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SYZYGIES OF ORIENTED MATROIDS

ISABELLA NOVIK, ALEXANDER POSTNIKOV, and BERND STURMFELS

Abstract
We construct minimal cellular resolutions of squarefree monomial ideals arising
from hyperplane arrangements, matroids, and oriented matroids. These are Stanley-
Reisner ideals of complexes of independent sets and of triangulations of Lawrence
matroid polytopes. Our resolution provides a cellular realization of R. Stanley’s for-
mula for their Betti numbers. For unimodular matroids our resolutions are related
to hyperplane arrangements on tori, and we recover the resolutions constructed by
D. Bayer, S. Popescu, and B. Sturmfels [3]. We resolve the combinatorial problems
posed in [3] by computing Möbius invariants of graphic and cographic arrangements
in terms of Hermite polynomials.

1. Cellular resolutions from hyperplane arrangements
A basic problem of combinatorial commutative algebra is to find the syzygies of a
monomial idealM = 〈m1, . . . ,mr 〉 in the polynomial ringk[x] = k[x1, . . . , xn]

over a fieldk. One approach involves constructingcellular resolutions, where thei th
syzygies ofM are indexed by thei -dimensional faces of a CW-complex onr vertices.
After reviewing the general construction of cellular resolutions from [4], we define the
monomial ideals and resolutions studied in this paper.

Let 1 be aCW-complex(see [12, §38]) with r verticesv1, . . . , vr , which are
labeled by the monomialsm1, . . . ,mr . We writec ≥ c′ whenever a cellc′ belongs
to the closure of another cellc of 1. This defines the face poset of1. We label each
cell c of 1 with the monomialmc = lcm{mi | vi ≤ c}, the least common multiple
of the monomials labeling the vertices ofc. Also, setm∅ = 1 for the empty cell of
1. Clearly,mc′ dividesmc wheneverc′

≤ c. The principal ideal〈mc〉 is identified
with the freeNn-gradedk[x]-module of rank 1 with generator in degree degmc. For
a pair of cellsc ≥ c′, let pc′

c : 〈mc〉 → 〈mc′〉 be the inclusion map of ideals. It is a
degree-preserving homomorphism ofNn-graded modules.
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Fix an orientation of each cell in1, and define thecellular complex C•(1,M),

· · ·
∂3

−→ C2
∂2

−→ C1
∂1

−→ C0
∂0

−→ C−1 = k[x],

as follows. TheNn-gradedk[x]-module ofi -chains is

Ci =

⊕
c : dimc=i

〈mc〉,

where the direct sum is over alli -dimensional cellsc of1. The differential∂i : Ci →

Ci −1 is defined on the component〈mc〉 as the weighted sum of the mapspc′

c :

∂i =

∑
c′≤c,dimc′=i −1

[c : c′
] pc′

c ,

where[c : c′
] ∈ Z is the incidence coefficientof oriented cellsc andc′ in the usual

topological sense. For a regular CW-complex, the incidence coefficient[c : c′
] is +1

or −1, depending on the orientation of cellc′ in the boundary ofc. The differential
∂i preserves theNn-grading ofk[x]-modules. Note that ifm1 = · · · = mr = 1, then
C•(1,M) is the usual chain complex of1 overk[x]. For any monomialm ∈ k[x],
we define1≤m to be the subcomplex of1 consisting of all cellsc whose labelmc

dividesm. We call any such1≤m an M-essentialsubcomplex of1.

PROPOSITION1.1 ([4, Prop. 1.2])
The cellular complex C•(1,M) is exact if and only if every M-essential subcomplex
1≤m of1 is acyclic overk. Moreover, if mc 6= mc′ for any c> c′, then C•(1,M)
gives a minimal free resolution of M.

Proposition1.1 is derived from the observation that, for a monomialm, the(degm)-
graded component ofC•(1,M) equals the chain complex of1≤m over k. If both
of the hypotheses in Proposition1.1 are met, then we say that1 is an M-complex,
and we callC•(1,M) a minimal cellular resolutionof M . Thus eachM-complex1
produces a minimal free resolution of the idealM . In particular, for anM-complex1,
the numberfi (1) of i -dimensional cells of1 is exactly thei th Betti numberof M ,
that is, the rank of thei th free module in a minimal free resolution. Thus, for fixed
M , all M-complexes have the samef -vector.

Examples ofM-complexes appearing in the literature include planar maps (see
[11]), Scarf complexes (see [2]), and hull complexes (see [4]). A general construc-
tion of M-complexes using discrete Morse theory was proposed by E. Batzies and
V. Welker [1]. We next introduce a family ofM-complexes which generalizes those
in [3, Th. 4.4].

Let A = {H1, H2, . . . , Hn} be an arrangement ofn affine hyperplanes inRd,

Hi =
{
v ∈ Rd

| hi (v) = ci
}
, i = 1, . . . ,n, (1)
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wherec1, . . . , cn ∈ R andh1, . . . , hn are nonzero linear forms that span(Rd)∗.
We fix two sets of variablesx1, . . . , xn andy1, . . . , yn, and we associate with the

arrangementA two functionsmx andmxy from Rd to sets of monomials:

mx : v 7−→

∏
i : hi (v)6=ci

xi and mxy : v 7−→

( ∏
i : hi (v)>ci

xi

)
·

( ∏
j : v j (v)<c j

y j

)
.

Note thatmx(v) is obtained frommxy(v) by specializingyi to xi for all i .

Definition 1.2
The matroid idealof A is the idealMA of k[x] = k[x1, . . . , xn] generated by the
monomials{mx(v) : v ∈ Rd

}. Theoriented matroid idealof A is the idealOA of
k[x, y] = k[x1, . . . , xn, y1, . . . , yn] generated by{mxy(v) : v ∈ Rd

}.

The hyperplanesH1, . . . , Hn partition Rd into relatively open convex polyhedra
called thecells of A . Two pointsv, v′

∈ Rd lie in the same cellc if and only if
mxy(v) = mxy(v

′). We writemxy(c) for that monomial and, similarly,mx(c) for its
image underyi 7→ xi . Note thatmx(c′) dividesmx(c), andmxy(c′) dividesmxy(c),
providedc′

≤ c. The cells of dimension zero andd are calledverticesandregions,re-
spectively. A cell isboundedif it is bounded as a subset ofRd. The set of all bounded
cells forms a regular CW-complexBA called thebounded complexof A .

Figure 1 shows an example of a hyperplane arrangementA with d = 2 and
n = 4, together with monomials that label its bounded cells. The bounded complex
BA of this arrangement consists of 4 vertices, 5 edges, and 2 regions.

THEOREM 1.3
(a) The ideal MA is minimally generated by the monomials mx(v), wherev

ranges over the vertices ofA . The bounded complex BA is an MA -complex.
Thus its cellular complex C•(BA ,MA ) gives a minimal free resolution for
MA .

(b) The ideal OA is minimally generated by the monomials mxy(v), wherev
ranges over the vertices ofA . The bounded complex BA is an OA -complex.
Thus its cellular complex C•(BA ,OA ) gives a minimal free resolution for
OA .

To prove Theorem1.3, we must check that for both ideals the two hypotheses of
Proposition1.1 are satisfied. The second hypothesis is immediate: for a pair of cells
c > c′, there is a hyperplaneHi ∈ A that containsc′ but does not containc, in
which casemx(c) is divisible by xi andmx(c′) is not divisible byxi . The same is
true for the oriented matroid idealOA . The essence of Theorem1.3 is the acyclicity
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Figure 1. The bounded complexBA with monomial labels

condition, which states that allMA -essential andOA -essential subcomplexes ofBA

are acyclic. For the whole bounded complex, the following proposition is known.

PROPOSITION1.4 (Björner and Ziegler (see [6, Th. 4.5.7]))
The complex BA of bounded cells of a hyperplane arrangementA is contractible.

The acyclicity of allMA -essential subcomplexes ofBA is an easy consequence of
Proposition1.4: eachMA -essential subcomplex is a bounded complex of a hyper-
plane arrangement induced byA in one of the flats ofA . The acyclicity of all
OA -essential subcomplexes follows from a generalization of Proposition1.4 stated
in Proposition2.4. We give more details in Section2, where Theorem1.3 is restated
and proved in the more general setting of oriented matroids.

The first main result in this paper is the construction of the minimal free res-
olution of an arbitrary matroid ideal (see Theorems3.3 and 3.9) and an arbitrary
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oriented matroid ideal (see Theorem2.2). A numerical consequence of this result is
a refinement of Stanley’s formula, given in [16, Th. 9], for their Betti numbers (see
Corollaries2.3and 3.4; see also the last paragraph of Section 3). The simplicial com-
plexes corresponding to matroid ideals and oriented matroid ideals are the complexes
of independent sets in matroids (see Remark3.1) and the triangulations of Lawrence
matroid polytopes (see Theorem2.9), respectively. In the unimodular case, oriented
matroid ideals arise as initial ideals of toric varieties inP1

× P1
× · · · × P1, by work

of Bayer, Popescu, and Sturmfels [3, §4], and their Betti numbers can be interpreted
as face numbers of hyperplane arrangements on a torus (see Theorem4.1). Every
ideal considered in this paper is Cohen-Macaulay; its Cohen-Macaulay type (highest
Betti number) is the Möbius invariant of the underlying matroid, and all other Betti
numbers are sums of Möbius invariants of matroid minors (see Section 4 and (8)).

Our second main result concerns the minimal free resolutions for graphic and co-
graphic matroid ideals. In Section 5 we resolve the enumerative problems that were
left open in [3, §5]. Propositions5.3 and5.7 give combinatorial expressions for the
Möbius invariant of any graph. More precise and explicit formulas, in terms of Her-
mite polynomials, are established for the Möbius coinvariants of complete graphs (see
Theorem5.8) and of complete bipartite graphs (see Theorem5.14).

2. Oriented matroid ideals
In this section we establish a link between oriented matroids and commutative alge-
bra. In the resulting combinatorial context, the algebraists’ classic question, “What
makes a complex exact?” (see [7]), receives a surprising answer: it is the topological
representation theorem of J. Folkman and J. Lawrence (see [6, Chap. 5]).

We start by briefly reviewing one of the axiom systems for oriented matroids
(see [6]). Fix a finite setE. A sign vector Xis an element of{+,−,0}

E. Thepositive
part of X is denotedX+

= {i ∈ E : Xi = +}, andX− andX0 are defined similarly.
The support ofX is X = {i ∈ E : Xi 6= 0}. Theopposite−X of a vectorX is given
by (−X)i = −Xi . Thecomposition X◦ Y of two vectorsX andY is the sign vector
defined by

(X ◦ Y)i =

{
Xi if Xi 6= 0,
Yi if Xi = 0.

Theseparation setof sign vectorsX andY is S(X,Y) = {i ∈ E | Xi = −Yi 6= 0}.
A setL ⊆ {+,−,0}

E is the set ofcovectorsof anoriented matroid on Eif and
only if it satisfies the following four axioms (see [6, § 4.1.1]):
(1) the zero sign vector zero is inL ;
(2) if X ∈ L , then−X ∈ L (symmetry);
(3) if X,Y ∈ L , thenX ◦ Y ∈ L (composition);
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(4) if X,Y ∈ L andi ∈ S(X,Y), then there existsZ ∈ L such thatZi = 0 and
Z j = (X ◦ Y) j = (Y ◦ X) j for all j 6∈ S(X,Y) (elimination).

Somewhat informally, we say that such a pair(E,L ) is an oriented matroid. Anaffine
oriented matroid(see [6, §10.1]), denotedM = (E,L , g), is an oriented matroid
with a distinguished elementg ∈ E such thatg is not aloop; that is,Xg 6= 0 for at
least one covectorX ∈ L . Thepositive partof L is L +

= {X ∈ L : Xg = +}.
The set{+,−,0}

E is partially ordered by the product of partial orders

0< + and 0< − (+ and− are not comparable).

This induces a partial order on the set of covectorsL . A covectorX is calledbounded
if every nonzero covectorY ≤ X is in the positive partL +.

The topological representation theorem for oriented matroids (see [6, Th. 5.2.1])
states thatL̂ = L ∪ {1̂} is the face lattice of an arrangement of pseudospheres; and
L̂ +

= L +
∪{0̂, 1̂} is the face lattice of an arrangement of pseudohyperplanes (see [6,

Exer. 5.8]). These are regular CW-complexes homeomorphic to a sphere and a ball,
respectively. (This is whyL̂ is called theface lattice, andL̂ + is called theaffine face
lattice, of M .) Thebounded complex BM of M is their subcomplex formed by the
cells associated with the bounded covectors. The bounded complex is uniquely deter-
mined by its face lattice—the poset of bounded covectors. Slightly abusing notation,
we denote this poset by the same symbol,BM .

We write rk( · ) for the rank function of the latticêL . The atoms ofL̂ , that is, the
elements of rank 1, are calledcocircuitsof M . The vertices of the bounded complex
BM are exactly the cocircuits ofM which belong to the positive partL +.

Example 2.1(Affine oriented matroids from hyperplane arrangements)
Let C = {H1, . . . , Hn, Hg} be a central hyperplane arrangement inRd+1

= Rd
× R,

written asHi = {(v,w) ∈ Rd
× R : hi (v) = ciw} andHg = {(v,w) : w = 0}. The

restriction ofC to the hyperplane{(v,w) : w = 1} is precisely the affine arrangement
A in Section 1. FixE = {1, . . . ,n, g}. The image of the map

Rd+1
→ {+,−,0}

E,

(v, w) 7→
(
sign

(
h1(v)− c1w

)
, . . . , sign

(
hn(v)− cnw

)
, sign(w)

)
is the setL of covectors of an oriented matroid onE. The affine face latticeL̂ + of
M = (E,L , g) equals the face lattice of the affine hyperplane arrangementA . The
bounded complexBM coincides with the bounded complexBA in Proposition1.4.

Let M = (E,L , g) be an affine oriented matroid onE = {1, . . . ,n, g}. With every
sign vectorZ ∈ {0,+,−}

E, we associate a monomial

mxy(Z) =

( ∏
i : Zi =+

xi

)
·

( ∏
i : Zi =−

yi

)
, wherexg = yg = 1.
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Theoriented matroid ideal Ois the ideal in the polynomial ringk[x, y] = k[x1, . . . ,

xn, y1, . . . , yn] generated by all monomials corresponding to covectorsZ ∈ L +. The
matroid ideal Massociated withM = (E,L , g) is the ideal ofk[x] obtained from
O by specializingyi to xi for all i . These ideals are treated in Section3. The main
result of this section concerns the syzygies of the oriented matroid idealO.

THEOREM 2.2
The oriented matroid ideal O is minimally generated by the monomials corresponding
to the vertices of BM . The bounded complex BM is an O-complex. Thus its cellular
complex C•(BM ,O) gives a minimalN2n-graded freek[x, y]-resolution of O.

Recall that, for a monomialm in k[x, y], the correspondingN2n-graded Betti number
of O, βm(O) is the multiplicity of the summand〈m〉 in a minimalN2n-gradedk[x, y]-
resolution ofO. Theorem2.2 implies the following numerical result.

COROLLARY 2.3
TheN2n-graded Betti numbers of O are all0 or 1. They are given by the coefficients
in the numerator of theN2n-graded Hilbert series of O:

( ∑
Z∈BM

(−1)rk(Z)mxy(Z)
)
/

n∏
i =1

(1 − xi )(1 − yi ). (2)

Proof of Theorem2.2
Distinct cellsZ andZ′ of the bounded complexBM have distinct labels:mxy(Z) 6=

mxy(Z′). This implies minimality of the complexC•(BM ,O). In order to prove ex-
actness ofC•(BM ,O), we must verify the first hypothesis in Proposition1.1. To this
end, we shall digress and first present a generalization of Proposition1.4.

Theregionsof an oriented matroid(E,L ) are the maximal covectors, that is, the
maximal elements of the posetL . For a covectorX ∈ L and a subsetE′ of E, denote
by X|E′ ∈ {+,−,0}

E′

the restriction ofX to E′: (X|E′)i = Xi for everyi ∈ E′. The
restriction of(E,L ) to a subsetE′ of E is the oriented matroid onE′ with the set of
covectorsL |E′ = {X|E′ : X ∈ L }.

The following result, which was cited without proof in [3, Th. 4.4], is implicit in
the derivation of [6, Th. 4.5.7]. We are grateful to G. Ziegler for making this explicit
by showing us the following proof. Ziegler’s proof does not rely on the topological
representation theorem for oriented matroids. If one uses that theorem, then the fol-
lowing proposition can also be proved by a topological argument.

PROPOSITION2.4 (G. Ziegler)
Let M = (E,L , g) be an affine oriented matroid, and let BM be its bounded com-
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plex. For any subset E′ of E and any region R′ of (E′,L |E′), the CW-complex with
the face poset B′ = {X ∈ BM : X|E′ ≤ R′

} is contractible.

Proof
Let T denote the set of regions ofL . A subsetA ⊆ T is said to beT -convexif it is
an intersection of “half-spaces,” that is, sets of the formT+

e = {T ∈ T : Te = +} and
T−

e = {T ∈ T : Te = −}. Each regionR ∈ T defines a partial order onT:

T1 ≤ T2 : ⇐⇒
{
e ∈ E : Re = −(T1)e

}
⊆

{
e ∈ E : Re = −(T2)e

}
.

Denote this poset byT(L , R). We also abbreviateT+
:= T+

g = T ∩ L +.
We may assume thatB′ is nonempty. ThenR := {X ∈ T+

: X|E′ = R′
} is

a nonempty,T-convex set. It is stated in [6, Lem. 4.5.5] thatR is an order ideal of
T(L , R), and, moreover, it is an order ideal ofT+

⊆ T(L , R). By [6, Prop. 4.5.6],
there exists a recursive coatom ordering of̂L + in which the elements ofR come
first. The restriction of this ordering toR is a recursive coatom ordering of the poset
L̂ +

R = {X ∈ L +
: X ≤ T for someT ∈ R} ∪ {1̂}. This implies (using [6, Lem.

4.7.18]) that the order complex1ord(L
+

R ) of L +

R is a shellable(r − 1)-ball. It is
a subcomplex of1ord(L

+), which is also an(r − 1)-ball, by [6, Th. 4.5.7]. Let
U = L +

R \BM be the set of “unbounded covectors.” Then the subcomplex1U of
1ord(L

+

R ) induced on the vertex set ofU lies in the boundary of1ord(L
+) and

hence also in the boundary of1ord(L
+

R ). Thus||1ord(L
+

R )||\||1U || is a contractible
space. By [6, Lem. 4.7.27], the space||1ord(B′)|| is a strong deformation retract of
||1ord(L

+

R )||\||1U || and is hence contractible as well.

We now finish the proof of Theorem2.2. Consider anyO-essential subcomplex
(BM )≤xayb of BM , with a,b ∈ Nn. This complex consists of all cellsZ whose label
mxy(Z) dividesxa yb. Set

E′′
= {1 ≤ i ≤ n : ai = 0 andbi = 0},

E′
= {1 ≤ i ≤ n : exactly one ofai andbi is positive} ⊆ E \ E′′.

We first replace our affine oriented matroid(E,L , g) by the affine oriented matroid
(E\E′′,L /E′′, g) gotten by contraction atE′′. Next we defineR′

∈ {+,−,0}
E′

by

R′

i =

{
+ if ai > 0,
− if bi > 0,

for everyi ∈ E′.

We apply Proposition2.4with this R′ to (E\E′′,L /E′′, g). ThenB′ is the face poset
of (BM )≤xayb , which is therefore contractible.

The oriented matroid idealO is squarefree and hence is the Stanley-Reisner ideal of a
simplicial complex1M on 2n vertices{1, . . . ,n,1′, . . . ,n′

}, whose faces correspond
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to squarefree monomials ofk[x, y] which do not belong toO; that is,

{i1, . . . , ik, j ′1, . . . , j ′m} ∈ 1M if and only if xi1 · · · xik y j1 · · · y jm /∈ O.

In what follows we give a geometric description of that simplicial complex.

LEMMA 2.5
We have F∩ {i, i ′} 6= ∅ for any facet F of1M and i ∈ {1, . . . ,n}.

Proof
Let F be a face of1M such thatF ∩ {i, i ′} = ∅. Suppose that neitherF ′

= F ∪ {i }
nor F ′′

= F ∪ {i ′} is a face of1M . Then there exist cocircuitsZ′, Z′′
∈ BM such

that

Z′

i = +, (Z′)+ \ {i } ⊆ {1 ≤ j ≤ n : j ∈ F} ∪ {g},

(Z′)− ⊆ {1 ≤ j ≤ n : j ′ ∈ F},

Z′′

i = −, (Z′′)+ ⊆ {1 ≤ j ≤ n : j ∈ F} ∪ {g},

(Z′′)− \ {i } ⊆ {1 ≤ j ≤ n : j ′ ∈ F}.

By the strong elimination axiom applied to(Z′, Z′′, i, g), there is a cocircuitZ such
that Zi = 0, Zg = +, Z+

⊆ (Z′)+ ∪ (Z′′)+, Z−
⊆ (Z′)− ∪ (Z′′)−. Thus

Z ∈ BM , and the monomialmxy(F) is divisible bymxy(Z) ∈ O. This contradicts
F ∈ 1M .

Suppose now that the affine oriented matroidM = (E,L , g) is a single-element
extension of the matroidM \g = (E\g,L \g) by an elementg in general position,
in the sense of [6, Prop. 7.2.2]. For the affine arrangementA in Section 1 or Example
2.1, this means thatA has no vertices at infinity. In such a case, Theorem2.2implies
the following properties ofO. We denote byr the rank ofM \g.

COROLLARY 2.6
The ringk[1M ] = k[x, y]/O is a Cohen-Macaulay ring of dimension2n − r .

Proof
Since rk(M \g) = r , every(n − r + 1)-element subset{i1, . . . , in−r +1} of {1, . . . ,n}

contains the support of a (signed) cocircuit. This implies that every monomial of the
form xi1 · · · xin−r +1 yi1 · · · yin−r +1 belongs toO. The variety defined by these monomi-
als is a subspace arrangement of codimensionr . HenceO has codimension greater
than or equal tor , which means that the ringk[1M ] = k[x, y]/O has Krull dimen-
sion less than or equal to 2n−r . By Theorem2.2, the bounded complexBM supports
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a minimal free resolution ofO, and therefore

depth
(
k[1M ]

)
= 2n − (the length of this resolution)= 2n − r.

Hence depth
(
k[1M ]

)
= dim

(
k[1M ]

)
= 2n−r , andk[1M ] is Cohen-Macaulay.

The result in Corollary2.6 can be strengthened to the statement that the simplicial
complex1M is shellable. This follows from Theorem2.9.

COROLLARY 2.7
The set{x1 − y1, . . . , xn − yn} is a regular sequence onk[1M ] = k[x, y]/O.

Proof
Sincek[1M ] is Cohen-Macaulay, it suffices to show that{x1 − y1, . . . , xn − yn} is a
part of a linear system of parameters (l.s.o.p.). This follows from Lemma2.5and the
l.s.o.p. criterion due to B. Kind and P. Kleinschmidt [19, Lem. III.2.4].

Consider any signed circuitC = (C+,C−) of our oriented matroid such thatg lies in
C−. By thegeneral positionassumption ong, the complement ofg in that circuit is a
basis of the underlying matroid. We writePC for the ideal generated by the variables
xi for eachi ∈ C+ and by the variablesy j for each j ∈ C−

\{g}.

PROPOSITION2.8
The minimal prime decomposition of the oriented matroid ideal equals O=

⋂
C PC,

where the intersection is over all circuits C such that g∈ C−.

Proof
The right-hand side is easily seen to contain the left-hand side. For the converse it
suffices to divide by the regular sequencex1 − y1, . . . , xn − yn and note that the
resulting decomposition for the matroid idealM is easy (see Remark3.1).

Our final result relates the idealO to matroid polytopes and their triangulations. The
monograph of F. Santos [15] provides an excellent state-of-the-art introduction. We
refer in particular to [15, §4], where Santos introduces triangulations of Lawrence
(matroid) polytopes, and he shows that these are in bijection with one-element liftings
of the underlying matroid. Under matroid duality, one-element liftings correspond
to one-element extensions. In our context these extensions correspond to adding the
special elementg, which plays the role of the pseudohyperplane at infinity. From
Santos’s result we infer the following theorem.
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THEOREM 2.9
The oriented matroid ideal O is the Stanley-Reisner ideal of the triangulation of the
Lawrence matroid polytope induced by the lifting dual to the extension by g. In par-
ticular, O is the Stanley-Reisner ideal of a triangulated ball.

The second assertion holds because lifting triangulations of matroid polytopes are
triangulated balls and, by Santos’s work, every triangulation of a Lawrence matroid
polytope is a lifting triangulation. We remark that it is unknown whether arbitrary
triangulations of matroid polytopes are topological balls (see [15, p. 7]).

3. Matroid ideals
Let M be an (unoriented) matroid on the set{1, . . . ,n}, and let L be its lat-
tice of flats. We encodeM by the matroid ideal M generated by the monomials
mx(F) =

∏
i :i /∈F xi for every proper flatF ∈ L. The minimal generators ofM

are the squarefree monomials representing cocircuits ofM , that is, the monomials
mx(H), whereH runs over all hyperplanes ofM . Equivalently,M is the Stanley-
Reisner ideal of the simplicial complex of independent sets of the dual matroidM ∗.
The following explains what happens when we substituteyi 7→ xi in Proposition2.8.

Remark 3.1
The matroid idealM has the minimal prime decomposition

M =

⋂
B basis ofM

〈
xi | i ∈ B

〉
.

The following characterization of our ideals can serve as a definition of the word
matroid. It is a translation of the (co)circuit axiom into commutative algebra.

Remark 3.2
A proper squarefree monomial idealM of k[x] is amatroid idealif and only if, for
every pair of monomialsm1,m2 ∈ M and anyi ∈ {1, . . . ,n} such thatxi divides
bothm1 andm2, the monomial lcm(m1,m2)/xi is in M as well.

Matroid ideals have been studied since the earliest days of combinatorial commutative
algebra as a paradigm for shellability and Cohen-Macaulayness. Stanley computed
their Betti numbers in [16, Th. 9]. The purpose of this section is to construct an explicit
minimal k[x]-free resolution for any matroid idealM . We note that in recent work
of V. Reiner and Welker [14] the term “matroid ideal” is used for the squarefree
monomial ideals that are Alexander dual to our matroid ideals.
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We first consider the case whereM is anorientable matroid. This means that
there exists an oriented matroidM whose underlying matroid isM . LetL be the set
of covectors of a single element extension ofM by an elementg in general position
(see [6, Prop. 7.2.2]). Consider the affine oriented matroid̃M = (E,L , g), where
E = {1, . . . ,n} ∪ {g}, and its bounded complexBM̃ . Note that, for each sign vector
Z in BM̃ , the zero setZ0 is a flat inL. Moreover, by the genericity hypothesis ong,
all flats arise in this way. We label each cellZ of the bounded complexBM̃ by the
monomialmx(Z) =

∏
{xi : 1 ≤ i ≤ n andZi 6= 0}.

THEOREM 3.3
Let M be the matroid ideal of an orientable matroid. Then the bounded complex
BM̃ of any corresponding affine oriented matroid is an M-complex, and its cellular
complex C•(BM̃ ,M) gives a minimal free resolution of M overk[x].

Proof
Let a = (a1, . . . ,an) ∈ Nn, and consider theM-essential subcomplex(BM̃ )≤xa. This
complex (if not empty) is the bounded complex of the contraction of(E,L , g) by
{1 ≤ i ≤ n : ai = 0} and hence is acyclic by Proposition2.4. Sincemx(Z′) is a
proper divisor ofmx(Z) wheneverZ′ < Z and Z′, Z ∈ BM̃ , it follows that BM̃ is
an M-complex.

We remark thatC•(BM̃ ,M) is obtained from the complexC•(BM̃ ,O), whereO is
the oriented matroid ideal of̃M = (E,L , g), by specializingyi to xi for all i . Hence
Theorem2.2and Corollary2.7give a second proof of Theorem3.3.

COROLLARY 3.4
TheNn-graded Hilbert series of any matroid ideal M equals

(∑
F∈L

µL(F, 1̂) ·

∏
{x j : j /∈ F}

)
/

n∏
i =1

(1 − xi ), (3)

where L is the lattice of flats ofM , andµL is its Möbius function.

There are several ways of deriving this corollary. First, it follows from [16, Th. 9].
A second possibility is to observe that the geometric latticeL coincides with the
lcm lattice (in the sense of [8]) of the ideal M , and then [8, Th. 2.1] implies the
claim. Finally, in the orientable case, Corollary3.4follows from Theorem3.3and the
oriented matroid version of T. Zaslavksy’s face-count formula.
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PROPOSITION3.5 (Zaslavsky’s formula (see [22], [6, Th. 4.6.5]))
The number of bounded regions of a rank r affine oriented matroid̃M = (E,L , g)
equals(−1)rµL(0̂,1̂).

We next treat the case of nonorientable matroids. It would be desirable to construct
an M-complex for an arbitrary matroid idealM and to explore the “space” of all
possibleM-complexes. Currently we do not know how to construct them. Therefore
we introduce a different technique for resolvingM minimally.

Let P be any graded poset that has a unique minimal element0̂ and a unique
maximal element̂1. (Later on, we takeP to be the order dual of our geometric lattice
L.) Let1(P) denote the order complex ofP, that is, the simplicial complex whose
simplices[F0, F1, . . . , Fi ] are decreasing chainŝ1 > F0 > F1 > · · · > Fi > 0̂.
For F ∈ P, denote by1(F) the order complex of the lower interval[0̂, F]. Note that
dim1(F) = rk(F)− 2. LetCi (1(F)) be thek-vector space ofi -dimensional chains
of 1(F), and let

0 −→ Crk(F)−2
(
1(F)

)
−→ · · ·

∂2
−→ C1

(
1(F)

)
∂1

−→ C0
(
1(F)

) ∂0
−→ C−1

(
1(F)

)
−→ 0

be the usual (augmented) chain complex; that is, the differential is given by

∂i [F0, F1, . . . , Fi ] =

i∑
j =0

(−1) j
[F0, . . . , F̂ j , . . . , Fi ] for i > 0 and∂0[F0] = 0.

Denote byZi (1(F)) = ker(∂i ) the space ofi -cycles, and bỹHi (1(F)) the i th (re-
duced) homology of1(F). (For relevant background on poset homology, see [5].)

For each pairF, F ′
∈ P such that rk(F)− rk(F ′) = 1, we define a map

φ : Ci
(
1(F)

)
−→ Ci −1

(
1(F ′)

)
by

[F0, F1, . . . , Fi ] 7→

{
0 if F0 6= F ′,

[F1, . . . , Fi ] if F0 = F ′.

The mapφ is zero unlessF ′ l F (in other words,F coversF ′). Note that∂ ◦ φ =

−φ ◦ ∂, and hence the restriction ofφ to cycles gives a mapφ : Zi (1(F)) −→

Zi −1(1(F ′)). Combining these maps, we obtain a complex ofk-vector spaces:

Z (P) : 0 −→ Zr −2
(
1(P)

) φ
−→

⊕
rk(F)=r −1

Zr −3
(
1(F)

)
φ

−→ · · ·
φ

−→

⊕
rk(F)=2

Z0
(
1(F)

) φ
−→

⊕
rk(F)=1

Z−1
(
1(F)

)
−→ k.
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(Here1(P) is regarded as1(1̂), and thus the first mapφ is well defined.) The com-
plex propertyφ2

= 0 is verified by direct calculation using equation (4). Let P( j )

denote the poset obtained fromP by removing all rank levels greater than or equal to
j , and let1(P( j )) be the order complex ofP( j ) ∪ {1̂}.

PROPOSITION3.6
The complexZ (P) is exact ifH̃i (1(P(i +3))) = 0 for all i ≤ r − 3.

To prove Proposition3.6 we need some notation. Ifx ∈
⊕

rk(F)=i Zi −2(1(F)), we
denote itsF-component byxF . For a simplexσ = [F0, F1, . . . , Fi ], we also write
σ = F0 ∗ [F1, . . . , Fi ], and the operation “∗” extends tok-linear combinations.

Remark 3.7
Suppose thatz ∈ Ci (1(P(i +2))). Thenz can be expressed as

z =

∑
rk(F ′)=i +1

F ′
∗ yF ′ =

∑
rk(F ′)=i +1

∑
F ′′lF ′

F ′
∗ F ′′

∗ xF ′, F ′′,

whereyF ′ ∈ Ci −1(1(F ′)) andxF ′, F ′′ ∈ Ci −2(1(F ′′)). Its boundary equals

∂(z) =

∑
rk(F ′′)=i

F ′′
∗

∑
F ′mF ′′

xF ′, F ′′

−

∑
rk(F ′)=i +1

F ′
∗

∑
F ′′lF ′

xF ′, F ′′ +

∑
F ′, F ′′

F ′
∗ F ′′

∗ ∂(xF ′, F ′′).

We conclude thatz is a cycle if and only if the following conditions are satisfied:∑
F ′mF ′′

xF ′, F ′′ = 0 for all F ′′ with rk(F ′′) = i ; (4)

∑
F ′′lF ′

xF ′, F ′′ = 0 for all F ′ with rk(F ′) = i + 1; (5)

∂(xF ′, F ′′) = 0 for all F ′, F ′′ such thatF ′′ l F ′. (6)

Proof of Proposition3.6
To show thatZ (P) is exact, considery = (yF ′) ∈

⊕
rk(F ′)=i +1 Zi −1(1(F ′)) such

thatφ(y) = 0. There are several cases. Ifi = r − 1, theny = y1̂ can be expressed as∑
rk(F)=r −2 F ∗ xF , wherexF ∈ Cr −3(1(F)). Then 0= φ(y)F = xF , and therefore

y = 0. Hence the leftmost mapφ is an inclusion.
Let 0< i < r − 1, and definez =

∑
rk(F ′)=i +1 F ′

∗ yF ′ ∈ Ci (1(P(i +2))). We
claim thatz is a cycle; that is,z ∈ Zi (1(P(i +2))). Indeed, ifi > 0, thenyF ′ can be
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expressed as
∑

F ′′lF ′ F ′′
∗ xF ′, F ′′ , wherexF ′, F ′′ ∈ Ci −2(1(F ′′)). Hence(

φ(y)
)

F ′′ =

∑
F ′mF ′′

xF ′, F ′′, ∀F ′′ with rk(F ′′) = i,

and

∂(yF ′) =

∑
F ′′lF ′

xF ′, F ′′ −

∑
F ′′lF ′

F ′′
∗ ∂(xF ′, F ′′), ∀F ′ with rk(F ′) = i + 1.

Sinceφ(y) = 0 and∂(yF ′) = 0 for any F ′ of rank i + 1, we infer thatz satis-
fies conditions (4) – (6) in Remark3.7 and therefore is a cycle. In the casei = 0,
the proof is very similar. Now ifi = r − 2, thenz ∈ Zr −2(1(P)), andφ(z) =

φ(
∑

F ′
∗ yF ′) = (yF ′) = y. Hence we are done in this case. Ifi < r − 2, then, since

Zi (1(P(i +2))) ⊆ Zi (1(P(i +3))) and H̃i (1(P(i +3))) = 0, it follows that there exists
w ∈ Ci +1(1(P(i +3))) such that∂(w) = z. Expressw as

∑
rk(F)=i +2 F ∗ vF , where

vF ∈ Ci (1(F)). Sincez = ∂(w) =
∑

rk(F)=i +2 vF −
∑

rk(F)=i +2 F ∗ ∂(vF ), we
conclude that∂(vF ) = 0 for all F of ranki + 2 and that

∑
F vF = z =

∑
F ′ F ′

∗ yF ′ .
Thusv = (vF ) ∈

⊕
rk(F)=i +2 Zi (1(F)), andφ(v) = y.

COROLLARY 3.8
If P is a Cohen-Macaulay poset, thenZ (P) is exact.

Proof
If 1(P) is Cohen-Macaulay, then1(P(i )) is Cohen-Macaulay for everyi (see [17,
Th. 4.3]). This means that all homologies of1(P(i )) vanish, except possibly the top
one. Thus the conditions of Proposition3.6are satisfied.

Suppose now that every atomA of P is labeled by a monomialmA ∈ k[x]. Theposet
ideal IP is the ideal generated by these monomials. Associate with every elementF
of P a monomialmF as follows:

mF := lcm
{
mA : rk(A) = 1, A ≤ F

}
if F 6= 0̂ andm0̂ := 1.

We say that the labeled posetP is completeif all monomialsmF are distinct, and for
everya ∈ Nn the set{F ∈ P : deg(mF ) ≤ a} has a unique maximal element.

We identify the principal ideal〈mF 〉 with the freeNn-gradedk[x]-module of rank
1 with generator in degree degmF . If F,G ∈ P and F < G, thenmF is a divisor
of mG. Thus there is an inclusion of the corresponding idealsi : 〈mG〉 −→ 〈mF 〉.
Recall that there is a complexZ (P) of k-vector spaces associated withP. Tensoring
summands of this complex with the ideals{〈mF 〉 : F ∈ P}, we obtain a complex of
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Nn-graded freek[x]-modules:

C (P) =

⊕
F∈P

Zrk(F)−2
(
1(F)

)
⊗k 〈mF 〉 with differential∂ = φ ⊗ i . (7)

THEOREM 3.9
Suppose that the labeled poset P is complete and that the homologyH̃i (1(F(i +3)))

vanishes for any0 ≤ i ≤ r − 3 and any F∈ P of rank≥ i + 3; then(C (P), ∂) is a
minimalNn-graded freek[x]-resolution of the poset ideal IP.

Proof
(C (P), ∂) is a complex ofNn-graded freek[x]-modules. To show that it is a resolu-
tion, we have to check that, for anya ∈ Nn, theath graded component(C (P), ∂)a
is an exact complex ofk-vector spaces. Leta ∈ Nn, and letF ∈ P be the maximal
element among all elementsG ∈ P such that deg(mG) ≤ a. Such an elementF exists
since the labeled posetP is complete. Then(C (P), ∂)a is isomorphic to the complex
Z ([0̂, F]) of the poset[0̂, F] and hence is exact overk (by Proposition3.6). Thus
(C (P), ∂) is exact overk[x]. Finally, sincemF andmG are distinct monomials for
any pairF l G, the resolution(C (P), ∂) is minimal.

From Corollary3.8we obtain the following corollary.

COROLLARY 3.10
If P is a complete labeled poset such that every lower interval of P is Cohen-
Macaulay, then(C (P), ∂) is a minimalNn-graded free resolution of IP.

Returning to our matroidM , let P be a lattice of flats ordered by reverse inclusion.
HenceP is the order dual of the geometric latticeL above. In particular,̂0 corresponds
to the set{1,2, . . . ,n}, and1̂ corresponds to the empty set. Label each atomH of P
(i.e., hyperplane ofM ) by the monomialmx(H), as in the beginning of Section 3.
Identifying the variablesxi with the coatoms ofP, we see thatmx(H) is the product
over all coatoms not aboveH . Then P is a complete labeled poset and its poset
ideal I P is precisely the matroid idealM . Moreover, all lower intervals of the poset
P are Cohen-Macaulay (see [16, §8]). From Corollary3.10we obtain the following
alternative to Theorem3.3.

THEOREM 3.11
Let M be any matroid. Then the complex(C (P), ∂) is a minimalNn-graded free
k[x]-resolution of the matroid ideal M.
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The two resolutions presented in this section provide a syzygetic realization of Stan-
ley’s formula [16, Th. 9] for the Betti numbers of matroid ideals. That formula states
that the number of minimali th syzygies ofk[x]/M is equal to

βi (M) =

∑
F

∣∣µL(F, 1̂)
∣∣,

where the sum is over all flatsF of coranki in M . The generating function

ψM (q) =

rk(M)∑
i =0

βi (M) · qi
=

∑
F flat ofM

∣∣µL(F, 1̂)
∣∣ · qcorank(F) (8)

for the Betti numbers ofM is called thecocharacteristic polynomialof M . In the
next two sections we examine this polynomial for some special matroids.

4. Unimodular toric arrangements
A toric arrangementis a hyperplane arrangement that lives on a torusTd rather than in
Rd. One construction of such arrangements appears in recent work of Bayer, Popescu,
and Sturmfels [3]. Experts on geometric combinatorics might appreciate the following
description: fix a unimodular matroidM , form the associated tiling of Euclidean
space by zonotopes (see [21, Prop. 3.3.4]), dualize to get an infinite arrangement of
hyperplanes, and divide out by the group of lattice translations.

Here is the same construction again, but now in slow motion. Fix a central hyper-
plane arrangementC = {H1, . . . , Hn} in Rd, whereHi = {v ∈ Rd

: hi · v = 0} for
somehi ∈ Zd. Let L denote the intersection lattice ofC ordered by reverse inclusion.
We assume thatC is unimodular,which means that the (d × n)-matrix (h1, . . . , hn)

has rankd, and all its (d×d)-minors lie in the set{0,1,−1}. We retain this hypothesis
throughout this section. (See [21] and [3, Th. 1.2] for details on unimodularity.) The
set of all integral translates of hyperplanes ofC ,

Hi j = {v ∈ Rd
: hi · v = j } for i ∈ {1, . . . ,n} and j ∈ Z,

forms an infinite arrangement̃C in Rd. The unimodularity hypothesis is equivalent
to saying that the set of vertices of̃C is precisely the latticeZd; that is, no new
vertices can be formed by intersecting the hyperplanesHi j . Define theunimodular
toric arrangementC̃ /Zd to be the set of images of theHi j in the torusTd

= Rd/Zd.
Slightly abusing notation, we refer to these images as hyperplanes on the torus.

The images of cells of̃C in Td are calledcellsof C̃ /Zd. These cells form a cellular
decomposition ofTd. Denote byfi = fi (C̃ /Zd) the number ofi -dimensional cells in
this decomposition. The next result concerns thef -vector( f0, f1, . . . , fd) of C̃ /Zd.
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THEOREM 4.1
If C̃ /Zd is a unimodular toric arrangement, then

d∑
i =0

fi (C̃ /Zd) · qi
= ψC (q), whereψC (q) =

∑
F∈L

µL(F, 1̂) · (−q)dim F

is the cocharacteristic polynomial of the underlying hyperplane arrangementC .

Proof
Choose a vectorw ∈ Rd which is not perpendicular to any 1-dimensional cell of
the arrangementC . Consider the affine hyperplane{ v ∈ Rd

: w · v = 1}. Let
A = C ∩ H be a restriction ofC to H . ThenA is an affine arrangement inH .
For anyi ≥ 0, there is a one-to-one correspondence between the(i − 1)-dimensional
bounded cells ofA and thei -dimensional cells of toric arrangement̃C /Zd. To see
this, consider the cells in the infinite arrangementC̃ whose minimum with respect to
the linear functionalv 7→ w ·v is attained at the origin. These cells form a system of
representatives modulo theZd-action. But they are also in bijection with the bounded
cells ofA . Using Proposition3.5(see also Example2.1), we conclude

fi (C̃ /Zd) = fi −1(BA ) = (−1)i ·

∑
dim(F)=i

µL(F, 1̂),

where the sum is over elements ofL of coranki . This completes the proof.

Theorem4.1 was found independently by V. Reiner, who suggested that we include
the following alternative proof. His proof has the advantage that it does not rely on
Zaslavsky’s formula.

Second proof of Theorem4.1
Starting with the unimodular toric arrangementC̃ /Zd, for each intersection subspace
F in the intersection latticeL, letTF denote the subtorus obtained by restrictingC̃ /Zd

to F . SoT0 is just C̃ /Zd itself, andT1 is not actually a torus but rather a point. Our
assertion is equivalent to

µ(F,1) = (−1)dim F
· #{max cells inTF }. (9)

Letµ′(F) denote the right-hand side above. By the definition of the Möbius function
of a poset, equation (9) is equivalent to∑

F≤G≤1

µ′(G) = δF,1 (Kronecker delta).

The left-hand side of this equation is the (nonreduced) Euler characteristic ofTF . This
is zero sinceTF is a torus, unlessF = 1 so thatTF is a point, and then it is 1.
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We remark that Theorem4.1can be generalized to arbitrary toric arrangementsC̃ /Zd

without the unimodularity hypothesis. The face count formula is a sum of local
Möbius function values over all (now more than one) vertices ofC̃ /Zd. That general-
ization has interesting applications to hypergeometric functions, and it will be studied
in [13]. We know of no natural syzygetic interpretation of the complexesC̃ /Zd when
C is not unimodular. The enumerative applications in Section 5 all involve unimodular
arrangements, so we restrict ourselves to this case. We need the following recursion
for computing cocharacteristic polynomials.

PROPOSITION4.2
Let H be a hyperplane of the arrangementC . Then

ψC (q) = ψC ∩H (q)+ q ·

∑
c

ψC /c(q),

where the sum is over all lines c of the arrangementC that are not contained in H.

The linesc of the arrangementC are the coatoms of the intersection latticeL. The
arrangementC /c is the hyperplane arrangement{ Hi /c : c ∈ Hi } in the (d − 1)-
dimensional vectorspaceRd/c. Note that ifc is a simple intersection, that is, ifc lies
on onlyd−1 hyperplanesHi , thenψC /c(q) = (1+q)d−1. Note that Proposition4.2,
together with the conditionψC (q) = 1 for the zero-dimensional arrangementC ,
uniquely defines the cocharacteristic polynomial.

Proof
The intersection latticeL of any central hyperplane arrangementC is semimodular;
that is, if bothF andG cover F ∧ G, then F ∨ G covers bothF andG (see [18,
§3.3.2]). The assertion follows from the relation [18, §3.10, (27)] for the Möbius
functions of any semimodular lattice.

In the remainder of this section we review the algebraic context in which unimodular
toric arrangements arise in [3]. This provides a Gröbner basis interpretation for our
proof of Theorem4.1, and it motivates our enumerative results in Section 5.

Denote byB the (n × d)-matrix whose rows areh1, . . . , hn. All ( d × d)-minors
of B are−1,0, or +1. Theunimodular Lawrence idealof C is the binomial prime
ideal

JC :=
〈
xayb

−yaxb
| a,b ∈ Nn, a−b ∈ Image(B)

〉
in k[x1, . . . , xn, y1, . . . , yn].

The main result of [3] states that the toric arrangementC /Zd supports a cellular
resolution ofJC . In particular, the Betti numbers of the unimodular Lawrence ideal
JC are precisely the coefficients of the cocharacteristic polynomialψC (q).
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The construction in the proof of Theorem4.1has a Gröbner basis interpretation.
Indeed, the generic vectorw ∈ Rd defines a term order� for the idealJC as follows:

xayb
� yaxb if a − b = B · u for someu ∈ Rd with w · u > 0.

It is shown in [3, §4] that the initial monomial ideal in�(JC ) of JC with respect to
these weights is the oriented matroid ideal associated with the restriction of the central
arrangementC to the affine hyperplane{ v ∈ Rd

: w · v = 1}. In symbols,

in�(JC ) = OA .

In fact, in the unimodular case, Theorem1.3(b) is precisely [3, Th. 4.4].

COROLLARY 4.3
The Betti numbers of the unimodular Lawrence ideal JC , and all its initial ideals
in�(JC ), are the coefficients of the cocharacteristic polynomialψC .

We close this section with a nontrivial example. Letn = 9, d = 4, and consider

BT
=


x11 x12 x13 x21 x22 x23 x31 x32 x33

1 −1 0 −1 1 0 0 0 0
0 1 −1 0 −1 1 0 0 0
0 0 0 1 −1 0 −1 1 0
0 0 0 0 1 −1 0 −1 1

.
All nonzero (4×4)-minors of this matrix are−1 or+1, and hence we get a unimodular
central arrangementC of nine hyperplanes inR4. This is thecographic arrangement
associated with the complete bipartite graphK3,3. The nine hyperplane variablesxi j

represent edges inK3,3. The associated Lawrence ideal can be computed by saturation
(e.g., in Macaulay 2) from (binomials representing) the four rows ofBT :

JB = 〈 x11x22y12y21 − x12x21y11y22, x12x23y13y22 − x13x22y12y23,

x21x32y22y31 − x22x31y21y32, x22x33y23y32 − x23x32y22y33 〉 :

( ∏
1≤i, j ≤3

xi j yi j

)∞

.

This ideal has 15 minimal generators, corresponding to the 15 circuits in the directed
graphK3,3. A typical initial monomial ideal in≺(JB) = OA looks like this:〈

x11x22y12y21, x11x23y13y21, x11x32y12y31, x11x33y13y31, x12x23y13y22,

x12x33y13y32, x21x32y22y31, x21x33y23y31, x22x33y23y32,

x11x22x33y13y21y32, x11x22x33y12y23y31, x11x23x32y13y22y31,

x12x21x33y11y23y32, x12x21x33y13y22y31, x13x21x32y12y23y31
〉
.
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This is the oriented matroid ideal of the 3-dimensional affine arrangementA gotten
from C by taking a vectorw ∈ R4 with strictly positive coordinates. This ideal is
the intersection of 81 monomial primes, one for each spanning tree ofK3,3. By The-
orem2.9, they form a triangulation of a 13-dimensional Lawrence polytope, which is
given by its centrally symmetric Gale diagram(BT ,−BT ), as in [6, Prop. 9.3.2(b)].
Resolving this ideal (e.g., in Macaulay 2), we obtain the cocharacteristic polynomial

ψC (q) = 1 + 15q + 48q2
+ 54q3

+ 20q4. (10)

It was asked in [3, §5] what such Betti numbers arising from graphic and cographic
ideals are in general. This question is answered in the following section.

5. Graphic and cographic matroids
Among all matroids the unimodular ones play a special role; among unimodular ma-
troids those that arise from graphs play a special role; among all graphs the complete
graph plays a special role. Our aim in this section is to compute the cocharacteristic
polynomial ofgraphic andcographicarrangements, with an emphasis on complete
graphs. The material in this section is purely combinatorial and can be read indepen-
dently from the commutative algebra seen earlier. However, the motivation that led us
to prove Theorems5.8and5.14arose from the desire to count minimal syzygies. The
results in this section provide answers to questions posed in [3, §4]. We start out by
discussing graphic arrangements. Cographic arrangements are more challenging and
are discussed further below.

Fix a connected graphG with vertices[d] = {1, . . . ,d} and edgesE ⊂ [d]×[d].
Let V = {(v1, . . . , vd) ∈ Rd

: v1 + · · · + vd = 0} ' Rd−1. The graphic arrangement
CG is the arrangement inV given by the hyperplanesvi = v j for (i, j ) ∈ E. It is
unimodular (see [21]). For each subsetS ⊂ [d], we get aninduced subgraph G|S =

(S, E ∩ (S× S)). For a partitionπ of [d], we denote byG/π the graph obtained from
G by contracting all edges whose vertices lie in the same part ofπ . The intersection
lattice LG of the graphic arrangementCG has the following well-known description
in terms of thepartition lattice5d (see, e.g., [22] for proofs and references).

PROPOSITION5.1
The intersection lattice LG is isomorphic to the sublattice of the partition lattice5d

consisting of partitionsπ such that, for each part S ofπ , the subgraph G|S is con-
nected. The element Vπ of LG corresponding toπ ∈ 5d is the intersection of the
hyperplanes{vi = v j } for pairs i, j in the same part ofπ . The dimension of Vπ is
equal to the number of parts ofπ minus1. The interval[Vπ , 1̂ ] of the intersection
lattice LG is isomorphic to the intersection lattice LG/π .

We write µ(G) = |µLG(0̂, 1̂)| for the Möbius invariant of the intersection lattice.
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Thusµ(G) equals theCohen-Macaulay type(top Betti number) of the matroid ideal

MG =

⋂{〈
xi j : (i, j ) ∈ F

〉
| F ⊆ E is a spanning tree ofG

}
.

From Proposition5.1 and (8), we conclude that all the lower Betti numbers can be
expressed in terms of the Möbius invariants of the contractionsG/π of G.

COROLLARY 5.2
The cocharacteristic polynomial of the graphic arrangementCG is

ψCG(q) =

∑
π∈LG

µ(G/π) · q|π |−1.

This reduces our problem to computing the Möbius invariantµ(G) of a graphG.
C. Greene and Zaslavsky [10] found the following combinatorial formula. Anorien-
tationof the graphG is a choice, for each edge(i, j ) of G, of one of the two possible
directions:i → j or j → i . An orientation isacyclic if there is no directed cycle.

PROPOSITION5.3
Fix a vertex i of G. Thenµ(G) equals the number of acyclic orientations of G such
that, for any vertex j , there is a directed path from i to j .

Proof
The regions of the graphic arrangementCG are in one-to-one correspondence with
the acyclic orientations ofG: the region corresponding to an acyclic orientationo is
given by the inequalitiesxi > x j for any directed edgei → j in o.

The linear functionalw : (u1, . . . ,ud) 7→ ui is generic for the arrangementCG.
The Möbius invariantµ(G) equals the number of regions ofCG which are bounded
below with respect tow. We claim that the acyclic orientations corresponding to the
w-bounded regions are precisely the ones given in our assertion.

Suppose that, for any vertexj in G, there is a directed pathi → · · · → j . For
any point(u1, . . . ,ud) of the corresponding region, this path impliesui > · · · > u j .
The conditionu1 + · · · + um = 0 forcesw(u) = ui > 0. This implies that the region
is w-positive. Conversely, consider any acyclic orientation that does not satisfy the
condition in Proposition5.3. Then there exists a vertexj 6= i which is a source of
o. Then the vectorv = (−1, . . . ,−1,d − 1,−1, . . . ,−1), whered − 1 is in the j th
coordinate, belongs to the closure of the region associated witho. But w(v) = −1.
Hence the region is notw-positive.

The above discussion can be translated into a combinatorial recipe for writing the
minimal free resolution of graphic idealsMG, where each syzygy is indexed by a
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certain acyclic orientation of a graphG/π . For the case of thecomplete graph G=

Kd, we recover the resolution in [3, Th. 5.3]. Note that the intersection latticeL Kd

is isomorphic to the partition lattice5d. For any partitionπ of {1, . . . ,d} with i + 1
parts,Kd/π is isomorphic toK i +1. The number of such partitions equalsS(d, i + 1),
theStirling numberof the second kind. The number of acyclic orientations ofK i +1

with a unique fixed source equalsi !. We deduce the following corollary.

COROLLARY 5.4
The number of minimal i th syzygies of MKd equals i! S(d, i + 1).

Remark 5.5
Reiner suggested to us the following combinatorial interpretation ofµ(G). It can be
derived from Proposition5.3. For any graphG, the Möbius invariantµ(G) counts
the number of equivalence classes of linear orderings of the vertices ofG, under the
equivalence relation generated by the following operations:
• commuting two adjacent verticesv, v′ in the ordering if{v, v′

} is not an edge
of G,

• cyclically shifting the entire order, that is,v1v2 · · · vn ↔ v2 · · · vnv1.
Invariance under the second operation makes this interpretation convenient for writing
down the minimal free resolution of the graphic Lawrence ideals in [3, §5].

Another application arises when(W, S) is a Coxeter system andG its Coxeter
graph (considered without its edge labels). SupposeS = {s1, . . . , sn}. Thenµ(G)
counts the number of Coxeter elementssi1 · · · sin of G up to the equivalence relation
si1si2 · · · sin ↔ si2 · · · sinsi1.

We now come to the cographic arrangementC ⊥

G , whose matroid is dual to that of
CG. Fix a directed graphG on [d] with edgesE, whereG is allowed to have loops
and multiple edges. We associate withG the multiset of vectors{ve ∈ Zd

: e ∈ E},
where, for an edgee = (i → j ), the i th coordinate ofve is 1, the j th coordinate is
−1, and all other coordinates are zero. Setve = 0 for a loope = (i → i ) of G. Let
VG = {λ : E → R |

∑
e∈E λ(e)ve = 0}. Note thatVG is a vector space of dimension

#{edges} − #{vertices} + #{connected components}. Thecographic arrangementC ⊥

G
is the arrangement inVG given by hyperplanesHe = {λ ∈ VG : λ(e) = 0} for
e ∈ E. It is unimodular (see [21]). We write µ⊥(G) = |µL⊥

G
(0̂, 1̂)| for the Möbius

invariant of the intersection latticeL⊥

G of C ⊥

G , and we refer to this number as the
Möbius coinvariantof G. Thusµ⊥(G) is the Cohen-Macaulay type of the cographic
ideal JC⊥

G
in [3, §5].
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Remark 5.6
The characteristic polynomial of a matroid can be expressed via the Tutte dichromatic
polynomial (see [20]). Thus the Möbius invariant and coinvariant of a graphG are
certain values of the Tutte polynomial:µ(G) = TG(1,0) andµ⊥(G) = TG(0,1). We
do not know, however, how to express the cocharacteristic polynomialψ(q) in terms
of the Tutte polynomial.

A formula for the Tutte polynomial due to I. Gessel and B. Sagan [9, Th. 2.1] implies
the following proposition.

PROPOSITION5.7
The Möbius coinvariant of G isµ⊥(G) =

∑
F⊆G(−1)d−|F |−1, where the sum is

over all forests in G and|F | denotes the number of edges in F.

We derive explicit formulas for the Möbius coinvariant of complete and complete
bipartite graphs. A subgraphM of a graphG is called apartial matchingif it is a
collection of pairwise disjoint edges of the graph. For a partial matchingM , let a(M)
be the number of vertices ofG that have degree zero inM . TheHermite polynomial
Hn(x), n ≥ 0, is the generating function of partial matchings in the complete graph
Kn:

Hn(x) =

∑
M

xa(M),

where the sum is over all partial matchings inKn. In particular,H0(x) = 1. Set also
H−1(x) = 0. The main result of this section is the following formula.

THEOREM 5.8
The Möbius coinvariant of the complete graph Km equals

µ⊥(Km) = (m − 2) Hm−3(m − 1), m ≥ 2. (11)

A few initial numbersµ⊥(Km) are given below:

m 2 3 4 5 6 7 8 9 10 . . . ,

µ⊥(Km) 0 1 6 51 560 7575 122052 2285353 48803904. . . .

The proof of Theorem5.8 relies on several auxiliary results and is given below. The
next proposition summarizes well-known properties of Hermite polynomials.
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PROPOSITION5.9
The Hermite polynomial Hn(x) satisfies the recurrence

H−1(x) = 0, H0(x) = 1,

Hn+1(x) = x Hn(x)+ n Hn−1(x), n ≥ 0.
(12)

It is given explicitly by the formula

Hn(x) = xn
+

[n/2]∑
k≥1

(
n

2k

)
(2k − 1)!! xn−2k,

where(2k − 1)!! = (2k − 1)(2k − 3)(2k − 5) · · · 3 · 1.

Proof
In a partial matching the first vertex has either degree 0 or 1. This gives two terms in
the right-hand side of the recurrence (12). The formula forHn(x) follows from the
fact that there are(2k − 1)!! matchings withk edges on 2k vertices.

Returning to general cographic arrangements, recall that an edgee of the graphG is
called anisthmusif G\e has more connected components thanG; a graph is called
isthmus-freeif no edge ofG is an isthmus. The minimal nonempty isthmus-free sub-
graphs ofG are thecyclesof G. For a subgraphH of G, denote byG/H the graph
obtained fromG by contracting the edges ofH . Note thatG/H may have loops and
multiple edges even ifG does not. The following result appears in [10].

PROPOSITION5.10
The intersection lattice L⊥G of the cographic arrangement is isomorphic to the lattice
of isthmus-free subgraphs of G ordered by reverse inclusion. The element of the in-
tersection lattice that corresponds to an isthmus-free subgraph H is VH ⊂ VG. The
coatoms of the lattice L⊥G are the cycles of G. For two isthmus-free subgraphs H⊃ K
of G, the interval[VH ,VK ] of the intersection lattice L⊥G is isomorphic to the interval
[0̂, 1̂] of the intersection lattice L⊥H/K .

Proposition4.2 implies the following recurrence for the cocharacteristic polynomial
ψC ⊥

G
(q) of the cographic arrangementC ⊥

G .

COROLLARY 5.11
Let e be an edge of the graph G. Then

ψC ⊥
G
(q) = ψC ⊥

G\e
(q)+ q

∑
C

ψC ⊥
G/C
(q), (13)

where the sum is over all cycles C of G that contain e.
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Considering terms of the highest degree in (13), we obtain the following corollary.

COROLLARY 5.12
If e is any edge of G that is not an isthmus, then

µ⊥(G) =

∑
C

µ⊥(G/C), (14)

where the sum is over all cycles C of G that contain e.

Note thatµ⊥(G) is equal to the Möbius coinvariant of the graph̃G obtained fromG
by removing all loops and isthmuses. Thus, when we use relation (14) to calculate
µ⊥(G), we may remove all new loops obtained after contracting the cycleC.

We are ready to prove Theorem5.8. Forn ≥ 0 andk ≥ 1, defineK (k)
n to be the

complete graphKn on the vertices 1, . . . ,n, together with one additional vertexn+1
(root) connected to each vertex 1, . . . ,n by k edges. Letµ(k)n = µ⊥(K (k)

n ) be the
Möbius coinvariant of the graphK (k)

n . Note thatKm = K (1)
m−1 andµ⊥(Km) = µ

(1)
m−1.

Theorem5.8can be extended as follows.

PROPOSITION5.13
We have the following formula:µ(k)n = Hn(n + k − 1) − n Hn−1(n + k − 1) for
n, k ≥ 1.

Proof
We utilize Corollary5.12. Select an edgee = (n,n + 1) of the graphK (k)

n . There
arek − 1 choices for a cycleC of length 2 that contains the edgee, and the graph
K (k)

n /C, after removing loops, is isomorphic toK (k+1)
n−1 . There are(n−1) k choices for

a cycleC of length 3 that contains the edgee, and the graphK (k)
n /C, after removing

loops, is isomorphic toK (k+2)
n−2 . In general, for cycles of lengthl ≥ 3, there arek (n −

1)(n−2) · · · (n−l +2) choices, and we obtain a graph that is isomorphic toK (k+l−1)
n−l+1 .

Equation (14) implies the following recurrence forµ(k)n :

µ(k)n = (k − 1) µ(k+1)
n−1 + k(n − 1) µ(k+2)

n−2

+ k(n − 1)(n − 2) µ(k+3)
n−3 + k (n − 1)(n − 2)(n − 3) µ(k+4)

n−4 + · · · , (15)

which, together with the initial conditionµ(k)0 = 1, defines the numbersµ(k)n uniquely.
Set

b(k)n = µ(k)n + nµ(k+1)
n−1 + n(n − 1) µ(k+2)

n−2 + · · · + n(n − 1) · · · 1µ(k+n)
0 .

Thenµ(k)n = b(k)n − nb(k+1)
n−1 and the relation (15) can be rewritten as

b(k)n − n b(k+1)
n−1 = (k − 1)

(
b(k+1)

n−1 − (n − 1)b(k+2)
n−2

)
+ k (n − 1)b(k+2)

n−2
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or, simplifying, as

b(k)n = (n + k − 1)b(k+1)
n−1 + (n − 1)b(k+2)

n−2 . (16)

We claim thatb(k)n = Hn(n + k − 1). Indeed,b(k)0 = 1, b1(k) = k, and equation (16)

is equivalent to the defining relation (12) for the Hermite polynomials. Henceµ(k)n =

b(k)n − nb(k+1)
n−1 = Hn(n + k − 1)− nHn−1(n + k − 1).

Proof of Theorem5.8
By Proposition5.13and equation (12),

µ⊥(Km) = µ
(1)
m−1 = Hm−1(m−1)−(m−1) Hm−2(m−1) = (m−2) Hm−3(m−1).

We now discuss a bipartite analog of Hermite polynomials. For a partial matching
M in the complete bipartite graphKm,n, denote bya(M) the number of vertices in
the first part that have degree zero inM , and byb(M) the number of vertices in the
second part that have degree zero. Define

Hm,n(x, y) =

∑
M

xa(M) yb(M),

where the sum is over all partial matchings inKm,n. In particular,Hm,0 = xm and
H0,n = yn. Set alsoHm,−1 = H−1,n = 0. The following statement is a bipartite
analogue of Theorem5.8.

THEOREM 5.14
The Möbius coinvariant of the complete bipartite graph Km,n equals

µ⊥(Km,n) = (m − 1)(n − 1)Hm−2,n−2(n − 1,m − 1), m,n ≥ 1.

The following proposition is analogous to Proposition5.9.

PROPOSITION5.15
The polynomial Hm,n(x, y) is given by

Hm,n(x, y) =

min(m,n)∑
k=0

(
m

k

)(
n

k

)
k! xm−kyn−k.

It satisfies the following recurrence relations:

Hm,n(x, y) = x Hm−1,n(x, y)+ n Hm−1,n−1(x, y),

Hm,n(x, y) = y Hm,n−1(x, y)+ m Hm−1,n−1(x, y),

Hm,0 = xm, H0,n = yn. (17)
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Proof
The first formula is obtained by counting the partial matchings inKm,n. The recur-
rence relations (17) are obtained by distinguishing two cases when the first vertex in
the first (second) part ofKm,n has degree 0 or 1 in a partial matching.

Let us define the graphK (k,l )
m,n as the complete bipartite graphKm,n with an additional

vertexv such thatv is connected byk edges with each vertex in the first part and by
l edges with each vertex in the second part. Letµ

(k,l )
m,n = µ⊥(K (k,l )

m,n ) be the Möbius
coinvariant of this graph. Note thatKm,n = K (1,0)

m,n−1 and, thus,µ⊥(Km,n) = µ
(1,0)
m,n−1.

Theorem5.14can be extended as follows.

PROPOSITION5.16
We have

µ(k, l )m,n = Hm,n(n + k − 1,m + l − 1)− mn Hm−1,n−1(n + k − 1,m + l − 1).

Proof
Our proof is similar to that of Proposition5.13. We utilize Corollary5.12. Select an
edgee of the graphK (k,l )

m,n that joins the additional vertexv with a vertex from the
first part. There arek − 1 choices for a cycleC of length 2 that contains the edgee,
and the graphK (k,l )

m,n /C, after removing loops, is isomorphic toK (k,l+1)
m−1,n . There are

n l choices for a cycleC of length 3 that contains the edgee, and the graphK (k,l )
m,n /C,

after removing loops, is isomorphic toK (k+1,l+1)
m−1,n−1 . For cycles of length 4, we have

n(m−1) k choices and obtain a graph isomorphic toK (k+1,l+2)
m−2,n−1 , and so on. In general,

for cycles of odd length 2r + 1 ≥ 3, we havel n(m − 1)(n − 1)(m − 2) · · · (m − r +

1)(n − r + 1) choices, and we obtain a graph isomorphic toK (k+r, l+r )
m−r,n−r . For cycles of

even length 2r + 2 ≥ 4, we havek n(m − 1)(n − 1)(m − 2) · · · (n − r + 1)(m − r )
choices, and we obtain a graph isomorphic toK (k+r, l+r +1)

m−r −1,n−r . Equation (14) implies the

following recurrence forµ(k, l )m,n :

µ(k, l )m,n = (k − 1) µ(k, l+1)
m−1,n + lnµ(k+1, l+1)

m−1,n−1 + kn(m − 1) µ(k+1, l+2)
m−2,n−1

+ l n(m − 1)(n − 1) µ(k+2, l+2)
m−2,n−2

+ k n(m − 1)(n − 1)(m − 2) µ(k+2, l+3)
m−3,n−2 + · · · , (18)

which, together with the initial conditionsµ(k, l )0,n = (l − 1)n andµ(k, l )m,0 = (k − 1)m,

unambiguously defines the numbersµ(k, l )m,n . Let us fix the numbersp = k + n − 1 and
q = l + m − 1 and writeµm,n for µ(p−n+1,q−m+1)

m,n . Set

bm,n = µm,n + n mµm−1,n−1 + n(n − 1)m(m − 1) µm−2,n−2 + · · · .
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Thenµm,n = bm,n − m nbm−1,n−1 and the relation (18) can be rewritten as

bm,n − m n bm−1,n−1 = −
(
bm−1,n − (m − 1)n bm−2,n−1

)
+ (p − n + 1)bm−1,n + (q − m + 1)n bm−1,n−1

or, simplifying, as

bm,n = (p − n)bm−1,n + (q + 1)n bm−1,n−1 + (m − 1)n bm−2,n−1. (19)

This relation, together with the initial conditionsb0,n = qn, bm,0 = pm, b−1,n =

bm,−1 = 0, uniquely determines the numbersbm,n.
We claim thatbm,n = Hm,n(p,q). Indeed, the above initial conditions are satis-

fied by Hm,n(p,q), and (19) follows from the defining relations (17) for the bipartite
Hermite polynomials. In order to see this, we write by (17),

Hm,n(p,q) = p Hm−1,n(p,q)+ n Hm−1,n−1(p,q),

n Hm−1,n(p,q) = n q Hm−1,n−1(p,q)+ n(m − 1) Hm−2,n−1(p,q).

The sum of these two equations is equivalent to equation (19). Henceµ(k l)
m,n = bm,n −

m n bm−1,n−1 = Hm,n(p,q)− m n Hm−1,n−1(p,q).

An alternative expression forµ(k l)
m,n can be deduced from Proposition5.16:

µ(k l)
m,n =

min(m,n)∑
r =0

(1 − r )

(
m

r

)(
n

r

)
r ! (n + k − 1)m−r (m + l − 1)n−r . (20)

Proof of Theorem5.14
By Proposition5.16and the recurrence relations (17),

µ⊥(Km,n)

= µ
(1,0)
m,n−1 = Hm,n−1(n − 1,m − 1)− m(n − 1) Hm−1,n−2(n − 1,m − 1)

= (n − 1) Hm−1,n−1(n − 1,m − 1)− (m − 1)(n − 1) Hm−1,n−2(n − 1,m − 1)

= (m − 1)(n − 1) Hm−2,n−2(n − 1,m − 1).

For a commutative algebra example illustrating Theorem5.14, consider the Lawrence
ideal JB ⊂ k[x11, . . . , x33, y11, . . . , y33] associated with the bipartite graphK3,3.
This is the Lawrence lifting of the ideal of (2× 2)-minors of a generic (3× 3)-matrix.
It is discussed in the end of Section 4. Its Cohen-Macaulay type is

µ⊥(K3,3) = (3 − 1) · (3 − 1) · H1,1(2,2) = 2 · 2 · 5 = 20.

This is the leading coefficient of the cocharacteristic polynomial in equation (10).
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