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| Permutohedron I

Py (1, ..., 2n41) 1= ConvexHull((zw(1), - - -, Twm+1)) | W € Spt1)

This is a convex n-dimensional polytope in H C R"**1.

Example: n =2 (type As)

(1’1, X2, .I'g)

P2(33173327333) =

More generaly, for a Weyl group W, Py (z) := ConvexHull(w(z) | w € W).



Question: What is the volume V,, := Vol P,?

Volume form is normalized so that the volume of a parallelepiped formed by generators

of the lattice Z" ™! N H is 1.
Question: What is the number of lattice points N,, := P, N Z"™1?

We will see that V,, and N,, are polynomials in x,..., 2,1 of degree n.
The polynomial V,, is the top homogeneous part of N,. The Ehrhart
polynomial of P, is E(t) = N,(txy,...,tx,), and V, is its top coefficient.

We will give 3 totally different formulas for these polynomials.



Special Case:

P,(n+1,n,...,1) = ConvexHull((w(1),...,w(n+ 1)) | w € Sp11)

is the most symmetric permutohedron.

regular hexagon

subdivided into 3 rhombi

It is a zonotope = Minkowsky sum of line intervals.

Well-known facts:

O V,(n+1,...,1) = (n+1)"! is the number of trees on n + 1 labelled
vertices. P,(n + 1,...,1) can be subdivided into parallelepipeds of

unit volume associated with trees. This works for any zonotope.

0 Np(n+1,...,1) is the number of forests on n 4 1 labelled vertices.
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| First Formula I

Fix any distinct numbers Ay, ..., A\,1 such that A\ +---+ X\,,;1 = 0.

1 Z ()\w(l)ilfl + -+ )\w(n+1)xn+1)”
(Aw(1) = Aw@) (Awe) = Awd)) - (Awm) — Awm1))

Notice that the symmetrization in RHS does not depends on A;’s.

Idea of Proof Use Khovansky-Puchlikov’s method:

[J Instead of just counting the number of lattice points in P, define [P] =

sum of formal exponents e® over lattice points a € P N Z".

[0 Now we can work with unbounded polytopes. For example, for a

simplicial cone C', the sum |[C'] is given by a simple rational expression.

[J Any polytope P can be explicitly presented as an alternating sum of
simplicial cones: |[P] = [C1] £ |[Co] £ ---.

Applying this procedure to the permutohedron, we obtain ...



Let aq, ..., a, be a system of simple roots for Weyl group W, and
let L be the root lattice.

Theorem: For a dominant weight u,

ew (1)

P (1)) = Z e’ = Z (1 —ewl@)) ... (1 — e—wlan))

a€ Py (1) (LA+p) weW

Compare this with Weyl’s character formula!

Note: LHS is obtained from the character ch V), of the irrep V), by replacing

all nonzero coeflicients with 1. In type A, ch V,, = Schur polynomial s,,.

From this expression, one can deduce the First Formula and also its gen-

eralizations to other Weyl groups.



| Second Formula I

Let us use the coordinates y1, ..., yns1 related xq, ..., 01 by
(
Y = —11
Yo = —To + T
\ Y3 = —T3+ 213 — 14
L Y = —(5) @+ (7) 2o — £ () 1
and write V,, = Vol P,(x1,...,%,41) as a polynomial in yy,..., %1
Examples:

Vi = Vol ([(z1,22), (x2,21)]) =21 — T3 = ¥



Theorem:

Vn(xla xn-l—l E y‘Sl‘ y|Sn|7
(517 7STL

where the sum is over ordered collections of subsets S1,...,S, C [n + 1]

such that either of the following equivalent conditions is satisfied:

[0 For any distinct i1, ..., 4, we have |S;; U---US;, | > k+1
(cf. Hall’s Marriage Theorem)

[0 For any j € [n + 1], there is a system of distinct representatives in
Si1,...,5, that avoids j.

Thus n!V,, is a polynomial in y», . . ., y,.1 With positive integer coefficients.



This formula can be extended to generalized permutohedra

a generalized permutohedron

A 2

Generalized permutohedra are obtained from usual permutohedra by mov-

ing faces while preserving all angles.

this i1s also

a generalized permutohedron
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Generalized Permutohedra

Coordinate simplices in R"*': A; = ConvexHull(e; | i € I), for I C [n+1].
Let Y = {Y7} be the collection of variables Y; > 0 associated with all
subsets I C [n + 1]. Define

Z Y- A (Minkowsky sum)
IC[n+1]

Its combinatorial type depends only on the set of I’s for which Y; # 0.

Examples:

[]

[]
[]
[]

If Y7 = y7, then P,(Y) is a usual permutohedron.
If Y7 # 0iff [ is a consecutive interval, then P,(Y) is an associahedron.
If Y7 # 0 iff I is a cyclic interval, then P,(Y) is a cyclohedron.

If Y7 # 0 iff I is a connected set in Dynkin diagram, then P,(Y) is a
generalized associahedron related to DeConcini-Procesi’s work.
(Do not confuse with Fomin-Zelevinsky’s generalized associahedral)

If Y # 0 iff I is an initial interval {1,...,7}, then P,(Y) is the
Stanley-Pitman polytope.
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Theorem: The volume of the generalized permutohedron is given by

where Sy, ..., 5, satisty the same condition.

Theorem: The # of lattice points in the generalized permutohedron is

{H Y;”} = (Ve +1) et T Y1 where Y = Y(Y+1) - (Y4a—1).
I#[n+1]

This extends a formula from [Stanley-Pitman| for the volume of their

polytope. In this case, the above summation is over parking functions.
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We also have a combinatorial description of face structure of generalized
permutohedra in terms of nested collections of subsets in [n + 1]. This is

related to DeConcini-Procesi’s wonderful arrangements.

Not enough time for this now.

The most interesting part of the talk is ...

12



| Third Formula I

Let use the coordinates z1, ..., 2, related to x,...,x,+1 by
21 =1 — Tg, 29 =Tg — T3, ***, Zn = Ty — Tpil
These coordinates are canonically defined for an arbitrary Weyl group.
Then the permutohedron P, is the Minkowsky sum
P,=z21A1, + 2080, + -+ 2, A

of hypersimplices Ay, = P,(1,...,1,0,...,0) (with k£ 1’s).

P N
A 4
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This implies

C1

Z 2"
Vol P, = E Agpe, v 0

Cl! :

Cl,...,Cn

where the sum is over ¢q,...,¢, >0, ¢y +---+ ¢, = n, and

A., .. e, = MixedVolume (A7}

Iny > AZZ) = Z>0
In particular, n!V,, is a positive integer polynomial in 21, ..., z,.
Let us call the integers A, ., the Mixed Fulerian numbers.

Examples:

V1=121

V2—1 +221z2+1

V—1Z1—|—2 z2—|—42122—|—43,—|—3—z3—|—621z2z3—|—
—|—4—2z3—|—3212—|—222 —|—1

(The mixed Eulerian numbers are marked in red.)
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Properties of Mixed Eulerian numbers:

[ A, ., are positive integers defined for ¢y, ..., ¢, > 0, c1 4+ 4¢, = n.

L] Z ﬁ Acl,...,cn — (n + 1)71—1.

O Ao .0mo..0 (nisin k-th position) is the usual Eulerian number A,

— # permutations in S,, with k& descents = n! Vol Ay,,.
L Al,...,l = n!
L] Ak,O,...,O,n—k — (Z)
0 Ao, =122 .n ity +---+¢ >4, fore=1,...,n.

1

2n
n_—i-l (n) SUCh sequences (Cl, Ce e Cn)-

There are exactly C,, =

When I showed these numbers to Richard Stanley, he conjectured that
O > A, =nlC.

Moreover, he conjectured that ...
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One can subdivide all sequences (cy, ..., ¢,) into C), classes such that the
sum of mixed Eulerian numbers for each class is n!. For example, A; ;1 =
ntand Ao 0+ Aono,..0+ Aoom,..0+ -+ Ao o0n = nl, because the sum

of Eulerian numbers ) |, Ay, is n!.

Let us write (c1,...,¢,) ~ (c},...,c,) iff (c1,...,¢n,0) is a cyclic shift of

(c},...,c ,0). Stanley conjectured that, for fixed (cy,...,c,), we have

Z Ac’l,...,cfn = n!
(c),.nch)~(c1,....cn)
Exercise: Check that there are exactly C,, equivalence classes of sequences.
FEvery equivalence class contains exactly one sequence (c1, . .., ¢,) such that
c1+--+c; >4, fori =1,...,n. (Forthis sequence, A, . ., = 1 ---n.

These conjectures follow from ...
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Theorem: Let U,(z1,...,2,41) = Vol P,. (It does not depend on z,.1.)

Un(Zl, Ce e Zn_|_1) —+ Un(zn—l—lp K1y e ooy Zn) —+ -+ Un<22, N A I Zl) =
— (Zl—l—_|_zn+1)n

This theorem has a simple geometric proof. It extends to any Weyl group.

Cyeclic shifts come from symmetries of type A extended Dynkin diagram.

VA
s A
A

1

The area of blue triangle is & sum of the areas of three hexagons.

Idea of Proof:
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Corollary: Fix z1,..., Zn11, M, ..., Apeq such that Ay +--- 4+ A\, = 0.

Symmetrizing the expression

1 ()\121 -+ ()\1 + )\2)22 4+ ... ()\1 4+t )\n+1)zn+1)n

n! ()\1 — )\2) s ()\n — >\n—|—1)

with respect to (n + 1)! permutations of Ay, ..

permutations of zq,...z2,,1, we obtain

(21 + -+ 2pg)".

Problem: Find a direct proof.

.y Ana1 and (n + 1) cyclic
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Combinatorial interpretation for A, .

a plane binary tree on n nodes

ZT — Z3RYR{RTRIRTRARS

(the order is given by green labels) 3 76

[ The nodes are labelled by 1,...,n such that, for a node labelled [,
labels of all in the left (right) branch are less (greater) than [. The

labels of all descendants of a node form a consecutive interval I = |a, b).
[1 We have an increasing labelling of the nodes by 1,....n.
[0 Each node is labeled by z; such that i € I; 2z := product of all z’s.

[1 The weight of a node labelled by [ and z; with interval [a, b] is %

if 1 <1, and Z:'g—ﬁ if i > . The weight wt(T') of tree is the product of

weights of its nodes.
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Theorem: The volume of the permutohedron is

where the sum 1s over plane binary trees with blue, red, and green labels.

Combinatorial interpretation for the mixed Eulerian numbers:

Theorem: Let z;, ---2z;, = 2{"---z5". Then

Acl,...,cn — Z n! wt<T)
T

over same kind of trees T such that z' = z; -+ z; (in this order).

Note that all terms n!wt(T) in this formula are positive integer.

Comparing different formulas for V;,, we obtain a lot of interesting combi-

natorial identities. For example ...

20



Corollary:
' 1
1 n—1 __ n_ 1 T
ety ;%H( 1)

where is sum is over unlabeled plane binary trees T on n nodes, and h(v)
denotes the “hook-length” of a node v in T, i.e., the number of descendants

of v (including v ).

Example: n =3

3 3 3 3 3
, : ./\
//// 2<<: :>>2 \\\\ 1 1

1 1 1 )

hook-lengths of binary trees
The identity says that

(3+1)°*=3+3+3+3+4.

Problem: Prove this identity combinatorially.
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