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1. Flag Manifold

Fl, = FI(C"™) flag manifold. Points are

UpcU,cC---CcU,=0C", dimU; = 1.

Homomorphism « : Z[xq,...,xn] — H*(Fln,7Z)
a @ — —c1(&/Ei_1) € HA(Fly),

where 0 =& C & C - C &1 CE,=C
are tautological vector bundles on Fli,,
and cq is the first Chern class.

Theorem [A. Borel, 1953] The map « in-
duces the isomorphism

where I, = (eq1,...,en) is the ideal gener-
ated by elementary symmetric polynomials in

LlyeeesLn.



Schubert Classes

Another description of H*(Fl,) is based on
a decomposition of F'l,, into Schubert cells,
labelled by permutations w € Sy,

FixaflagVyCcVoC---CV,=C".
The Schubert variety €2 is the set of all flags
U. € Fly such that for all p,q € {1,...,n}

dim(UpNVg) > #{1 <i <p,w(i) >n+1-q}

Then codimp$2y = 2I(w), where I(w) is the
length of w.

Schubert class:

ow = [Qu] € Hy(n_1y_0(Fln) = HZ(Fly)

Theorem [Ehresmann, 1934] The classes
ow, w € Sy, form an additive basis in H*(Fl, ,Z).

In particular, dimH*(Fl,) = n!.



Q: How to multiply Schubert classes?

Q’: How to express a Schubert class in terms
of generators x;.

Answer (due to Bernstein, Gelfand,Gelfand)
can be given in terms of divided differences.

Divided differences

Sp acts on f € Z[x1,...,xn] by

’LUf(ZE]_, “ . ,a:n) — f(aj‘w_]_(l), “ . ,aj‘w_]_(n)).

Let s;, = (4,7 + 1) € S, (adjacent transposi-
tion).

T he divided difference operators are given by

1
O;f = (L—s;)f

Lj — Li41




Schubert polynomials

Define the Schubert polynomials Gy, w € Sp,
recursively by

— -1 _n-2
Suwg =7 "x5 “...Tp_1,

(the choice of Lascoux—Schiitzenberger [1982])
where wg = (n—1,n—2,...,1) is the longest
permutation in S,, and

Sws; = 0;6w whenever [(ws;) = l(w) — 1.

Theorem [BGG, 1973] &y, represents Schu-
bert class oy.



Gs15p = w122 Gisy = a1

Sig=1

Schubert polynomials for S3



2. Gromov-Witten Invariants
and Quantum Cohomology

(see [Ruan-Tian, Kontsevich-Manin])

Structure constants of the quantum coho-
mology ring QH*(X) are the Gromov-Witten
invariants (for genus 0).

An algebraic map f: P! — Fi, has
multidegree d = (dy,...,dy—1) € Z'{ 1,
d;, = degree of f; : P! — Fl, — Gr(n,i).

My(PL, Fl,,) = moduli space of such maps.
For Y C Fl,, t € Pl denote

Y(t) = {f € Mg(PL, Fly) | f(t) € Y}.

Gromov-Witten invariants: Fix ¢y, to,t3 € PL.

<0u,(71), O‘w>d = F# /ﬁu(tl) M /ﬁv(tg) M /ﬁw(tg,)

provided I(u) +1(v) 4+ 1(w) = dim M (PL, Fi,)
Qu, 24, 2w are generic translates of €24, 24, 24.

7



Quantum multiplication

As an abelian group

Let *x : QH*QQH* — QH* be the Z[q1,...,q,-1]-
linear operation defined by

Oy * Oy = Z qu <O'fu,70'fu,0-wwo>d Ow-

Then (QH*, %) is a commutative and associative
algebra called the quantum cohomology ring
of Fl.

Remark: (ou,ov,0uw) (g, o) IS the ordinary
intersection number. If we specialize

q1 = ---=q,—1 = 0, the operation x becomes
the standard multiplication in H*(Fl)

(the ‘“classical limit").



Quantum analogue of Borel's theorem

Let Eq,...,E, be the quantum elementary
polynomials defined to be the coefficients of
the characteristic polynomial of the matrix

(a;l gqg O --- O 0
_1 x2 QQ e o o O O
0 -1 z3 --- O 0
0 O 0 - xp-1 gn-1

\ 0 0 0 -+ -1 =

Example: n =3

Ei1 = z1+ 20+ 73,
Ey = x1x0 + 2173 + T2X3 + 91 + 92,
Esz = xi1x073 4+ q173 1+ qo71.

Theorem [Givental, Kim, Ciocan-Fontanine,
1993—-1996] There is a canonical isomor-
phism

Zlz1, .- 20, q1s- - dn—1]/ I — QH*(Fln , Z)

where I}l be the ideal generated by E1, ..., En.
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3. Main Results

Q: How to multiply Schubert classes in QH*?

Q’: How to calculate the Gromov-W.itten in-
variants (ow, ov,0w)g ¢

Q" : How to express gy in terms of x; in the
ring QH*.

112

H*(Fln) ® Z|g;] Llxi, 51/ In
f ?

QH*(Fln) 2 Zlz;,q;]/18

We will construct the isomorphism

Zlx;, q5]/In — Zlxs, 51/ I}

( “quantization map")

10



Standard elementary monomials

ef = the ith elementary symmetric polyno-
mial in z1,...,2; and

EF = the ith quantum elementary polynomial

in z1,...,2g.

FOrI:(’I:]_,’I:Q,...,?;n_]_), ngpgp

.1 .2 n—1
6[ —_— 6,&1612 .« o ein—]_,

— 1l 2 —1

In—1

Lemma Both {e;} and {E;} are K-liner
basesin K[z1,zo,...], where K = Z[q1,q>, ...].
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Quantization map

Define the K-liner map ¢ : Klz1,22,...] —
Klzy,z2,...] by

v er— Eyp for all 1

Remark. v induces a map

K"x1,...,2n)/In — K"[x1,...,2n]/I]

where K™ = Z|q1,...,qn—1].

Quantum Schubert polynomials:

Define Sl = Y(Gy)

Theorem [FGP] The quantum Schubert poly-
nomial &, represents the Schubert
class oy IN

QH* ~ Z[z1,. .., zalla1, -, an 1]/ 12

12



Example

One can easily calculate the &, using the
divided differences 0.

G4321 = Gwy = €123;
63421 = 016wy = 01€123 = €023;
_ N2
S3412 = 03e023 = (€5)° = ep22 — €013-

63412
Eooo — Ep13
= xlwg + 2q1T172 — qzwl + q1 + q192.
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Sy = r122 + 121

Sisp, = z170 + 01

621 — I1 66812 = x1 + 2

q __
6id_

Quantum Schubert polynomials for S3

14



AXxiomatic approach

The following properties of the &%, follow
from their geometric definition:

Axiom 1. Homogeneity: &4, is a homoge-

neous polynomial of degree I(w) in x1,...,Zn,
qi,---,qn—1, assuming deg(x;) = 1 and
deg(q;) = 2.

Axiom 2. Classical limit: Specializing
g1 = =gq,_1 =0 yields G}, = &y.

Axiom 3. Positivity of GW-invariants:
The ¢, In

&% 68 =) _ cuy &
w

are polynomials in the g; with positive integer
coefficients.

AXiom 4. Quantum elementary polynomials:

For a cycCle w = sp_;41...8;, we have
6% = Ei(x1,..., o).

Proved by [Ciocan-Fontanine].
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Theorem [FGP] The polynomials &%, (mod-
ulo the ideal Lf{) are uniquely determined by
Axioms 1—4.

Conjecture The polynomials &%, (mod I;})
are uniquely determined by Axioms 1-3.

Checked for S3 and S;.
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Quantum Monk’s formula

Let t,, = (a,b) = sasq41---5p—1---5a (trans-
position).

Theorem [FGP] We have

G616, =2 64 +D dtct1---B-185;

where the first sum is over a < r < bsuch that
[(wty,) = I(w)+1 and the second sum is over
c <r <d such that I(wt.y) = l(w) — I(t.q).

Note that &1 =G&;, =21+ -+ + .
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Commuting operators approach

Define the operators on Klz1,z»o,...]

X =T — Z Qija(z’j) + Z ija(kj)

i<k >k

where a(w) = 82'(97;4_1 ce (9]'_1 ce 8z'—|—18i
and ¢;; = ¢;j¢i+1---9j—1-

Theorem [FGP]
e The operators X; commute pairwise and
K[X1,X5,...] is a free abelian group.

e For any g € K[xz1,xo,...] there is a unique
polynomial G € K[X1,X»,...] such that
G:1l—g.

e The map g+— G is the quantization map .
In particular, e — E; and Gy — &Y.

e X, induces the operator of quantum mul-
tiplication by z; in Z[xz;, q;]/In ~ H* ® Z[q;].
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Examples:

X;(1) =
X1X1(1) = 2%+ q1,
XiXi(1) = a7 —qi1+a, i>1
XiXi11(1) = X1 X(1) = 21 — @i
X1X1X1(1) = 2342171 + q170.

Thus we obtain

Yo — T,

oo wg — $ —q1,

Y w2 — 24+ qi_1—¢q, i>1
Yowimi] L%l T G

Yioa3 — 23 — 2q171 — q1%2.
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Three definitions of &;:

1. &1, represents oy in QH*.

2. Quantization map ¢ : ef — Ej.

3. ¢¥: glx1,z0,...) — G(X1, X0, ...

).
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