3 Integration on manifolds, Lecture 3

In this section we will show how to integrate densities over manifolds. First, however,
we will have to explain how to integrate densities over open subsets, U, of R"™. Recall
that if ¢ is in D*°(U) it can be written as a product, o = 1ore,, where ¥ is in C*(U).
We will say that o is integrable over U if 1 is integrable over U, and will define the
integral of o over U to be the usual Riemann integral

Lazéwm. (3.1)

The advantage of using “density” notation for this integral is that it makes the change
of variables formula more transparent. Namely if U; is an open subset of R™ and
f: Uy — U a diffeomorphism, then by (2.4) f*o = 1101, Where
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Y1 =1vof
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and hence by the change of variables formula! ¢, is integrable over U; and

dr = dx .
e /wa

Thus using density notation the change of variables formula takes the much simpler

form
f*az/a. (3.3)
Uy U

Now let X C R¥ be an n-dimensional manifold. Our goal below will be to define the

integral
/ o (3.4)
w

where W is an open subset of X and o is a compactly supported C* density. We'll first
show how to define this integral when the support of ¢ is contained in a “parametriz-
able” open subset of X and then, using partition of unity argument, define it in
general.

Definition 1. An open subset, U, of X is parametrizable if there exists an open set,
Uy, in R™ and a diffeomorphism, ¢y : Uy — U.

In other words “U is parametrizable” means that there exists a parameteriza-
tion, (Uy, ¢o), of U. It’s clear that if U is parametrizable every open subset of U is
parametrizable, and, in particular, if U; and U, are parametrizable, so is Uy N Us.
Moreover the definition of manifold says that every point, p € X, is contained in a
parametrizable open set.

1See Theorem 17.2 in Munkres.



Let o be an element of D§°(X) whose support is contained in a parametrizable
open set U. Picking a parameterization, g : Uy — U we will define the integral of o

over W by defining it to be
/ o= / e (3.5)
w Wo

where Wy = ¢, (W). Note that since ¢ is compactly supported on U, @0 is a
product, 5o = 0oLep, with ¥ in C°(Uy). Hence by Munkres, Theorem 15.2, 9 is
integrable over Wy and hence so is p*o. We will prove

Lemma 1. The definition (3.5) doesn’t depend on the choice of the parameterization,
(Uos 0)-

Proof. Let (Uy, 1) be another parameterization of U and let f = o' o @g. Since ¢
and ¢; are diffeomorphisms of Uy and U; onto U f is a diffeomorphism of Uy onto Uy
with the property

p1of=¢o. (3.6)
In particular if W; = ¢; (W), i = 1,2 it follows from (3.6) that f maps W, diffeo-
morphically onto W, and from the chain rule it follows that f*pjo = ¢jo. Hence by

(3.3)
/WO 9030'2/Wl P10 . (3.7)

In other words (3.5) is unchanged if we substitute (Uy, 1) for (Uy, ¢o)-
]

From the additivity of the Riemann integral for integrable functions on open
subsets of R" we also conclude

Lemma 2. If o, € D°(X), i = 1,2, is supported on U

/0’1+O’2=/0’1+/0’2
w w w

and if o € DP(X) is supported on U and ¢ € R

/ca:c/ 0.
w w

To define the integral (3.4) for arbitrary elements of D>°(X) we will resort to
the same partition of unity arguments that we used earlier in the course to define
improper integrals of functions over open subsets of R". To do so we’ll need the
following manifold version of Munkres” Theorem 16.3.

Theorem 3. Let
U={U,, a€Tl} (3.8)

be a covering of X be open subsets. Then there exists a family of functions, p; €
C(X),i=1,2,3,..., with the properties
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(a) pi > 0.

(b) For every compact set, C C X there exists a positive integer N such that
if i > N, supp p; N C = 0.

(¢c) >2pi=1

(d) For every i there exists an a € T such that supp p; C U,.

Remark. Conditions (a)-(c) say that the p;’s are a partition of unity and (d) says
that this partition of unity is subordinate to the covering (3.8).

Proof. To simplify the proof a bit we’ll assume that X is a closed subset of RY. For
each U, choose an open subset, O, in RY with

Up=0.NX (3.9)

and let O be the union of the O,’s. By the theorem in Munkres that we cited above
there exists a partition of unity, p; € C°(0), i = 1,2, ..., subordinate to the covering
of X by the O,’s. Let p; be the restriction of p; to X. Since the support of p; is
compact and X is closed, the support of p; is compact, so p; € C3°(X) and it’s clear
that the p;’s inherit from the p;’s the properties (a)—(d).

U

Now let the covering (3.8) be any covering of X by parametrizable open sets and
let p; € Cg°(X), @ = 1,2,..., be a partition of unity subordinate to this covering.
Given o € D (X) we will define the integral of o over W by the sum

i /W P (3.10)

Note that since each p; is supported in some U, the individual summands in this sum
are well-defined and since the support of ¢ is compact all but finitely many of these
summands are zero by part (b) of Theorem 3. Hence the sum itself is well-defined.
Let’s show that this sum doesn’t depend on the choice of U and the p;’s. Let U’ be
another covering of X by parametrizable open sets and ,0;», J =1,2,..., a partition
of unity subordinate to U’. Then

Z/WPEU = Z/ >_ripio (3.11)



by Lemma 2. Interchanging the orders of summation and resumming with respect to
the j’s this sum becomes

> I >

or

gl;/wpia.

Hence
;/W/év:;/wma,

so the two sums are the same. Q.E.D.
From (3.10) and Lemma 2 one easily deduces

Proposition 4. For o, € DP(X), i =1,2

/0'1—|—O'2:/ O'1—|—/ (o) (312)
W W w

and for o € DP(X) and c € R
/ cazc/ 0. (3.13)
w w

In the definition of the integral (3.4) we've allowed W to be an arbitrary open
subset of X but required o € D>°(X) to be compactly supported. This integral is
also well-defined if we allow o to be an arbitrary element of D*°(X) but require the
closure of W in X to be compact. To see this, note that under this assumption the
sum (3.10) is still a finite sum, so the definition of the integral still makes sense, and
the double sum on the right side of (3.11) is still a finite sum so it’s still true that
the definition of the integral doesn’t depend on the choice of partitions of unity. In
particular if the closure of W in X is compact we will define the volume of W to be
the integral,

vol(W) = /Wavol, (3.14)

and if X itself is compact we’ll define its volume to be the integral

Vol(X):/XUVd. (3.15)

(For an alternative way of defining the volume of a manifold see Munkres, §22.)
We’ll conclude this discussion of integration by proving a manifold version of the
change of variables formula (3.3).



Theorem 5. Let X' and X be n-dimensional manifolds and f : X' — X a diffeo-
morphism. If W is an open subset of X and W' = f~Y(W)

o= 3.16
[ po=[ o (3.16)
for all 0 € DF(X).

Proof. By (3.11) the integrand of the integral above is a finite sum of C* densities,
each of which is supported on a parametrizable open subset, so we can assume that
o itself as this property. Let V' be a parametrizable open set containing the support
of o and let ¢y : U — V be a parameterization of V. Since f is a diffeomorphism
its inverse exists and is a diffeomorphism of X onto X;. Let V' = f~4(V) and
o= [t oy Then ¢, : U — V' is a parameterization of V’. Moreover, f o ¢ = ¢
so if Wy = ¢y (W) we have

Wo = (@o)g ' (f (W)
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and by the chain rule we have

woo = (fog)o=(py)fro

Lo = [ eio=] wruo=[ ro

hence



