in R™ and a C*>
diffeomorphism, g : (V,—=0) — (U, p) such that fog=.

Proof. Let 7, : R® — R" be the map, + — z+p. Replacing f by f o7, we can assume
p = 0. Let A be the linear map

Df(0) : R® — R*.
By assumption this map is onto, so there exists a bijective linear map
B:R"—R"
such that AB = 7. Replacing f by f o B we can assume that
Df(0)=m.
Let h: U — R"™ be the map
h(zy,...,xn) = (fi(z), ..., fel®), Tpgr, oo )
where the f;’s are the coordinate functions of f. I'll leave for you to check that
Dh(0) = 1 (1)
and
moh = f. (2)

By (1) Dh(0) is bijective, so by the inverse function theorem h maps a neighbor-
hood, Uy of 0 in U diffeomorphically onto a neighborhood, V', of 0 in R™. Letting
g=f""we get from (2) 7= fog.

U

Our second main result is a non-linear version of Proposition 2. Let U be an open
neighborhood of 0 in R* and f : U — R™ a C*®-map.

Theorem 2 (Canonical immersion theorem). If f is an immersion at 0, there ex-
ists a neighborhood, V', of f(0) in R™, a neighborhood, W, of 0 in R™ and a C*-
diffeomorphism g : V. — W such that X (W) C U and go f = ¢.



Proof. Let p = f(0). Replacing f by 7_, o f we can assume that f(0) = 0. Since
Df(0) : R¥ — R" is injective there exists a bijective linear map, B : R® — R" such
that BDf(0) = ¢, so if we replace f by B o f we can assume that Df(0) = ¢. Let
¢ =n—k and let

h:U xR —R"

be the map
Wy, ..,xn) = flxy, o ze) + (0,000 Tpgg, ooy Ty) -
I'll leave for you to check that
Dh(0) = I (3)
and
hot = f. (4)

By (3) Dh(0) is bijective, so by the inverse function theorem, h maps a neighborhood,
W, of 0in U xR diffeomorphically onto a neighborhood, V, of 0 in R™. Let g : V — W
be the inverse map. Then by (4), t =go f.

U

Problem set

1. Prove Proposition 1.
2. Prove Proposition 2.

3. Let f:R?® — R? be the map

(71,79, 23) — (ff - f§> 5'33 - 1’%)-

At what points p € R? is f a submersion?
4. Let f:R?> — R? be the map
(z1,22) — (71,72, 93%#53)
At what points, p € R?, is f an immersion?

5. Let U and V' be open subsets of R” and R", respectively, and let f : U — V
and g : V — R* be C'-maps. Prove that if f is a submersion at p € U and g a
submersion at ¢ = f(p) then go f is a submersion at p.



6. Let f and g be as in exercise 5. Suppose that g is a submersion at g. Show that
g o fis a submersion at p if and only if

T,R"™ = Image df, + Kernel dg, ,

i.e., if and only if every vector, v € T,R" can be written as a sum, v = vy + v,
where vy is in the image of df, and dg,(v2) = 0.



