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Permutohedron

Pn(x1, . . . , xn+1) := ConvexHull((xw(1), . . . , xw(n+1)) | w ∈ Sn+1)

This is a convex n-dimensional polytope in H ⊂ R
n+1.

Example: n = 2 (type A2)

P2(x1, x2, x3) =

(x1, x2, x3)

More generaly, for a Weyl group W , PW (x) := ConvexHull(w(x) | w ∈ W ).
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Question: What is the volume Vn := Vol Pn?

Volume form is normalized so that the volume of a parallelepiped formed by generators

of the lattice Z
n+1 ∩ H is 1.

Question: What is the number of lattice points Nn := Pn ∩ Z
n+1?

We will see that Vn and Nn are polynomials in x1, . . . , xn+1 of degree n.

The polynomial Vn is the top homogeneous part of Nn. The Ehrhart

polynomial of Pn is E(t) = Nn(tx1, . . . , txn), and Vn is its top coefficient.

We will give 3 totally different formulas for these polynomials.
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Special Case:

Pn(n + 1, n, . . . , 1) = ConvexHull((w(1), ..., w(n + 1)) | w ∈ Sn+1)

is the most symmetric permutohedron.

regular hexagon

subdivided into 3 rhombi

It is a zonotope = Minkowsky sum of line intervals.

Well-known facts:

➠ Vn(n + 1, . . . , 1) = (n + 1)n−1 is the number of trees on n + 1 labelled

vertices. Pn(n + 1, . . . , 1) can be subdivided into parallelepipeds of

unit volume associated with trees. This works for any zonotope.

➠ Nn(n + 1, . . . , 1) is the number of forests on n + 1 labelled vertices.
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First Formula

Fix any distinct numbers λ1, . . . , λn+1 such that λ1 + · · · + λn+1 = 0.

Vn(x1, . . . , xn+1) =
1

n!

∑

w∈Sn+1

(λw(1)x1 + · · · + λw(n+1)xn+1)
n

(λw(1) − λw(2))(λw(2) − λw(3)) · · · (λw(n) − λw(n+1))

Notice that the symmetrization in RHS does not depends on λi’s.

Idea of Proof Use Khovansky-Puchlikov’s method:

➠ Instead of just counting the number of lattice points in P , define [P ] =

sum of formal exponents ea over lattice points a ∈ P ∩ Z
n.

➠ Now we can work with unbounded polytopes. For example, for a

simplicial cone C, the sum [C] is given by a simple rational expression.

➠ Any polytope P can be explicitly presented as an alternating sum of

simplicial cones: [P ] = [C1] ± [C2] ± · · ·.

Applying this procedure to the permutohedron, we obtain . . .
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Let α1, . . . , αn be a system of simple roots for Weyl group W , and

let L be the root lattice.

Theorem: For a dominant weight µ,

[PW (µ)] :=
∑

a∈PW (µ)∩(L+µ)

ea =
∑

w∈W

ew(µ)

(1 − e−w(α1)) · · · (1 − e−w(αn))

Compare this with Weyl’s character formula!

Note: LHS is obtained from the character ch Vµ of the irrep Vµ by replacing

all nonzero coefficients with 1. In type A, ch Vµ = Schur polynomial sµ.

From this expression, one can deduce the First Formula and also its gen-

eralizations to other Weyl groups.

6



Second Formula

Let us use the coordinates y1, . . . , yn+1 related x1, . . . , xn+1 by






































y1 = −x1

y2 = −x2 + x1

y3 = −x3 + 2x2 − x1

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

yn+1 = −
(

n

0

)

xn +
(

n

1

)

xn−1 − · · · ±
(

n

n

)

x1

and write Vn = Vol Pn(x1, . . . , xn+1) as a polynomial in y1, . . . , yn+1.

Examples:

V1 = Vol ([(x1, x2), (x2, x1)]) = x1 − x2 = y2

V2 = · · · = 3 y2
2 + 3 y2 y3 + 1

2
y2

3
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Theorem:

Vn(x1, . . . , xn+1) =
1

n!

∑

(S1,...,Sn)

y|S1| · · · y|Sn|,

where the sum is over ordered collections of subsets S1, . . . , Sn ⊂ [n + 1]

such that either of the following equivalent conditions is satisfied:

➠ For any distinct i1, . . . , ik, we have |Si1 ∪ · · · ∪ Sik | ≥ k + 1

(cf. Hall’s Marriage Theorem)

➠ For any j ∈ [n + 1], there is a system of distinct representatives in

S1, . . . , Sn that avoids j.

Thus n! Vn is a polynomial in y2, . . . , yn+1 with positive integer coefficients.
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This formula can be extended to generalized permutohedra

a generalized permutohedron

Generalized permutohedra are obtained from usual permutohedra by mov-

ing faces while preserving all angles.

this is also

a generalized permutohedron
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Generalized Permutohedra

Coordinate simplices in R
n+1: ∆I = ConvexHull(ei | i ∈ I), for I ⊆ [n+1].

Let Y = {YI} be the collection of variables YI ≥ 0 associated with all

subsets I ⊂ [n + 1]. Define

Pn(Y) :=
∑

I⊂[n+1]

YI · ∆I (Minkowsky sum)

Its combinatorial type depends only on the set of I’s for which YI 6= 0.

Examples:

➠ If YI = y|I|, then Pn(Y) is a usual permutohedron.

➠ If YI 6= 0 iff I is a consecutive interval, then Pn(Y) is an associahedron.

➠ If YI 6= 0 iff I is a cyclic interval, then Pn(Y) is a cyclohedron.

➠ If YI 6= 0 iff I is a connected set in Dynkin diagram, then Pn(Y) is a

generalized associahedron related to DeConcini-Procesi’s work.

(Do not confuse with Fomin-Zelevinsky’s generalized associahedra!)

➠ If YI 6= 0 iff I is an initial interval {1, . . . , i}, then Pn(Y) is the

Stanley-Pitman polytope.
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Theorem: The volume of the generalized permutohedron is given by

Vol Pn(Y) =
1

n!

∑

(S1,...,Sn)

YS1 · · ·YSn
,

where S1, . . . , Sn satisfy the same condition.

Theorem: The # of lattice points in the generalized permutohedron is

Pn(Y) ∩ Z
n+1 =

1

n!

∑

(S1,...,Sn)

{YS1 · · ·YSn
},

{

∏

I

Y aI

I

}

:= (Y[n+1]+1){a[n+1]}
∏

I 6=[n+1]

Y
{aI}
I , where Y {a} = Y (Y +1) · · · (Y +a−1).

This extends a formula from [Stanley-Pitman] for the volume of their

polytope. In this case, the above summation is over parking functions.
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We also have a combinatorial description of face structure of generalized

permutohedra in terms of nested collections of subsets in [n + 1]. This is

related to DeConcini-Procesi’s wonderful arrangements.

Not enough time for this now.

The most interesting part of the talk is . . .
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Third Formula

Let use the coordinates z1, . . . , zn related to x1, . . . , xn+1 by

z1 = x1 − x2, z2 = x2 − x3, · · · , zn = xn − xn+1

These coordinates are canonically defined for an arbitrary Weyl group.

Then the permutohedron Pn is the Minkowsky sum

Pn = z1 ∆1n + z2 ∆2n + · · · + zn ∆nn

of hypersimplices ∆kn = Pn(1, . . . , 1, 0, . . . , 0) (with k 1’s).

+ =
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This implies

Vol Pn =
∑

c1,...,cn

Ac1,...,cn

zc1
1

c1!
· · ·

zcn

n

cn!
,

where the sum is over c1, . . . , cn ≥ 0, c1 + · · · + cn = n, and

Ac1,...,cn
= MixedVolume(∆c1

1n, . . . , ∆
cn

nn) ∈ Z>0

In particular, n! Vn is a positive integer polynomial in z1, . . . , zn.

Let us call the integers Ac1,...,cn
the Mixed Eulerian numbers.

Examples:

V1 = 1 z1

V2 = 1
z2
1

2
+ 2 z1z2 + 1

z2
2

2

V3 = 1
z3
1

3!
+ 2

z2
1

2
z2 + 4 z1

z2

2
+ 4

z3
2

3!
+ 3

z2
1

2
z3 + 6 z1z2z3+

+4
z2
2

2
z3 + 3 z1

z2
3

2
+ 2 z2

z2
3

2
+ 1

z3
3

3!

(The mixed Eulerian numbers are marked in red.)
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Properties of Mixed Eulerian numbers:

➠ Ac1,...,cn
are positive integers defined for c1, . . . , cn ≥ 0, c1+· · ·+cn = n.

➠
∑

1
c1!···cn!

Ac1,...,cn
= (n + 1)n−1.

➠ A0,...,0,n,0,...,0 (n is in k-th position) is the usual Eulerian number Akn

= # permutations in Sn with k descents = n! Vol ∆kn.

➠ A1,...,1 = n!

➠ Ak,0,...,0,n−k =
(

n

k

)

➠ Ac1,...,cn
= 1c12c2 · · ·ncn if c1 + · · · + ci ≥ i, for i = 1, . . . , n.

There are exactly Cn = 1
n+1

(

2n

n

)

such sequences (c1, . . . , cn).

When I showed these numbers to Richard Stanley, he conjectured that

➠
∑

Ac1,...,cn
= n! Cn.

Moreover, he conjectured that . . .
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One can subdivide all sequences (c1, . . . , cn) into Cn classes such that the

sum of mixed Eulerian numbers for each class is n!. For example, A1,...,1 =

n! and An,0,...,0 +A0,n,0,...,0 +A0,0,n,...,0 + · · ·+A0,...,0,n = n!, because the sum

of Eulerian numbers
∑

k Akn is n!.

Let us write (c1, . . . , cn) ∼ (c′1, . . . , c
′
n) iff (c1, . . . , cn, 0) is a cyclic shift of

(c′1, . . . , c
′
n, 0). Stanley conjectured that, for fixed (c1, . . . , cn), we have

∑

(c′

1,...,c′

n)∼(c1,...,cn)

Ac′

1,...,c′

n
= n!

Exercise: Check that there are exactly Cn equivalence classes of sequences.

Every equivalence class contains exactly one sequence (c1, . . . , cn) such that

c1+· · ·+ci ≥ i, for i = 1, . . . , n. (For this sequence, Ac1,...,cn
= 1c1 · · ·ncn.)

These conjectures follow from . . .
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Theorem: Let Un(z1, . . . , zn+1) = Vol Pn. (It does not depend on zn+1.)

Un(z1, . . . , zn+1) + Un(zn+1, z1, . . . , zn) + · · · + Un(z2, . . . , zn+1, z1) =

= (z1 + · · · + zn+1)
n

This theorem has a simple geometric proof. It extends to any Weyl group.

Cyclic shifts come from symmetries of type A extended Dynkin diagram.

Idea of Proof:

The area of blue triangle is 1
6

sum of the areas of three hexagons.
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Corollary: Fix z1, . . . , zn+1, λ1, . . . , λn+1 such that λ1 + · · · + λn+1 = 0.

Symmetrizing the expression

1

n!

(λ1z1 + (λ1 + λ2)z2 + · · · (λ1 + · · · + λn+1)zn+1)
n

(λ1 − λ2) · · · (λn − λn+1)

with respect to (n + 1)! permutations of λ1, . . . , λn+1 and (n + 1) cyclic

permutations of z1, . . . zn+1, we obtain

(z1 + · · · + zn+1)
n.

Problem: Find a direct proof.
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Combinatorial interpretation for Ac1,...,cn

z7T =

2
6

3

84

7
z7

z3

z1

1

8

7

6

5

3

4

2

15

z4

z4

z8

z3

a plane binary tree on n nodes

zT = z3z4z8z7z1z7z4z3

(the order is given by green labels)

➠ The nodes are labelled by 1, . . . , n such that, for a node labelled l,

labels of all in the left (right) branch are less (greater) than l. The

labels of all descendants of a node form a consecutive interval I = [a, b].

➠ We have an increasing labelling of the nodes by 1, . . . , n.

➠ Each node is labeled by zi such that i ∈ I; zT := product of all zi’s.

➠ The weight of a node labelled by l and zi with interval [a, b] is i−a+1
l−a+1

if i ≤ l, and b−i+1
b−l+1

if i ≥ l. The weight wt(T ) of tree is the product of

weights of its nodes.
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Theorem: The volume of the permutohedron is

Vn =
∑

T

wt(T ) · zT

where the sum is over plane binary trees with blue, red, and green labels.

Combinatorial interpretation for the mixed Eulerian numbers:

Theorem: Let zi1 · · · zin = zc1
1 · · · zcn

n . Then

Ac1,...,cn
=

∑

T

n! wt(T )

over same kind of trees T such that zT = zi1 · · · zin (in this order).

Note that all terms n! wt(T ) in this formula are positive integer.

Comparing different formulas for Vn, we obtain a lot of interesting combi-

natorial identities. For example . . .

20



Corollary:

(n + 1)n−1 =
∑

T

n!

2n

∏

v∈T

(

1 +
1

h(v)

)

,

where is sum is over unlabeled plane binary trees T on n nodes, and h(v)

denotes the “hook-length” of a node v in T , i.e., the number of descendants

of v (including v).

Example: n = 3

1

3 3 3

1

3

1

3

2

11

hook-lengths of binary trees

222
1

The identity says that

(3 + 1)2 = 3 + 3 + 3 + 3 + 4.

Problem: Prove this identity combinatorially.
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