# Gromov-Witten Invariants and Schubert Polynomials

### Alexander Postnikov

based on a joint paper with

Sergey Fomin and Sergei Gelfand

"Quantum Schubert polynomials"

Available as AMS Electronic Preprint #199605-14-008

## 1. Flag Manifold

 $Fl_n = Fl(\mathbb{C}^n)$  flag manifold. Points are  $U_1 \subset U_2 \subset \cdots \subset U_n = \mathbb{C}^n, \qquad \dim U_i = i.$ 

Homomorphism  $\alpha: \mathbb{Z}[x_1,\ldots,x_n] \to \mathsf{H}^*(Fl_n,\mathbb{Z})$ 

$$\alpha: x_i \longmapsto -c_1(\mathcal{E}_i/\mathcal{E}_{i-1}) \in \mathsf{H}^2(Fl_n),$$

where  $0 = \mathcal{E}_0 \subset \mathcal{E}_1 \subset \cdots \subset \mathcal{E}_{n-1} \subset \mathcal{E}_n = \mathbb{C}^n$  are tautological vector bundles on  $Fl_n$  and  $c_1$  is the first Chern class.

**Theorem** [A. Borel, 1953] The map  $\alpha$  induces the isomorphism

$$\mathbb{Z}[x_1,\ldots,x_n]/I_n \stackrel{\sim}{\longrightarrow} \mathsf{H}^*(Fl_n,\mathbb{Z})$$

where  $I_n = (e_1, \ldots, e_n)$  is the ideal generated by elementary symmetric polynomials in  $x_1, \ldots, x_n$ .

#### **Schubert Classes**

Another description of  $H^*(Fl_n)$  is based on a decomposition of  $Fl_n$  into <u>Schubert cells</u>, labelled by permutations  $w \in S_n$ 

Fix a flag  $V_1 \subset V_2 \subset \cdots \subset V_n = \mathbb{C}^n$ .

The Schubert variety  $\Omega_w$  is the set of all flags  $U_{\centerdot} \in Fl_n$  such that for all  $p,q \in \{1,\ldots,n\}$ 

$$\dim(U_p \cap V_q) \ge \#\{1 \le i \le p, w(i) \ge n + 1 - q\}$$

Then  $\operatorname{codim}_{\mathbb{R}}\Omega_w=2l(w)$ , where l(w) is the length of w.

#### Schubert class:

$$\sigma_w = [\Omega_w] \in \mathsf{H}_{n(n-1)-2l}(Fl_n) \simeq \mathsf{H}^{2l}(Fl_n)$$

**Theorem** [Ehresmann, 1934] The classes  $\sigma_w$ ,  $w \in S_n$ , form an additive basis in  $H^*(Fl_n, \mathbb{Z})$ . In particular, dim  $H^*(Fl_n) = n!$ .

Q: How to multiply Schubert classes?

 $\mathbf{Q}'$ : How to express a Schubert class in terms of generators  $x_i$ .

Answer (due to Bernstein, Gelfand, Gelfand) can be given in terms of divided differences.

#### **Divided differences**

 $S_n$  acts on  $f \in \mathbb{Z}[x_1,\ldots,x_n]$  by

$$w f(x_1, \dots, x_n) = f(x_{w^{-1}(1)}, \dots, x_{w^{-1}(n)}).$$

Let  $s_i = (i, i + 1) \in S_n$  (adjacent transposition).

The divided difference operators are given by

$$\partial_i f = \frac{1}{x_i - x_{i+1}} (1 - s_i) f$$

#### Schubert polynomials

Define the Schubert polynomials  $\mathfrak{S}_w$ ,  $w \in S_n$  recursively by

$$\mathfrak{S}_{w_0} = x_1^{n-1} x_2^{n-2} \dots x_{n-1},$$

(the choice of Lascoux–Schützenberger [1982]) where  $w_0 = (n-1, n-2, ..., 1)$  is the longest permutation in  $S_n$ , and

$$\mathfrak{S}_{ws_i} = \partial_i \mathfrak{S}_w$$
 whenever  $l(ws_i) = l(w) - 1$ .

**Theorem** [BGG, 1973]  $\mathfrak{S}_w$  represents Schubert class  $\sigma_w$ .



Schubert polynomials for  $S_3$ 

# 2. Gromov-Witten Invariants and Quantum Cohomology

(see [Ruan-Tian, Kontsevich-Manin])

Structure constants of the quantum cohomology ring  $QH^*(X)$  are the *Gromov-Witten* invariants (for genus 0).

An algebraic map  $f: \mathbb{P}^1 \to Fl_n$  has  $\underline{\text{multidegree}} \ d = (d_1, \dots, d_{n-1}) \in \mathbb{Z}_+^{n-1}$ ,  $d_i = \text{degree of } f_i: \mathbb{P}^1 \to Fl_n \to Gr(n, i)$ .

 $\mathcal{M}_d(\mathbb{P}^1, Fl_n) = \text{moduli space of such maps.}$ For  $Y \subset Fl_n$ ,  $t \in \mathbb{P}^1$ , denote

$$Y(t) = \{ f \in \mathcal{M}_d(\mathbb{P}^1, Fl_n) \mid f(t) \in Y \}.$$

Gromov-Witten invariants: Fix  $t_1, t_2, t_3 \in \mathbb{P}^1$ .

$$\langle \sigma_u, \sigma_v, \sigma_w \rangle_d = \# \widetilde{\Omega}_u(t_1) \cap \widetilde{\Omega}_v(t_2) \cap \widetilde{\Omega}_w(t_3)$$

provided  $l(u) + l(v) + l(w) = \dim \mathcal{M}_d(\mathbb{P}^1, Fl_n)$  $\widetilde{\Omega}_u, \widetilde{\Omega}_v, \widetilde{\Omega}_w$  are generic translates of  $\Omega_u, \Omega_v, \Omega_w$ .

#### **Quantum multiplication**

As an abelian group

$$QH^* = QH^*(Fl_n) = H^*(Fl_n, \mathbb{Z}) \otimes \mathbb{Z}[q_1, \dots, q_{n-1}]$$

Let  $*: QH^* \otimes QH^* \to QH^*$  be the  $\mathbb{Z}[q_1, \dots, q_{n-1}]$ -linear operation defined by

$$\sigma_u * \sigma_v = \sum_{w \in S_n} \sum_d q^d \langle \sigma_u, \sigma_v, \sigma_{w w_0} \rangle_d \sigma_w.$$

Then  $(QH^*,*)$  is a commutative and <u>associative</u> algebra called the <u>quantum cohomology ring</u> of  $Fl_n$ .

**Remark:**  $\langle \sigma_u, \sigma_v, \sigma_w \rangle_{(0,...,0)}$  is the ordinary intersection number. If we specialize  $q_1 = \cdots = q_{n-1} = 0$ , the operation \* becomes the standard multiplication in  $H^*(Fl_n)$  (the "classical limit").

#### Quantum analogue of Borel's theorem

Let  $E_1, \ldots, E_n$  be the <u>quantum elementary</u> <u>polynomials</u> defined to be the coefficients of the characteristic polynomial of the matrix

$$\begin{pmatrix} x_1 & q_1 & 0 & \cdots & 0 & 0 \\ -1 & x_2 & q_2 & \cdots & 0 & 0 \\ 0 & -1 & x_3 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & x_{n-1} & q_{n-1} \\ 0 & 0 & 0 & \cdots & -1 & x_n \end{pmatrix}$$

Example: n = 3

$$E_1 = x_1 + x_2 + x_3,$$

$$E_2 = x_1x_2 + x_1x_3 + x_2x_3 + q_1 + q_2,$$

$$E_3 = x_1x_2x_3 + q_1x_3 + q_2x_1.$$

**Theorem** [Givental, Kim, Ciocan-Fontanine, 1993–1996] There is a canonical isomorphism

$$\mathbb{Z}[x_1,\ldots,x_n,q_1,\ldots,q_{n-1}]/I_n^q \xrightarrow{\sim} \mathsf{QH}^*(Fl_n,\mathbb{Z})$$

where  $I_n^q$  be the ideal generated by  $E_1, \ldots, E_n$ .

#### 3. Main Results

Q: How to multiply Schubert classes in QH\*?

**Q':** How to calculate the Gromov-Witten invariants  $\langle \sigma_u, \sigma_v, \sigma_w \rangle_d$  ?

**Q":** How to express  $\sigma_w$  in terms of  $x_i$  in the ring QH\*.

$$\mathsf{H}^*(Fl_n)\otimes \mathbb{Z}[q_j] \cong \mathbb{Z}[x_i,q_j]/I_n$$
 $\parallel ?$ 
 $\mathsf{QH}^*(Fl_n) \cong \mathbb{Z}[x_i,q_j]/I_n^q$ 

We will construct the isomorphism

$$\mathbb{Z}[x_i, q_j]/I_n \longrightarrow \mathbb{Z}[x_i, q_j]/I_n^q$$

("quantization map")

#### Standard elementary monomials

 $e_i^k =$  the  $i^{\text{th}}$  elementary symmetric polynomial in  $x_1, \ldots, x_k$  and

 $E_i^k = \text{the } i^{\text{th}}$  quantum elementary polynomial in  $x_1, \dots, x_k$ .

For 
$$I=(i_1,i_2,\ldots,i_{n-1}), \quad 0 \leq i_p \leq p$$
 
$$e_I=e_{i_1}^1e_{i_2}^2\ldots e_{i_{n-1}}^{n-1},$$
 
$$E_I=E_{i_1}^1E_{i_2}^2\ldots E_{i_{n-1}}^{n-1}$$

**Lemma** Both  $\{e_I\}$  and  $\{E_I\}$  are K-liner bases in  $K[x_1, x_2, ...]$ , where  $K = \mathbb{Z}[q_1, q_2, ...]$ .

#### Quantization map

Define the K-liner map  $\psi$  :  $K[x_1,x_2,\dots] \to K[x_1,x_2,\dots]$  by

$$\psi: e_I \longmapsto E_I \text{ for all } I$$

**Remark.**  $\psi$  induces a map

$$K^n[x_1,\ldots,x_n]/I_n\longrightarrow K^n[x_1,\ldots,x_n]/I_n^q$$
 where  $K^n=\mathbb{Z}[q_1,\ldots,q_{n-1}].$ 

### **Quantum Schubert polynomials:**

$$\mathfrak{S}_w^q := \psi(\mathfrak{S}_w)$$

**Theorem** [FGP] The quantum Schubert polynomial  $\mathfrak{S}_w^q$  represents the Schubert class  $\sigma_w$  in

$$QH^* \simeq \mathbb{Z}[x_1, \dots, x_n][q_1, \dots, q_{n-1}]/I_n^q.$$

#### **Example**

One can easily calculate the  $\mathfrak{S}_w^q$  using the divided differences  $\partial_i$ .

$$\mathfrak{S}_{4321} = \mathfrak{S}_{w_0} = e_{123};$$
 $\mathfrak{S}_{3421} = \partial_1 \mathfrak{S}_{w_0} = \partial_1 e_{123} = e_{023};$ 
 $\mathfrak{S}_{3412} = \partial_3 e_{023} = (e_2^2)^2 = e_{022} - e_{013}.$ 

$$\mathfrak{S}_{3412}^{q}$$

$$= E_{022} - E_{013}$$

$$= x_1^2 x_2^2 + 2q_1 x_1 x_2 - q_2 x_1^2 + q_1^2 + q_1 q_2.$$



# Quantum Schubert polynomials for $S_3$

#### **Axiomatic approach**

The following properties of the  $\mathfrak{S}^q_w$  follow from their geometric definition:

**Axiom 1.** Homogeneity:  $\mathfrak{S}_w^q$  is a homogeneous polynomial of degree l(w) in  $x_1, \ldots, x_n$ ,  $q_1, \ldots, q_{n-1}$ , assuming  $\deg(x_i) = 1$  and  $\deg(q_i) = 2$ .

**Axiom 2.** Classical limit: Specializing  $q_1 = \cdots = q_{n-1} = 0$  yields  $\mathfrak{S}_w^q = \mathfrak{S}_w$ .

Axiom 3. Positivity of GW-invariants:

The  $c_{uv}^w$  in

$$\mathfrak{S}_u^q \, \mathfrak{S}_v^q = \sum_w c_{uv}^w \, \mathfrak{S}_w^q$$

are polynomials in the  $q_i$  with positive integer coefficients.

Axiom 4. Quantum elementary polynomials:

For a cycle 
$$w = s_{k-i+1} \dots s_k$$
, we have

$$\mathfrak{S}_w^q = E_i(x_1, \dots, x_k).$$

Proved by [Ciocan-Fontanine].

**Theorem** [FGP] The polynomials  $\mathfrak{S}_w^q$  (modulo the ideal  $I_n^q$ ) are uniquely determined by Axioms 1–4.

**Conjecture** The polynomials  $\mathfrak{S}_w^q$  (mod  $I_n^q$ ) are uniquely determined by Axioms 1–3.

Checked for  $S_3$  and  $S_4$ .

#### **Quantum Monk's formula**

Let  $t_{ab} = (a, b) = s_a s_{a+1} \dots s_{b-1} \dots s_a$  (transposition).

#### Theorem [FGP] We have

$$\mathfrak{S}_{sr}^q \mathfrak{S}_w^q = \sum \mathfrak{S}_{wt_{ab}}^q + \sum q_c q_{c+1} \dots q_{b-1} \mathfrak{S}_{wt_{cd}}^q$$

where the first sum is over  $a \le r < b$  such that  $l(wt_{ab}) = l(w) + 1$  and the second sum is over  $c \le r < d$  such that  $l(wt_{cd}) = l(w) - l(t_{cd})$ .

Note that  $\mathfrak{S}_{s_r}^q = \mathfrak{S}_{s_r} = x_1 + \dots + x_r$ .

#### Commuting operators approach

Define the operators on  $K[x_1, x_2, ...]$ 

$$X_k = x_k - \sum_{i < k} q_{ij} \partial_{(ij)} + \sum_{j > k} q_{kj} \partial_{(kj)}$$

where  $\partial_{(ij)} = \partial_i \partial_{i+1} \dots \partial_{j-1} \dots \partial_{i+1} \partial_i$ and  $q_{ij} = q_i q_{i+1} \dots q_{j-1}$ .

#### Theorem [FGP]

- The operators  $X_k$  commute pairwise and  $K[X_1, X_2, ...]$  is a free abelian group.
- For any  $g \in K[x_1,x_2,\dots]$  there is a unique polynomial  $G \in K[X_1,X_2,\dots]$  such that  $G: 1 \mapsto g.$
- The map  $g \mapsto G$  is the quantization map  $\psi$ . In particular,  $e_I \mapsto E_I$  and  $\mathfrak{S}_w \mapsto \mathfrak{S}_w^q$ .
- $X_i$  induces the operator of quantum multiplication by  $x_i$  in  $\mathbb{Z}[x_i,q_j]/I_n \simeq \mathsf{H}^* \otimes \mathbb{Z}[q_j].$

#### **Examples:**

$$X_{i}(1) = x_{i},$$

$$X_{1}X_{1}(1) = x_{1}^{2} + q_{1},$$

$$X_{i}X_{i}(1) = x_{i}^{2} - q_{i-1} + q_{i}, \quad i > 1$$

$$X_{i}X_{i+1}(1) = X_{i+1}X_{i}(1) = x_{i}x_{i+1} - q_{i},$$

$$X_{1}X_{1}X_{1}(1) = x_{1}^{3} + 2q_{1}x_{1} + q_{1}x_{2}.$$

#### Thus we obtain

$$\psi: x_{i} & \longmapsto x_{i}, 
\psi: x_{1}^{2} & \longmapsto x_{1}^{2} - q_{1}, 
\psi: x_{i}^{2} & \longmapsto x_{i}^{2} + q_{i-1} - q_{i}, \quad i > 1 
\psi: x_{i}x_{i+1} & \longmapsto x_{i}x_{i+1} + q_{i}, 
\psi: x_{1}^{3} & \longmapsto x_{1}^{3} - 2q_{1}x_{1} - q_{1}x_{2}.$$

# Three definitions of $\mathfrak{S}_w^q$ :

- 1.  $\mathfrak{S}_w^q$  represents  $\sigma_w$  in QH\*.
- 2. Quantization map  $\psi: e_I \mapsto E_I$ .
- 3.  $\psi : g(x_1, x_2, \dots) \mapsto G(X_1, X_2, \dots)$ .