Symmetries of Gromov-Witten Invariants

Alexander Postnikov

Department of Mathematics, University of California, Berkeley, CA 94720 apost@math.berkeley.edu

September 17, 2000

Abstract

The group $(\mathbb{Z}/n\mathbb{Z})^2$ is shown to act on the Gromov-Witten invariants of the complex flag manifold. We also deduce several corollaries of this result.

1 Introduction

The aim of this paper is to present certain symmetry properties of the Gromov-Witten invariants for type A complex flag manifolds.

Recall that the cohomology ring of the complex flag manifold Fl_n has an additive basis of Schubert classes σ_w , which are indexed by permutations w in the symmetric group S_n . For permutations $u, v, w \in S_n$, the Schubert number $c_{u,v,w}$ is the structure constant of the cohomology ring in the basis of Schubert classes:

$$\sigma_u \cdot \sigma_v = \sum_{w \in S_n} c_{u,v,w} \, \sigma_{w_o w} \,,$$

where w_{o} is the longest permutation in S_n . Equivalently,

$$c_{u,v,w} = \int \sigma_u \cdot \sigma_u \cdot \sigma_w$$

is the intersection number of Schubert varieties. Thus these numbers are nonnegative integers symmetric in u, v, and w. They generalize the famous Littlewood-Richardson coefficients. If $\ell(u) + \ell(v) + \ell(w) \neq \frac{n(n-1)}{2}$ then the Schubert number $c_{u,v,w}$ is zero for an obvious degree reason.

A long standing open problem is to find an algebraic or combinatorial construction for the coefficients $c_{u,v,w}$ that would imply their nonnegativity. A possible approach to this problem could be in its generalization to the quantum cohomology ring of the flag manifold Fl_n . The structure constants of this ring are certain polynomials whose coefficients are the Gromov-Witten invariants $\langle \sigma_u, \sigma_v, \sigma_w \rangle_{(d_1,...,d_{n-1})}$ The Schubert number $c_{u,v,w}$ is a special case of the Gromov-Witten invariants: $c_{u,v,w} = \langle \sigma_u, \sigma_v, \sigma_w \rangle_{(0,...,0)}$. These invariants are defined as numbers of certain rational curves in Fl_n . The geometric definition of the Gromov-Witten invariants implies their nonnegativity.

In this paper we establish cyclic symmetries of the Gromov-Witten invariants that could not be detected in their full generality on the "classical" level of the Schubert numbers $c_{u,v,w}$. Several related results for the $c_{u,v,w}$ when u is a Grassmannian permutation were, however, found by Bergeron and Sottile, see [2, Theorems 1.3.4, 1.3.4]. In case of the Gromov-Witten invariants we do not need to restrict the rule to Grassmannian permutations. Similar symmetries of the Gromov-Witten invariants for Grassmannian varieties were found in [1].

2 Gromov-Witten invariants

Let Fl_n denote the manifold of complete flags of subspaces in the complex *n*dimensional linear space \mathbb{C}^n . One can also define the *flag manifold* as $Fl_n = GL_n(\mathbb{C})/B$, where *B* is the Borel subgroup of upper triangular matrices in the general linear group. The flag manifold is a compact smooth complex manifold. For a permutation $w \in S_n$, the *Schubert variety* X_w is the closure of the *Schubert cell* B_-wB/B in Fl_n , where B_- is the subgroup of lower triangular matrices and w is viewed as a permutation matrix in GL_n . The *Schubert classes* $\sigma_w \in$ $\mathrm{H}^*(Fl_n,\mathbb{Z})$, indexed by permutations $w \in S_n$, are defined as the Poincaré duals of the homology classes $[X_w]$ of Schubert manifolds. They form an additive \mathbb{Z} -basis of the cohomology ring $\mathrm{H}^*(Fl_n,\mathbb{Z})$. Moreover, $\sigma_w \in \mathrm{H}^{2l}(Fl_n,\mathbb{Z})$, where $l = \ell(w)$ is the *length* of permutation w, i.e., its number of inversions.

Recently, attention has been drawn to the (small) quantum cohomology ring $QH^*(Fl_n, \mathbb{Z})$ of the flag manifold. The definition of quantum cohomology can be found, for example, in [5]. Here we briefly outline several notions and results.

As a vector space, the quantum cohomology of Fl_n is the usual cohomology tensored with the polynomial ring in n-1 variables:

$$QH^*(Fl_n, \mathbb{Z}) \cong H^*(Fl_n, \mathbb{Z}) \otimes \mathbb{Z}[q_1, \dots, q_{n-1}].$$
(1)

The Schubert classes σ_w , thus, form a $\mathbb{Z}[q_1, \ldots, q_{n-1}]$ -basis of the quantum cohomology ring.

The multiplication in $\text{QH}^*(Fl_n, \mathbb{Z})$ (quantum product) is a commutative $\mathbb{Z}[q_1, \ldots, q_{n-1}]$ -linear operation. It is therefore sufficient to specify the quantum product of any two Schubert classes. To avoid confusion with the multiplication in the usual cohomology ring, we will use "*" to denote the quantum product. The quantum product $\sigma_u * \sigma_v$ of two Schubert classes can be expressed in the basis of the Schubert classes as

$$\sigma_u * \sigma_v = \sum_{w \in S_n} C_{u,v,w} \, \sigma_{w_o w} \,, \tag{2}$$

where $C_{u,v,w} \in \mathbb{Z}[q_1, \ldots, q_{n-1}]$ and $w_0 = \begin{pmatrix} 1 & 2 & \cdots & n \\ n & n-1 & \cdots & 1 \end{pmatrix}$ is the longest permutation in S_n .

The coefficient of $q_1^{d_1} \cdots q_{n-1}^{d_{n-1}}$ in the polynomial $C_{u,v,w}$ is the *Gromov-Witten* invariant $\langle \sigma_u, \sigma_v, \sigma_w \rangle_{(d_1, \dots, d_{n-1})}$. The Gromov-Witten invariants are defined geometrically as numbers of certain rational curves in Fl_n . (See [5] or [3] for details.) Let us summarize the main properties of these invariants. It will be more convenient for us to work with the polynomials $C_{u,v,w}$.

- **1.** (Nonnegativity) All coefficients of the $C_{u,v,w}$ are nonnegative integers.
- **2.** (S₃-symmetry) The polynomials $C_{u,v,w}$ are invariant with respect to permuting u, v, and w.
- **3.** (Degree condition) The polynomial $C_{u,v,w}$ is a homogeneous polynomial of degree $\frac{1}{2}(\ell(u) + \ell(v) + \ell(w) \frac{n(n-1)}{2})$.
- **4.** (Classical limit) The Schubert number $c_{u,v,w}$ is the constant term of the polynomial $C_{u,v,w}$.
- **5.** (Associativity) The operation "*" defined by (2) via the polynomials $C_{u,v,w}$ is associative.

The first four properties are clear from geometric definitions. It was conjectured in [3] that nonnegativity, associativity, degree condition, and classical limit condition uniquely determine the Gromov-Witten invariants.

The conditions **3** and **4** immediately imply the following statement.

Proposition 1 We have

$$C_{u,v,w} = \begin{cases} 0 & if \ \ell(u) + \ell(v) + \ell(w) < \frac{n(n-1)}{2}, \\ 0 & if \ \ell(u) + \ell(v) + \ell(w) - \frac{n(n-1)}{2} \ is \ odd, \\ c_{u,v,w} & if \ \ell(u) + \ell(v) + \ell(w) = \frac{n(n-1)}{2}, \\ ??? & overwise. \end{cases}$$

In [3] we gave a method for calculation of the Gromov-Witten invariants. Among several approaches presented in that paper, one is based on the quantum analogue of Monk's formula.

For $1 \leq i < j \leq n$, let s_{ij} be the transposition in S_n that permutes i and j. Then $s_i = s_{i\,i+1}$ is an adjacent transposition. Also, let q_{ij} be a shorthand for the product $q_i q_{i+1} \cdots q_{j-1}$.

Proposition 2 [3, Theorem 1.3] (quantum Monk's formula) For $w \in S_n$ and $1 \leq k < n$, the quantum product of the Schubert classes σ_{s_k} and σ_w is given by

$$\sigma_{s_k} * \sigma_w = \sum \sigma_{ws_{ab}} + \sum q_{cd} \sigma_{ws_{cd}}, \qquad (3)$$

where the first sum is over all transpositions s_{ab} such that $a \leq k < b$ and $\ell(ws_{ab}) = \ell(w) + 1$, and the second sum is over all transpositions s_{cd} such that $c \leq k < d$ and $\ell(ws_{cd}) = \ell(w) - \ell(s_{cd}) = \ell(w) - 2(d-c) + 1$.

Remark 3 The two-dimensional Schubert classes σ_{s_k} generate the quantum cohomology ring. Thus formula (3) uniquely determines the multiplicative structure of $\text{QH}^*(Fl_n, \mathbb{Z})$ and, therefore, the Gromov-Witten invariants.

3 Cyclic symmetry

Let o = (1, 2, ..., n) be the cyclic permutation in S_n given by

$$o(i) = i + 1$$
, for $i = 1, \dots, n - 1$, $o(n) = 1$.

Recall that $q_{ij} = q_i q_{i+1} \cdots q_{j-1}$ for i < j. We also define $q_{ij} = q_{ji}^{-1}$ for i > j and $q_{ii} = 1$.

Theorem 4 For any $u, v, w \in S_n$ we have

$$C_{u,v,w} = q_{ij} C_{u,o^{-1}v,ow} , (4)$$

where $i = v^{-1}(1)$ and $j = w^{-1}(n)$.

The S_3 -invariance of the $C_{u,v,w}$ under permuting u, v, and w implies a more general statement.

For $w \in S_n$ and $1 \le a \le n$, define the following Laurent monomials in the q_i

$$Q_{w,a} = \prod_{i: w(i) \ge n-a+1} q_{1i}, \qquad Q_{w,-a} = \prod_{j: w(j) \le a} (q_{1j})^{-1},$$

and let $Q_{w,0} = 1$.

Corollary 5 For any $u, v, w \in S_n$ and $-n \leq a, b, c \leq n$ such that a + b + c = 0, we have

$$C_{u,v,w} = Q_{u,a}Q_{v,b}Q_{w,c} C_{o^a u, o^b v, o^c w}.$$
(5)

In many cases Corollary 5 and Proposition 1 allow us to reduce the polynomials $C_{u,v,w}$ to the Schubert numbers $c_{u,v,w}$:

Corollary 6 For $u, v, w \in S_n$, let us find a triple $-n \le a, b, c \le n, a+b+c = 0$, for which the expression

$$\ell_{a,b,c} = \ell(o^a u) + \ell(o^b v) + \ell(o^c w)$$

is as small as possible. If $\ell_{a,b,c} < \frac{n(n-1)}{2}$ then $C_{u,v,w} = 0$. If $\ell_{a,b,c} = \frac{n(n-1)}{2}$ then $C_{u,v,w} = Q_{u,a}Q_{v,b}Q_{w,c}c_{o^a u,o^b v,o^c w}$.

Remark 7 (Reduction of Gromov-Witten invariants) The Gromov-Witten invariants have the following *stability property*. If $u, v, w \in S_n$ are three permutations such that u(n) = v(n) = n and w(n) = 1 then $C_{u,v,w} = C_{u',v',w'}$, where

 $u', v', w' \in S_{n-1}$ are permutations obtained from u, v, w by removing the last entry (and subtracting 1 from all entries of w).

For a triple of permutation $u, v, w \in S_n$ such that $u(n) + v(n) + w(n) \equiv 1 \pmod{n}$, we can use the relation (5) to transform the triple to the above case when we can use the stability property. This shows that 1/n of all Gromov-Witten invariants for Fl_n can be reduced to the Gromov-Witten invariants of Fl_{n-1} . Analogously, we can reduce the problem to a lower level for a triple of permutations $u, v, w \in S_n$ such that $u(1) + v(1) + w(1) \equiv 2 \pmod{n}$.

Remark 8 (New rules for multiplication of Schubert classes) Suppose that a rule is know for the quantum multiplication of an arbitrary Schubert class by certain Schubert class σ_u . Theorem 4 immediately produces a new rule for the quantum multiplication by $\sigma_{o^a u}$, where $a \in \mathbb{Z}$. For example, we get for free a rule for $\sigma_{o^a} * \sigma_w$. Quantum Monk's formula (3) can be extended to a rule for $\sigma_{o^a s_k} * \sigma_w$. More generally, quantum Pieri's formula [6, Corollary 4.3] extends to an explicit rule for $\sigma_{o^a u} * \sigma_w$, where u is a permutation of the form $u = s_k s_{k+1} \cdots s_{k+l}$ or $u = s_k s_{k-1} \cdots s_{k-l}$.

4 Twisted cyclic shift

Let T_{ij} , $1 \leq i < j \leq n$, be the $\mathbb{Z}[q_1, \ldots, q_{n-1}]$ -linear operators that act on the quantum cohomology ring $\mathrm{QH}^*(Fl_n, \mathbb{Z})$ by

$$T_{ij}: \sigma_w \longmapsto \begin{cases} \sigma_{ws_{ij}} & \text{if } \ell(ws_{ij}) = \ell(w) + 1, \\ q_{ij} \sigma_{ws_{ij}} & \text{if } \ell(ws_{ij}) = \ell(w) - 2(j-i) + 1, \\ 0 & \text{otherwise.} \end{cases}$$
(6)

Then quantum Monk's formula (3) can be written as:

$$\sigma_{s_k} * \sigma_w = \sum_{i \le k < j} T_{ij}(\sigma_w).$$
⁽⁷⁾

The operators T_{ij} satisfy certain simple quadratic relations. The formal algebra defined by these relations was studied in [4] and [6].

Let us also define the *twisted cyclic shift operator* O that acts on the quantum cohomology ring $\text{QH}^*(Fl_n, \mathbb{Z})$, linearly over $\mathbb{Z}[q_1, \ldots, q_{n-1}]$, by

$$O : \sigma_w \longmapsto q^{(w)} \sigma_{ow} ,$$

where $q^{(w)} = q_{rn}$ with $r = w^{-1}(n)$.

Proposition 9 For any $1 \le i < j \le n$, the operators T_{ij} and O commute:

$$T_{ij} O = O T_{ij}$$

The following lemma clarifies the conditions in the right-hand side of (6). Its proof is a straightforward observation.

Lemma 10 Let $w \in S_n$ and $1 \le i < j \le n$. Then

1. $\ell(w s_{ij}) = \ell(w) + 1$ if and only if for all $i \leq k \leq j$ we have

$$w(k) \ge w(j) \ge w(i)$$
 or $w(j) \ge w(i) \ge w(k)$;

2. $\ell(w s_{ij}) = \ell(w) - \ell(s_{ij}) = \ell(w) - 2(j-i) + 1$ if and only if for all $i \le k \le j$ we have $w(i) \ge w(k) \ge w(i)$

$$w(i) \ge w(k) \ge w(j)$$
.

Proof of Proposition 9 — The crucial observation is that, for fixed $i \le k \le j$, the set of permutations w such that

$$w(k) \ge w(j) \ge w(i) \quad \text{or} \quad w(j) \ge w(i) \ge w(k) \quad \text{or} \quad w(i) \ge w(k) \ge w(j)$$

is invariant under the left multiplications of w by the cycle o. This fact, together with Lemma 10, implies that $(T_{ij} O)(\sigma_w)$ is nonzero if and only if $T_{ij}(\sigma_w)$ is nonzero. Assume that $T_{ij}(\sigma_w) \neq 0$ and consider three cases:

I. Neither w(i) nor w(j) is equal to n. Then either of the conditions in the right-hand side of (6) is satisfied for w if and only if the same condition is satisfied for ow. Also $q^{(w)} = q^{(ws_{ij})}$. Thus $(T_{ij} O)(\sigma_w) = (O T_{ij})(\sigma_w)$.

II. We have w(j) = n. Then w(i) < w(j) and ow(i) > ow(j). Thus $\ell(ws_{ij}) = \ell(w) + 1$ and $\ell(ows_{ij}) = \ell(ow) - \ell(s_{ij})$. Thus $T_{ij}(\sigma_w) = \sigma_{ws_{ij}}$ and $T_{ij}(\sigma_{ow}) = q_{ij}\sigma_{ows_{ij}}$. Also we have $q^{(w)} = q_{jn}$ and $q^{(ws_{ij})} = q_{in}$. Therefore, $(T_{ij} O)(\sigma_w) = q_{ij}q_{jn}\sigma_{ows_{ij}} = q_{in}\sigma_{ows_{ij}} = (O T_{ij})(\sigma_w)$.

III. We have w(i) = n. Then w(i) > w(j) and ow(i) < ow(j). Thus $\ell(ws_{ij}) = \ell(w) - \ell(s_{ij})$ and $\ell(ows_{ij}) = \ell(ow) + 1$. Thus $T_{ij}(\sigma_w) = q_{ij}\sigma_{ws_{ij}}$ and $T_{ij}(\sigma_{ow}) = \sigma_{ows_{ij}}$. Also we have $q^{(w)} = q_{in}$ and $q^{(ws_{ij})} = q_{jn}$. Therefore, $(T_{ij} O)(\sigma_w) = q_{in}\sigma_{ows_{ij}} = q_{ij}q_{jn}\sigma_{ows_{ij}} = (O T_{ij})(\sigma_w)$.

Corollary 11 For any $w \in S_n$, the operator of quantum multiplication by the Schubert class σ_w commutes with the operator O.

Proof — Proposition 9 and quantum Monk's formula (7) imply that the operator of quantum multiplication by a two-dimensional Schubert class σ_{s_k} commutes with the twisted cyclic shift operator O. By Remark 3, for any $w \in S_n$, the operator of quantum multiplication by σ_w commutes with O.

This also proves Theorem 4, because it is equivalent to Corollary 11.

5 Transition graph

The Bruhat order Br_n is the partial order on the set of all permutations in S_n given by the following covering relation: $u \to w$ if $w = u s_{ab}$ and $\ell(w) = \ell(u)+1$. In other words, $u \to w$ if σ_w appear in the expansion of $\sigma_{s_k} \cdot \sigma_u$ for some $1 \le k < n$ (the product in the usual cohomology ring). The analogue of the Bruhat order for the quantum cohomology ring is the following transition graph. The transition graph Tr_n is the directed graph on the set of permutations in S_n . Two permutations are connected by an edge $u \to w$ in Tr_n if $w = u s_{ab}$ and either $\ell(w) = \ell(u) + 1$ or $\ell(w) = \ell(u) - \ell(s_{ab})$. We will label the edge $u \to u s_{ab}$ by the pair (a, b). Equivalently, two permutations are connected by the edge $u \to w$ in Tr_n whenever σ_w appear in the expansion of the quantum product $\sigma_{s_k} * \sigma_u$ for some $1 \le k < n$.

Proposition 9 implies the cyclic symmetry of the transition graph:

Corollary 12 The transition graph Tr_n is invariant under the cyclic shift: $w \mapsto ow$, for $w \in S_n$.

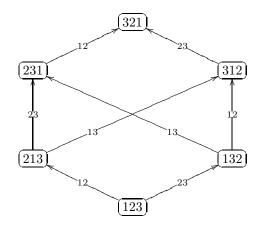


Figure 1: Bruhat order Br_3 .

Figures 1 and 2 show the Bruhat order Br_3 and the transition graph Tr_3 . The transition graph Tr_3 is obtained by adding several new edges to Br_3 , which makes the picture symmetric with respect to the cyclic group $\mathbb{Z}/3\mathbb{Z}$. The generator o of the cyclic group rotates the graph Tr_3 by 180° clockwise.

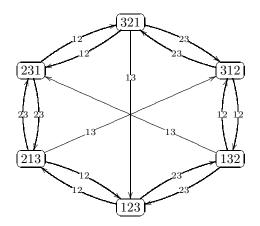


Figure 2: Transition graph Tr_3 .

References

- [1] S. Agnihotri, C. Woodward: Eigenvalues of products of unitary matrices and quantum Schubert calculus, *Math. Research Letters*, **5** (1998), 817–836.
- [2] N. Bergeron, F. Sottile: Schubert polynomials, the Bruhat order, and the geometry of flag manifolds, *Duke Math. J.* **95** (1998), no. 2, 373–423.
- [3] S. Fomin, S. Gelfand, A. Postnikov: Quantum Schubert polynomials, J. Amer. Math. Soc. 10 (1997), 565–596.
- [4] S. Fomin, A. Kirillov: Quadratic algebras, Dunkl elements, and Schubert calculus, Advances in Geometry, *Progress in Mathematics* 172, Birkhäuser, Boston, 1999, 147–182.
- [5] W. Fulton, R. Pandharipande: Notes on stable maps and quantum cohomology, preprint alg-geom/9608011; also report no. 4, Institut Mittag-Leffler, 1996.
- [6] A. Postnikov: On a quantum version of Pieri's formula, Advances in Geometry, Progress in Mathematics 172, Birkhäuser, Boston, 1999, 371–383.