
3 Integration on manifolds, Lecture 3

In this section we will show how to integrate densities over manifolds. First, however,
we will have to explain how to integrate densities over open subsets, U , of R

n. Recall
that if ϕ is in D∞(U) it can be written as a product, σ = ψσLeb, where ψ is in C∞(U).
We will say that σ is integrable over U if ψ is integrable over U , and will define the
integral of σ over U to be the usual Riemann integral

∫

U

σ =

∫

U

ψ dx . (3.1)

The advantage of using “density” notation for this integral is that it makes the change
of variables formula more transparent. Namely if U1 is an open subset of R

n and
f : U1 → U a diffeomorphism, then by (2.4) f ∗σ = ψ1σLeb where

ψ1 = ψ ◦ f
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and hence by the change of variables formula1 ψ1 is integrable over U1 and
∫

U1

ψ1 dx =

∫

U

ψ dx .

Thus using density notation the change of variables formula takes the much simpler
form

∫

U1

f ∗σ =

∫

U

σ . (3.3)

Now let X ⊆ R
N be an n-dimensional manifold. Our goal below will be to define the

integral
∫

W

σ (3.4)

where W is an open subset ofX and σ is a compactly supported C∞ density. We’ll first
show how to define this integral when the support of σ is contained in a “parametriz-
able” open subset of X and then, using partition of unity argument, define it in
general.

Definition 1. An open subset, U , of X is parametrizable if there exists an open set,
U0, in R

n and a diffeomorphism, ϕ0 : U0 → U .

In other words “U is parametrizable” means that there exists a parameteriza-
tion, (U0, ϕ0), of U . It’s clear that if U is parametrizable every open subset of U is
parametrizable, and, in particular, if U1 and U2 are parametrizable, so is U1 ∩ U2.
Moreover the definition of manifold says that every point, p ∈ X, is contained in a
parametrizable open set.

1See Theorem 17.2 in Munkres.
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Let σ be an element of D∞

0
(X) whose support is contained in a parametrizable

open set U . Picking a parameterization, ϕ0 : U0 → U we will define the integral of σ
over W by defining it to be

∫

W

σ =

∫

W0

ϕ∗

0
σ (3.5)

where W0 = ϕ−1

0
(W ). Note that since σ is compactly supported on U , ϕ∗

0
σ is a

product, ϕ∗

0
σ = ψσLeb, with ψ in C∞

0
(U0). Hence by Munkres, Theorem 15.2, ψ is

integrable over W0 and hence so is ϕ∗σ. We will prove

Lemma 1. The definition (3.5) doesn’t depend on the choice of the parameterization,
(U0, ϕ0).

Proof. Let (U1, ϕ1) be another parameterization of U and let f = ϕ−1

1
◦ ϕ0. Since ϕ0

and ϕ1 are diffeomorphisms of U0 and U1 onto U f is a diffeomorphism of U0 onto U1

with the property
ϕ1 ◦ f = ϕ0 . (3.6)

In particular if Wi = ϕ−1

i (W ), i = 1, 2 it follows from (3.6) that f maps W0 diffeo-
morphically onto W1 and from the chain rule it follows that f ∗ϕ∗

1
σ = ϕ∗

0
σ. Hence by

(3.3)
∫

W0

ϕ∗

0
σ =

∫

W1

ϕ∗

1
σ . (3.7)

In other words (3.5) is unchanged if we substitute (U1, ϕ1) for (U0, ϕ0).

From the additivity of the Riemann integral for integrable functions on open
subsets of R

n we also conclude

Lemma 2. If σi ∈ D∞

0
(X), i = 1, 2, is supported on U

∫

W

σ1 + σ2 =

∫

W

σ1 +

∫

W

σ2

and if σ ∈ D∞

0
(X) is supported on U and c ∈ R

∫

W

cσ = c

∫

W

σ .

To define the integral (3.4) for arbitrary elements of D∞(X) we will resort to
the same partition of unity arguments that we used earlier in the course to define
improper integrals of functions over open subsets of R

n. To do so we’ll need the
following manifold version of Munkres’ Theorem 16.3.

Theorem 3. Let
U = {Uα , α ∈ I} (3.8)

be a covering of X be open subsets. Then there exists a family of functions, ρi ∈
C∞

0
(X), i = 1, 2, 3, . . . , with the properties
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(a) ρi ≥ 0.

(b) For every compact set, C ⊆ X there exists a positive integer N such that
if i > N , supp ρi ∩ C = ∅.

(c)
∑

ρi = 1.

(d) For every i there exists an α ∈ I such that supp ρi ⊆ Uα.

Remark. Conditions (a)–(c) say that the ρi’s are a partition of unity and (d) says
that this partition of unity is subordinate to the covering (3.8).

Proof. To simplify the proof a bit we’ll assume that X is a closed subset of R
N . For

each Uα choose an open subset, Oα in R
N with

Uα = Oα ∩X (3.9)

and let O be the union of the Oα’s. By the theorem in Munkres that we cited above
there exists a partition of unity, ρ̃i ∈ C∞

0
(O), i = 1, 2, . . . , subordinate to the covering

of X by the Oα’s. Let ρi be the restriction of ρ̃i to X. Since the support of ρ̃i is
compact and X is closed, the support of ρi is compact, so ρi ∈ C∞

0
(X) and it’s clear

that the ρi’s inherit from the ρ̃i’s the properties (a)–(d).

Now let the covering (3.8) be any covering of X by parametrizable open sets and
let ρi ∈ C∞

0
(X), i = 1, 2, . . . , be a partition of unity subordinate to this covering.

Given σ ∈ D∞

0
(X) we will define the integral of σ over W by the sum

∞
∑

i=1

∫

W

ρiσ . (3.10)

Note that since each ρi is supported in some Uα the individual summands in this sum
are well-defined and since the support of σ is compact all but finitely many of these
summands are zero by part (b) of Theorem 3. Hence the sum itself is well-defined.
Let’s show that this sum doesn’t depend on the choice of U and the ρi’s. Let U

′ be
another covering of X by parametrizable open sets and ρ′j, j = 1, 2, . . . , a partition
of unity subordinate to U

′. Then

∑

j

∫

W

ρ′jσ =
∑

j

∫

W

∑

i

ρ′jρiσ (3.11)

=
∑

j

(

∑

i

∫

W

ρ′jρiσ

)
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by Lemma 2. Interchanging the orders of summation and resumming with respect to
the j’s this sum becomes

∑

i

∫

W

∑

j

ρ′jρiσ

or

∑

i

∫

W

ρiσ .

Hence
∑

i

∫

W

ρ′jσ =
∑

i

∫

W

ρiσ ,

so the two sums are the same. Q.E.D.
From (3.10) and Lemma 2 one easily deduces

Proposition 4. For σi ∈ D∞

0
(X), i = 1, 2

∫

W

σ1 + σ2 =

∫

W

σ1 +

∫

W

σ2 (3.12)

and for σ ∈ D∞

0
(X) and c ∈ R

∫

W

cσ = c

∫

W

σ . (3.13)

In the definition of the integral (3.4) we’ve allowed W to be an arbitrary open
subset of X but required σ ∈ D∞(X) to be compactly supported. This integral is
also well-defined if we allow σ to be an arbitrary element of D∞(X) but require the
closure of W in X to be compact. To see this, note that under this assumption the
sum (3.10) is still a finite sum, so the definition of the integral still makes sense, and
the double sum on the right side of (3.11) is still a finite sum so it’s still true that
the definition of the integral doesn’t depend on the choice of partitions of unity. In
particular if the closure of W in X is compact we will define the volume of W to be
the integral,

vol(W ) =

∫

W

σvol , (3.14)

and if X itself is compact we’ll define its volume to be the integral

vol(X) =

∫

X

σvol . (3.15)

(For an alternative way of defining the volume of a manifold see Munkres, §22.)
We’ll conclude this discussion of integration by proving a manifold version of the

change of variables formula (3.3).
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Theorem 5. Let X ′ and X be n-dimensional manifolds and f : X ′ → X a diffeo-
morphism. If W is an open subset of X and W ′ = f−1(W )

∫

W ′

f ∗σ =

∫

W

σ (3.16)

for all σ ∈ D∞

0
(X).

Proof. By (3.11) the integrand of the integral above is a finite sum of C∞ densities,
each of which is supported on a parametrizable open subset, so we can assume that
σ itself as this property. Let V be a parametrizable open set containing the support
of σ and let ϕ0 : U → V be a parameterization of V . Since f is a diffeomorphism
its inverse exists and is a diffeomorphism of X onto X1. Let V ′ = f−1(V ) and
ϕ′

0
= f−1 ◦ ϕ0. Then ϕ′

0
: U → V ′ is a parameterization of V ′. Moreover, f ◦ ϕ′

0
= ϕ

so if W0 = ϕ−1

0
(W ) we have

W0 = (ϕ0)
−1

0
(f−1(W )) = (ϕ′

0
)−1(W ′)

and by the chain rule we have

ϕ∗

0
σ = (f ◦ ϕ′)∗σ = (ϕ′

0
)∗f ∗σ

hence

∫

W

σ =

∫

W0

ϕ∗

0
σ =

∫

W0

(ϕ′

0
)∗(f ∗σ) =

∫

W ′

f ∗σ .
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