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7 MATCHING POLYTOPES, TORIC GEOMETRY, AND THE

NON-NEGATIVE PART OF THE GRASSMANNIAN

ALEXANDER POSTNIKOV, DAVID SPEYER, AND LAUREN WILLIAMS

Abstract. In this paper we use toric geometry to investigate the topology of

the totally non-negative part of the Grassmannian (Grkn)≥0. (Grkn)≥0 is a

cell complex whose cells ∆G can be parameterized in terms of the combina-

torics of bicolored planar graphs G. To each cell ∆G we associate a complete

fan FG which is normal to a certain polytope P (G). The combinatorial struc-

ture of the polytopes P (G) is reminiscent of the well-known Birkhoff polytopes,

and we describe their face lattices in terms of matchings and unions of match-

ings of G. We also demonstrate a close connection between the polytopes

P (G) and matroid polytopes. We then use the data of FG and P (G) to define

an associated toric variety XG. We use our technology to prove that the cell

decomposition of (Grkn)≥0 is a CW complex, and furthermore, that the Euler

characteristic of the closure of each cell of (Grkn)≥0 is 1.

1. Introduction

The classical theory of total positivity concerns matrices in which all minors

are non-negative. While this theory was pioneered by Gantmacher, Krein, and

Schoenberg in the 1930’s, the past decade has seen a flurry of research in this area

initiated by Lusztig [10, 11, 12]. Motivated by surprising connections he discovered

between his theory of canonical bases for quantum groups and the theory of total

positivity, Lusztig extended this subject by introducing the totally non-negative

variety G≥0 in an arbitrary reductive group G and the totally non-negative part

(G/P )≥0 of a real flag variety (G/P ).

Recently Postnikov [14] investigated the combinatorics of the totally non-negative

part of a Grassmannian (Grkn)≥0: he established a relationship between (Grkn)≥0

and certain planar bicolored graphs, producing a combinatorially explicit cell de-

composition of (Grkn)≥0. To each such graph G he constructed a parameterization

MeasG of a corresponding cell of (Grkn)≥0 by (R≥0)
#Faces(G)−1. In fact this cell

decomposition is a special case of a cell decomposition of (G/P )≥0 which was con-

jectured by Lusztig and proved by Rietsch [16], although that cell decomposition

was described in quite different terms. Other combinatorial aspects of (Grkn)≥0,

and more generally of (G/P )≥0, were investigated by Rietsch [13, 17] and Williams

[21, 22].
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It is known that (G/P )≥0 is contractible [10] and it is conjectured that (G/P )≥0

with its cell decomposition is a regular CW complex homeomorphic to a ball. In

[22], Williams proved the combinatorial analogue of this conjecture, proving that

the partially ordered set (poset) of cells of (G/P )≥0 is in fact the poset of cells of

a regular CW complex homeomorphic to a ball.

In this paper we give an approach to this conjecture which uses toric geometry

to extend MeasG to a map onto the closure of the corresponding cell of (Grkn)≥0.

Specifically, given a planar bicolored graph G, we construct a toric variety XG and

a rational map mG : XG → Grkn. We show that mG is well-defined on the totally

non-negative part of XG and that its image is the closure of the corresponding cell

of (Grkn)≥0. The totally non-negative part of XG is homeomorphic to a certain

polytope (the moment polytope) which we denote P (G), so we can equally well

think of this result as a parameterization of our cell by P (G). The restriction of

mG to the toric interior of the non-negative part of XG (equivalently, to the interior

of P (G)) is MeasG.

Our technology proves that the cell decomposition of the totally non-negative

part of the Grassmannian is in fact a CW complex. While our map mG is well-

defined on (XG)≥0 (which is a closed ball) and is a homeomorphism on the interior,

in general mG is not a homeomorphism on the boundary of (XG)≥0; therefore this

does not lead directly to a proof of the conjecture. However, we do obtain more

evidence that the conjecture is true: using Williams’ result [22] that the face poset

of (G/P )≥0 is Eulerian, it follows that the Euler characteristic of the closure of

each cell of (Grkn)≥0 is 1.

The most elegant part of our story is how the combinatorics of the planar graph

G reflects the structure of XG. The torus fixed points of XG correspond to perfect

orientations of G, equivalently, to planar-perfect matchings of G. The other faces of

XG correspond to certain elementary subgraphs of G, that is, to unions of planar-

perfect matchings of G. Every face of XG is of the form XG′ for some planar

bicolored graph G′ obtained by deleting some edges of G, and mG restricted to

XG′ is mG′ . It will follow from this that, for every face Z of XG, the interior

of Z is mapped to the interior of a cell of the totally non-negative Grassmannian

with fibers that are simply affine spaces. We hope that this explicit description

of the topology of the parameterization will be useful in studying the topology of

(Grkn)≥0.

The structure of this paper is as follows. In Section 2 we review the combinatorics

of plabic graphs and perfect orientations, which gives rise to the parameterizations

of cells of (Grkn)≥0. We then show in Section 3 that every perfectly orientable plabic

graph has an acyclic perfect orientation. In Section 4 we review toric varieties and

their non-negative parts, and prove a lemma which is key to our CW complex

result. In Section 5 we prove that the cell decomposition of (Grkn)≥0 is in fact a

CW complex, and we remark on the connection to cluster algebras. In Section 6

we associate to each perfectly orientable plabic graph G a certain fan FG of perfect

orientations along with a polytope P (G), and we show in Section 7 that FG is the

dual fan of P (G). In Section 8 we give an inequality description of P (G), and in
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Section 9 we give a combinatorial description of the face lattice of P (G) in terms

of matchings and unions of matchings of G. In Section 10 we recall the connection

between plabic graphs and positroids, and describe the relationship between our

polytopes P (G) and matroid polytopes. Finally, in Section 11, we give statistics

for a few small plabic graphs, including f -vectors, Ehrhart series, volumes, and the

degrees of the corresponding toric varieties.

Acknowledgements: We are grateful to Vic Reiner for pointing out the sim-

ilarity between our polytopes P (G) and Birkhoff polytopes, and to Allen Knutson

for many helpful conversations.

2. Plabic graphs and perfect orientations

In this section we review material concerning plabic graphs and perfect orienta-

tions from [14].

A planar directed graph G is a directed graph drawn inside a disk (and considered

modulo homotopy). We allow G to have loops and multiple edges. We will assume

that G has n boundary vertices on the boundary of the disk labeled b1, . . . , bn

clockwise. The remaining vertices, called the internal vertices, are located strictly

inside the disk. We will always assume that each boundary vertex bi is either a

source or a sink. Even if bi is an isolated boundary vertex, i.e. a vertex not incident

to any edges, we will assign bi to be a source or a sink.

A planar directed network N = (G, x) is a planar directed graph G as above

together with strictly positive real weights yf > 0 assigned to all faces f of G such

that
∏

yf = 1. We’ll write U(Faces(G)) for the set of functions on Faces(G) which

take positive real values with product one.

For such a network N , the source set I ⊂ [n] and the sink set Ī := [n] \ I of N

are the sets such that bi, i ∈ I, are the sources of N (among the boundary vertices)

and the bj , j ∈ Ī, are the boundary sinks.

A planar bicolored graph, or simply plabic graph is a planar (undirected) graph

G, defined as above but without orientations of edges, such that each boundary

vertex bi is incident to a single edge, together with a function col : V → {1,−1}

on the set V of internal vertices. We will display vertices with col(v) = 1 in black,

and vertices with col(v) = −1 in white.

A plabic network N = (G, y) is a plabic graph G together with positive real

weights yf > 0 assigned to faces f of G such that
∏

yf = 1.

A perfect orientation of a plabic graph or network is a choice of orientation of

its edges such that each internal vertex v with col(v) = 1 (“black”) is incident to

exactly one edge directed away from v; and each v with col(v) = −1 (“white”) is

incident to exactly one edge directed towards v. A plabic graph or network is called

perfectly orientable if it has a perfect orientation.

Let us say that a plabic graph or network has type (k, n) if it has n boundary

vertices and k − (n − k) =
∑

v∈V col(v) (deg(v) − 2). In this case, every perfect

orientation will have a source set of size k.

Let P be a directed path through G, starting at the boundary vertex bi and

ending at bj. Let P ′ be the closed curve in the plane which first travels along
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P and then returns from bj to bi along the boundary of the disk in which G is

embedded, traveling clockwise. For f any face of G, we write wind(P, f) for the

winding number of P ′ about f , where we consider a path to wind positively about

f if it travels clockwise around f . We define weight(P, y) to be the monomial∏
f∈Faces(G) y

wind(P,f)
f . (Since the product of the y variables is 1, we would get the

same result if we returned from bj to bi in a counterclockwise direction, but it will

be convenient to fix a definite choice for wind(P, f).) Similarly, if C is a cycle in G

we set weight(C, y) =
∏

f∈Faces(G) y
wind(C,f)
f .

Let P be a directed graph in G. Perturb P slightly at the vertices of G to make P

a smooth path, without adding any new self crossings. Let wind(P ) be the number

of times the tangent vector to P winds around, rounded to the nearest integer. We

will actually only care about the value of wind(P ) modulo 2.

For any boundary source bi and boundary sink bj , we define the boundary mea-

surement to be

Mij =
∑

P :bi→bj

(−1)wind(P )weight(P, y).

Remark 2.1. It might seem more natural to place weights on the edges of G

and let the weight of a path be the product of the weights of the edges of this

path. This is in fact the approach taken at first in [14]. Note, however, that in

this case the boundary measurements are unchanged if we take an internal vertex

v of G and multiply the edges incident on v by α and 1/α (according to whether

the edge is directed into v or out of v) for some positive scalar α. We call this

operation a gauge transformation. The space of positive functions on edges modulo

gauge transformations is isomorphic to the space of positive functions on faces with

product one. Specifically, if f is a face of G and x is a function on the edges of

G, we set yf =
∏

e⊂∂f x±1
e where the exponent is 1 if e is oriented clockwise in ∂f

and −1 if e is oriented counterclockwise. These y coordinates appear to be more

fundamental than the x-coordinates, and we will use them exclusively in this paper.

Proposition 2.2. [14, Lemma 4.3] Each boundary measurement Mij sums to a

subtraction-free rational expression, which gives a well-defined function on (R>0)
Faces(G).

Definition 2.3. Recall that the (real) Grassmannian Grkn(R) is the space of all

k-dimensional subspaces in Rn. One can represent an element of Grkn(R) as a

full-rank k × n matrix (not in a unique manner). The totally non-negative part of

the Grassmannian (Grkn)≥0 is defined to be the subset of the real Grassmannian

Grkn(R) such that all maximal minors are non-negative.

These boundary measurements can be thought of as giving a matrix represen-

tation of an element of the Grassmannian. More specifically, for y ∈ U(Faces(G)),

we define a k × n matrix A by the following conditions: the k × k submatrix of A

whose columns are indexed by I (the sources of G) is the identity matrix and, if i

is the rth source (so 1 ≤ r ≤ k) and j is a sink then Arj = ±Mij where the sign is

chosen such that the maximal minor with column set I ∪{j} \ {i} has determinant

Mij . We define MeasG(y) to be the point of the Grassmannian corresponding to

A.
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Proposition 2.4. [14, Proposition 5.3] Every maximal minor of A is given by a

subtraction free rational expression. If the graph G is acyclic, then the minor AJ

is given by the sum over all collections of non-crossing paths from I \ J to J \ I of

the product of the weights of the paths.

This result is essentially the Gesssel-Viennot lemma, but some care is needed to

see that the signs introduced into the entries of A interact correctly with the signs

coming from the determinant. When G is not acyclic, Postnikov proves a similar

but more complex result, which we will not need here.

Let G be a perfectly orientable bi-colored planar graph and let G1 and G2 be

two perfect orientations of G. Let y be an element of U(Faces(G)). Clearly, the

matrix A described above will be different for G1 and G2. However, we have:

Proposition 2.5. [14, Theorem 10.1] The points MeasG1
(y) and MeasG2

(y) of

Grkn are the same.

Thus, we can think of MeasG as being indexed by a bicolored planar graph rather

than a directed planar graph, and (by a slight abuse of notation) will refer to the

map as MeasG in either situation.

The following proposition summarizes several main results of [14].

Proposition 2.6. [14, Theorem 12.7] Let G be any perfectly orientable bicolored

planar graph. Then the image of MeasG is a cell of (Grkn)≥0. For every cell of

(Grkn)≥0, there is a perfectly orientable bicolored planar graph G such that the

given cell is the image of MeasG. There is some non-negative integer r, such that

MeasG is a fiber bundle with fiber r-dimensional affine space.

For any cell of (Grkn)≥0, we can always choose a G such that MeasG is a home-

omorphism onto this cell. ( I.e. such that r = 0.)

The graphs G such that MeasG is a homeomorphism are called reduced [14].

Sometimes it is convenient to transform a plabic graph G into a bipartite plabic

graph. We say that a plabic graph G is bipartite if any edge in G joins two vertices of

different colors. Here we assume that the color of a boundary vertex is different than

the color of its (unique) neighbor. Note that we can easily make any plabic graph

bipartite by contracting any edges which join vertices of the same color. There is

an easy bijection between perfect orientations of the old plabic graph and perfect

orientations of the contracted plabic graph, and the boundary measurements are

the same. This does not change the number of faces of G.

A planar-perfect matching of a bipartite plabic graph G is a subset M of edges

such that each internal vertex is incident to exactly one edge in M and the boundary

vertices are incident to either one or no edges in M . There is a bijection between

perfect orientations of G and planar-perfect matchings of G where, for a perfect

orientation O of G, an edge e is included in the corresponding matching if e is

directed from a black vertex to a white vertex in O.

Recall that a circuit in a graph is a cycle which does not cross itself. We define

a trail of a plabic graph G to be either a circuit or a path without self-intersections

and with endpoints on the boundary of the disk.
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3. Acyclic perfect orientations

In this section we show that every perfectly orientable plabic graph has an acyclic

perfect orientation. This will be an important tool for our subsequent results.

According to Proposition 2.6, each plabic graph G corresponds to a cell in

(Grkn)≥0. However different plabic graphs can be associated with the same cell.

These equivalence classes of plabic graphs can be described in terms of local trans-

formations (moves). For simplicity, we only deal with reduced plabic graphs. (For all

plabic graphs one needs to consider additional local transformations (reductions),

as described in [14, Theorem 12.1].)

Proposition 3.1. [14, Theorem 12.1] Two reduced plabic graphs correspond to

the same cell in (Grkn)≥0 if and only if they can be obtained from each other

by a sequence of moves of three types: (M1) square move, (M2) uni-colored edge

contraction/insertion, (M3) middle vertex insertion/removal; see Figure 1.

contraction/insertion

(M1) square move

(M2) unicolored edge

(M3) middle vertex
insertion/removal

Figure 1. Local transformations of plabic graphs

For each cell in (Grkn)≥0 there is a unique reduced plabic graph that comes

from a

Γ

-diagram, as described in [14, Section 6]. These special

Γ

-plabic graphs

have very nice structure. By Proposition 3.1 each reduced plabic graph can be

transformed by the moves into such special

Γ

-plabic graph; and

Γ

-plabic graph are

unique representatives of move-equivalence classes of reduced plabic graphs.

We will need the following lemma, which can be proved using techniques of [14].

Lemma 3.2. Each reduced plabic graph has an acyclic perfect orientation.

Proof. As we just noted, each reduced plabic graph G can be transformed by the

moves into an

Γ

-plabic graph G′. It is quite clear that an

Γ

-plabic graph G′ has

an acyclic perfect orientation. Moreover, one can pick an acyclic orientation of G′

such that its set of boundary sources is the lexicographically minimal base of the

corresponding matroid.



TORIC GEOMETRY AND THE NON-NEGATIVE PART OF THE GRASSMANNIAN 7

The fact that a perfect orientation corresponds to the lexicographically minimal

base implies that for any directed path in the graph from a boundary vertex bi to

a boundary vertex bj we have i > j. Indeed, if i < j, then we can switch directions

of edges in the orientation and obtain another orientation that corresponds to a

lexicographically smaller base (obtained by replacing j with i).

The original graph G can be obtained from G′ by a sequence of moves. Let us

show that one can transform an acyclic perfect orientation of G′ into an acyclic

perfect orientation of G. It is quite clear that each time when we do moves (M2)

or (M3) (edge contraction/insertion, vertex insertion/removal) an acyclic perfect

orientation is transformed into an acyclic perfect orientation.

We need to be move careful with the square move (M1). Up to symmetries,

there are 2 possible perfect acyclic orientations of edges adjacent to the square in a

square move, as shown on the left-hand side of Figure 2. These perfect orientation

can be transformed as shown on the right-hand side of Figure 2. Let us call these

transformations the oriented square move of type I and of type II. Clearly, the

oriented square move of type I transforms an acyclic perfect orientation into an

acyclic perfect orientation. However, the oriented square move of type II creates a

new cycle, so the resulting orientation is no longer acyclic.

Type I
oriented square move

Type II
oriented square move

Figure 2. Oriented square moves

Let us show that, if we have an acyclic perfect orientation that corresponds to the

lexicographically minimal base, then the oriented square move of type II is never

possible. In other words, in this case the graph never has a fragment as in the

lower left corner of Figure 2. Suppose that we have such a fragment. The 4 outside

edges of the square should be connected to the boundary by some directed paths; see

Figure 3. These paths cannot cross each other and cannot self-intersect. (Otherwise

we get a directed cycle, and the orientation is not acyclic.) It is clear from Figure 3

that we can always find a directed path in the graph from a boundary vertex bi to

a boundary vertex bj such that i < j. Thus the orientation corresponds to a base,

which is not lexicographically minimal. This contradicts to our assumption.

It follows that, when we start transforming the graph G′ (with acyclic perfect

orientation corresponding to the lexicographically minimal base) into the graph
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Figure 3. Oriented square move of type II

G, we will never perform an oriented square move of type II. Thus at each step

we obtain an acyclic perfect orientation. Finally, we obtain an acyclic perfect

orientation of the original graph G, as needed. �

4. Toric varieties and their non-negative parts

Here we recall several constructions of a toric variety and define the non-negative

part of a toric variety. First we give the construction of a toric variety from a fan,

following Fulton [6]. Let N = M be dual lattices (free Z-modules of finite rank)

with standard basis e1, . . . , er and e∗1, . . . , e
∗
r. If σ ⊂ NR is a strongly convex rational

polyhedral cone, then Sσ = σ∨ ∩ M is a finitely generated semigroup, where σ∨

denotes the cone dual to σ. Sσ determines the group ring C[Sσ], which has a

basis χu, as u varies over Sσ. Multiplication is determined by the addition in Sσ:

χu · χu′

= χu+u′

; the unit 1 is χ0.

Then Vσ = Spec(C[Sσ]) is the affine toric variety associated to σ. In particular,

C[Sσ] is the ring of regular functions on Vσ. If Σ is a fan in NR, then XΣ is the

abstract variety constructed from the affine varieties Vσ, σ ∈ Σ, by gluing Vσ and

Vσ′ along their common open subset Vσ∩σ′ for all σ, σ′ ∈ Σ. See [6] for more details.

Note that the toric varieties given by the fans in Figures 4 and 5 are P2 and

P1 × P1, respectively.

For σ ⊂ N any strongly convex rational polyhedral cone, we define the totally

non-negative part of Vσ to be the collection of (closed) points on which all of the

coordinate functions χu, u ∈ Sσ, are non-negative real numbers. We will denote

the totally non-negative part of Vσ by (Vσ)≥0. If u1, . . . , us is any set of generators

for Sσ, then we can use χu1 , . . . , χus as coordinate functions to embed Vσ into Cs,

and then (Vσ)≥0 is simply the set of points which have non-negative coordinates.

If σ and σ′ are two cones in a fan Σ, then (Vσ)≥0∩Vσ′ = (Vσ∩σ′ )≥0 = Vσ ∩ (Vσ′ )≥0.

Note that if q = f/g is a rational function which is a ratio of two polynomials f

and g ∈ R≥0[Sσ], such that the coefficient in g of χ0 is strictly positive, then f/g is

a well defined real valued function on (Vσ)≥0. We denote
⋃

σ∈Σ(Vσ)≥0 by (XΣ)≥0,

this is a closed subspace of XΣ.
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Now, suppose that Σ is the dual fan to some (bounded) polytope P in MR with

vertices in M . This gives rise to a toric variety XΣ together with a morphism

φ : X → Pr−1 via the sections χu for u ∈ P ∩ M (see Section 3.4 of [6]). There is

a map known as the moment map from XΣ to P . The restriction of the moment

map to (XΣ)≥0 is a homeomorphism. (See [6, Section 4.2], but note that Fulton’s

sign conventions for normal fans [6, Section 1.5] differ from ours.)

More concretely, we may define a projective toric variety associated to a polytope

as follows [3]. Fix a lattice polytope P ⊂ Rn, and let mi, i = 1, . . . , ℓ be the

lattice points of P ∩ Zn. Then consider the map φ : (C∗)n → Pℓ−1 such that

x = (x1, . . . , xn) 7→ [xm1 , . . . ,xmℓ ]. If Σ is the dual fan to P , then the toric variety

XΣ (which we also refer to as XP ) is defined to be the closure of the image of

this map. The real part XP (R) of XP is defined to be the intersection of XP with

RPℓ−1; the positive part (XP )>0 is defined to be the image of (R>0)
n under φ; and

the non-negative part (XP )≥0 is defined to be the closure (in XP (R)) of (XP )>0.

We now prove a simple but very important lemma.

Lemma 4.1. Suppose we have a map Φ : (R>0)
n → PN−1 given by (t1, . . . , tn) 7→

[h1(t1, . . . , tn), . . . , hN (t1, . . . , tn)] where the hi’s are Laurent polynomials with pos-

itive coefficients. Let S be the set of all exponent vectors in Z
n which occur among

the (Laurent) monomials of the hi’s, and let P be the convex hull of the points of

S. Then the map Φ gives rise to a rational map Φ′ from XP to PN−1 which is

well-defined on (XP )≥0. In particular, Φ′ is a well-defined map from a closed ball

to PN−1.

Proof. Let S = {m1, . . . ,mℓ}. Clearly the map Φ factors as the composite map

t = (t1, . . . , tn) 7→ [tm1 , . . . , tmℓ ] 7→ [h1(t1, . . . , tn), . . . , hN (t1, . . . , tn)]. Note that

the first map is the projective embedding of XP and the second map Φ′ takes a

point [x1, . . . , xℓ] of XP to [g1(x1, . . . , xℓ), . . . , gN (x1, . . . , xℓ)], where the gi’s are

homogeneous polynomials of degree 1 with positive coefficients. By construction,

each xi occurs in at least one of the gi’s.

Since (XP )≥0 is the closure inside XP of (XP )>0, any point [x1, . . . , xℓ] of (XP )≥0

has all xi’s non-negative; furthermore, not all of the xi’s are equal to 0. And now

since the gi’s have positive coefficients and they involve all of the xi’s, the image

of any point [x1, . . . , xℓ] of (XP )≥ 0 under Φ′ is well-defined.

Finally, since (XP )≥0 is homeomorphic to the polytope P , the map Φ′ is a well-

defined map from a closed ball to PN−1. �

In the next section we will use this lemma to prove that (Grkn)≥0 is a CW

complex.

5. (Grkn)≥0 is a CW complex

In this section we prove that the cell decomposition of (Grkn)≥0 is a CW complex,

and derive some topological consequences regarding the Euler characteristics of

closures of cells. We also remark on the connection to cluster algebras.

In a CW complex, a cell is attached by gluing a closed i-dimensional ball Di to

the (i − 1)-skeleton Xi−1, i.e. the union of all lower dimensional cells. The gluing
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is specified by a continuous function f from ∂Di = Si−1 to Xi−1. CW complexes

are defined inductively as follows. Given X0 a discrete space (a discrete union of 0-

cells), and inductively constructed subspaces Xi obtained from Xi−1 by attaching

some collection of i-cells, the resulting colimit space X is called a CW complex

provided it is given the weak topology and the closure-finite condition is satisfied

for its closed cells. Recall that the closure-finite condition requires that every closed

cell is covered by a finite union of open cells.

To prove our main result, we will also use the following lemma, which can be

found in [14, 17].

Lemma 5.1. [14, 17] The closure of a cell ∆ in (Grkn)≥0 is the union of ∆ together

with lower-dimensional cells.

The following proposition describes a parameterization of a cell of (Grkn)≥0

using Plucker coordinates, which are expressed as positive Laurent polynomials in

terms of the variables on the faces of the plabic graph.

Proposition 5.2. Each cell ∆G of (Grkn)≥0 can be parameterized by a map of the

form (t1, . . . , tm) 7→ [h1(t1, . . . , tm), . . . , hN(t1, . . . , tm)] where the hi’s are Laurent

polynomials with positive coefficients.

Proof. By Lemma 3.2, every reduced plabic graph has a perfect orientation which

is acyclic. The parameterization that we associate to a perfect orientation only

becomes rational (as opposed to Laurent polynomial) if the perfect orientation

contains a directed cycle. Therefore an acyclic perfect orientation leads to a pa-

rameterization that involves only Laurent polynomials. �

We now define a toric variety which will be an important tool in analyzing the

topology of the cell decomposition of (Grkn)≥0.

Definition 5.3. Define the vector space V ∨ to be the quotient of RFaces(G) by

(1, 1, . . . , 1). Let SG be the set of all exponent vectors in V ∨ which occur among

the (Laurent) monomials of the hi’s above. Note that these exponent vectors lie in

V ∨ because in the parameterizations of the cells of (Grkn)≥0, the face variables yf

satisfy
∏

yf = 1. Let Q(G) be the convex hull of the points of SG, and define XG

to be the toric variety XQ(G) defined by the polytope Q(G).

Theorem 5.4. The cell decomposition of (Grkn)≥0 is a CW complex.

Proof. All of these cell complexes contain only finitely many cells; therefore the

closure-finite condition in the definition of a CW complex is automatically satisfied.

What we need to do is define the attaching maps for the cells: we need to prove

that for each i-dimensional cell there is a continuous map f from Di to Xi which

maps ∂Di = Si−1 to Xi−1 and extends the parameterization of the cell (a map

from the interior of Di to Xi).

By Proposition 5.2, if we are given a perfectly orientable plabic graph G, the

parameterization MeasG of the cell ∆G can be described as a map (t1, . . . , tn) 7→

[h1(t1, . . . , tn), . . . , hN (t1, . . . , tn)] where the hi’s are Laurent polynomials with pos-

itive coefficients. By Lemma 4.1, the map MeasG gives rise to a rational map
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mG : XG → Grkn which is well-defined on (XG)≥0 (a closed ball). Furthermore, it

is clear that the image of mG on (XG)≥ 0 lies in (Grkn)≥0.

Since the totally positive part of the toric variety XG is dense in the non-negative

part, and the interior gets mapped to the cell ∆G, it follows that (XG)≥0 gets

mapped to the closure of ∆G.

And now by Lemma 5.1, it follows that the boundary of (XG)≥0 gets mapped

to the (i − 1)-skeleton of (Grkn)≥0. This completes the proof that the cell decom-

position of (Grkn)≥0 is a CW complex. �

At the moment, the toric variety XG is defined in a very abstract manner: we

are to take the subtraction-free rational expressions described in Section 2, clear

out denominators, and take the convex hull of the exponent vectors of the resulting

polynomials. This defines a polytope, which we will denote Q(G). In the following

sections, we will define a very explicit polytope P (G), which we will eventually

show is equal to Q(G).

It has been conjectured that the cell decomposition of (Grkn)≥0 is a regular CW

complex which is homeomorphic to a ball. In particular, if a CW complex is regular

then it follows that the Euler characteristic of the closure of each cell is 1.

In [22], Williams proved that the poset of cells of (G/P )≥0 is thin and lexico-

graphically shellable, hence in particular, Eulerian. This together with our result

that the cell complex is actually a CW complex implies the following.

Corollary 5.5. The Euler characteristic of the closure of each cell of (Grkn)≥0 is

1.

Finally, we remark that there is a strong connection between total positivity and

the cluster algebras of Fomin and Zelevinsky [5]. It is known that the coordinate

ring of the Grassmannian can be given the structure of a cluster algebra [18], where

the Plucker coordinates are the cluster variables. In our situation, the variables

which index faces of a plabic graph are related to the variables in a particular

cluster up to a certain twist map. Thus the polytope Q(G) which defines the

toric varieties used above can be thought of as the Minkowski sum of the Newton

polytope of the cluster variables, expressed in terms of face variables. Indeed, in

the case of the Grassmannian Gr2n, it is possible to relate the combinatorics of

perfect orientations of a given plabic graph to the combinatorial rule of Carroll and

Price [2] giving explicit (positive) formulas for the cluster variables.

6. Fan of perfect orientations

In the next few sections we will give concrete combinatorial constructions of a

certain polytope P (G) associated to a plabic graph and its dual fan FG. (It will

turn out that P (G) is essentially the polytope Q(G).) In this section we describe

in detail the structure of FG.

Let Faces(G) = {f0, f1, . . . , f|Faces(G)|−1} denote the set of faces of G. We will

work with face variables zfi
, and define a fan which lives in the quotient V :=

R
Faces(G)/(

∑
zfi

= 0).
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To each perfect orientation O associated with the graph, we define a cone σO

by inequalities as follows. For an arbitrary path P from bi to bj without self-

intersections, let F ′ ⊂ Faces(G) be the subset of faces which lie to the right of

P . Then define the inequality HP :=
∑

f∈F ′ zf ≥ 0 (which we identify with the

halfspace that it defines). For a clockwise (respectively, counterclockwise) circuit

P , let F ′ ⊂ Faces(G) be the subset of faces which lie inside (respectively, outside)

P . Then define the inequality HP :=
∑

f∈F ′ zf ≥ 0. We then define σO to be the

image in V of the intersection ∩HP where P varies over all trails P .

Let FG denote the collection of cones σO for all perfect orientations O of G

together with all faces of such cones; we will show in the next section that FG is a

polytopal fan.

Lemma 6.1. Fix a plabic graph G. One can obtain any perfect orientation O2

of G from another perfect orientation O1 by switching all directions in a disjoint

collection of (directed) trails S(O1,O2) in O1.

Proof. Let E′ denote the set of edges of G in which the orientations O1 and O2

disagree. Recall that in a perfect orientation, each black vertex v is incident to

exactly one edge directed away from v, and each white vertex v is incident to

exactly one edge directed towards v. Therefore every edge e in E′ incident to some

vertex v can be paired uniquely with another edge e′ in E′ which is also incident

to v (note that at each vertex v of G there are either 0 or 2 incident edges which

are in E′). This pairing induces a decomposition of E′ into a disjoint union of

(undirected) cycles and paths. Moreover, each such cycle or path is directed in

both O1 and O2 (but of course in opposite directions). Let S(O1,O2) denote this

set of cycles and paths. �

7. The Fan is Polytopal

Let G be a plabic graph. The point of this section is to prove that FG is a fan

and is the normal fan to a certain polytope P (G). It will turn out that P (G) is

essentially the polytope Q(G) that we saw earlier; more precisely, P (G) is equal to

−Q(G).

We begin with the following observation:

Proposition 7.1. Let I be a finite set and let {Ci}i∈I be a collection of n-dimensional

cones in Rn indexed by I. Let {vi}i∈I be a collection of points in Rn, indexed by

i ∈ I, such that C∨
i0

is the cone spanned by (vi0 −vi)i∈I . Then the vi are the vertices

of Hull({vi}i∈I) and the Ci are the facets of the dual fan.

Proof. Let P = Hull({vi}i∈I). For i0 ∈ I, let Fi0 be the minimal face of P con-

taining vi0 . Then the (outer) tangent cone to P at Fi0 , which we write −TFi0
(P ),

is spanned by (vi0 − vi)i∈I . Now, by assumption, the cone dual to the span of

(vi0 − vi)i∈I is Ci0 and, in particular, is n-dimensional. But Ci0 is n-dimensional if

and only if the lineality space of C∨
i0

is 0-dimensional. For any polytope P and any

face F of P , the lineality space of TF (P ) has dimension dim F . Thus, we conclude

that dim Fi0 = 0, so vi0 is a vertex of P .
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Now that we know that the vi are the vertices of P , then the facets of the dual

fan to P are the cones dual to Span
R≥0

(vi0 − vi)i∈I , as i0 ranges through I. We

have assumed that the dual cone to Span
R≥0

(vi0 − vi)i∈I is Ci0 . �

Note that this observation allows us to avoid checking ahead of time that the

Ci form the facets of a complete fan, or that the vi are the vertices of a polytope.

Recall that the vector space V ∨ to be the quotient of RFaces(G) by (1, 1, . . . , 1).

Let P be any path or cycle in G; we always consider paths and cycles to be given

with an orientation, although not necessarily related to a perfect orientation of G.

Define ρP to be the image in V ∨ of the sum of ef with f running over the faces on

the right of P . Then, for any perfect orientation O, the cone σ∨
O is spanned by the

ρP .

We will describe how to associate, to every perfect orientation O of G, a point

vO ∈ V ∨. We will then need to check the following two claims:

Proposition 7.2. Let O0 be any perfect orientation of G. Then the cone spanned by

vO0
−vO, as O ranges over all perfect orientations, is the same as the cone spanned

by ρP where P runs over all trails in G which agree with the perfect orientation O0.

Proposition 7.3. If O0 is any perfect orientation of G then the cone spanned by

ρP , where P runs over all trails in G which agree with the perfect orientation O0,

has dual of dimension dimV ∨ = #Faces(G) − 1.

Once we have checked this, we will know by Proposition 7.1 that the σO are the

facets of the dual fan of Hull(vO), where O runs over all perfect orientations of G.

In particular, we will know that the fan FG is polytopal.

For any two perfect orientations O1 and O2 of G, we define a subgraph δO1O2
of

G to be the subgraph consisting of those edges which are oriented differently in O1

and O2. We orient δO1O2
so that each edge is oriented as in O2. Then by Lemma

6.1, δO1O2
has net flow 0 at each internal vertex of G. There is a function vO1,O2

on

the faces of G such that, for two faces f1 and f2 separated by an edge e of G, we have

vO1,O2
(f1) − vO1,O2

(f2) = 0 if e 6∈ δO1O2
; and we have vO1,O2

(f1)− vO1,O2
(f2) = 1

if the edge e is oriented to the left in δO1O2
as we look from f1 (up) to f2 and we

have vO1O2
(f1) − vO1O2

(f2) = −1 if the edge e is oriented to the right in δO1O2
as

we look from f1 to f2. The vector vO1,O2
is unique up to adding the same constant

to every face of G, so vO1,O2
is well defined as an element of V ∨.

Remark 7.4. In order to construct vO1,O2
semiexplicitly, fix some face f0 of G

and normalize vO1,O2
(f0) = 0. Then we can compute vO1,O2

on every other face

f of G by traveling along a path γ from f0 to f and figuring out how vO1O2
must

change by looking at how we cross δO1O2
as we travel along γ.

Note that we have

(1) vO1,O3
= vO1,O2

+ vO2,O3
.

This can be checked by, for each edge e of G, looking at the 8 possible orientations

of e in O1, O2 and O3.

Finally we can define the polytopes that we are interested in.
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Definition 7.5. Choose a perfect orientation Obase. We set vO := vO,Obase
for any

other perfect orientation O. We define the polytope PObase
(G) to be the convex

hull in V ∨ of the vO.

For this definition of vO, we will check Propositions 7.2 and 7.3.

Proof of Proposition 7.2. Let P be any oriented path or cycle in O0. Let O1 be the

perfect orientation of G obtained by reversing P . Then

vO0
− vO1

= vO0,O1
= ρP

where the first equality is by equation (1) and the second is easy to check by hand.

Thus, we see that ρP is in the span of the vectors of the form vO0
− vO because it,

in fact, is such a vector.

We now must check the reverse, that any vector vO0
− vO can be written in the

form
∑

ρP where P runs over some multiset of oriented paths and cycles in O0.

But this is straightforward. By Lemma 6.1, we can decompose δO0,O as an edge

disjoint union of such paths and cycles; then vO0,O = vO0
− vO is equal to the

corresponding sum of ρP ’s. �

Proof of Proposition 7.3. Let K be the cone spanned by ρP as P runs over all trails

that agree with the orientation O0. It is enough to find a point in the interior of K∨,

in other words, it is enough to find a function λ, such that
∑

f∈Faces(G) λ(f) = 0

and λ has positive inner product with ρP for every trail P which agrees with the

orientation O0.

Let e be an edge of G. As we look along e in the direction that e is oriented in

O, let f be the face of G to the right of e and let f ′ be the face of G to the left of

e. Define ηe by ηe(f) = 1, ηe(f
′) = −1 and ηf = 0 otherwise. (If f = f ′, we just

set ηe = 0. Note that an edge e for which f = f ′ can not occur in any trail of G.)

For any trail P of G consistent with the orientation O0, we have 〈ηe, ρP 〉 = 1

if e ⊆ P and 〈ηe, ρP 〉 = 0 otherwise. Now, set λ :=
∑

e∈Edges(G) ηe. Then 〈λ, ρP 〉

is the length of P , for any trail P of G consistent with the orientation O0. In

particular, 〈λ, ρP 〉 is positive for any such P .

�

Now by combining Proposition 7.1, Proposition 7.2, and Proposition 7.3, we have

proved the following.

Theorem 7.6. The fan FG is polytopal and has dimension #Faces(G)− 1. More-

over, FG is normal to the polytope PObase
(G).

Note that although PObase
(G) is dependent on the choice of Obase, changing

Obase simply translates the polytope. Thus, when referring to any property of

a polytope which is unaltered by translation, we may forget about our choice of

perfect orientation. In this context, we will refer to the polytope as P (G).

In Figure 4, we fix a plabic graph G corresponding to the cell of (Gr24)≥0 such

that the Plucker coordinates P12, P13, P14 are positive and all others are 0. We

display the three perfect orientations, the associated fan FG, and the associated
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polytope P (G). Note that since P (G) is defined only up to translation, we set

C = 0.
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Figure 4.

In Figure 5, we fix a plabic graph G corresponding to the cell of (Gr24)≥0 such

that the Plucker coordinates P12, P13, P24, P34 are positive while P14 and P23 are 0.

We display the four perfect orientations, the associated fan FG, and the associated

polytope P (G).
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Figure 5.

When we constructed our parameterization of our cell of (Grkn)≥0 by a toric

variety, our definition was very ineffective – we cleared out denominators from a

collection of rational generating functions. We will know show that the polytope

Q(G) defining this toric variety is (essentially) the same as the extremely explicit
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polytope P (G). If R is a polytope we define −R in the obvious way: −R is the set

{(−v1, . . . ,−vm) | (v1, . . . , vm) ∈ R}.

Proposition 7.7. Q(G) is a translate of −P (G).

We remark that the negative sign is the result of our desire to use the standard

definition of a normal fan (from, for example, [23]) and the standard definition of

the toric variety associated to a fan (from, for example, [6]). If we introduced a

nonstandard sign in either of these settings, we could have P (G) be a translate of

Q(G).

Proof. Fix an acyclic orientation Obase of G. Let I be the set of sources of G.

Every vertex of Q(G) comes from a set S of (directed) pairwise non-intersecting

paths from I to another set J of boundary vertices of G. More precisely, the vertex

(which we’ll refer to as vS) is the exponent vector of a monomial M in the face

variables yf of G, where the exponent of yf in M is the number of paths in S that

f lies to the right of. If f and f ′ are adjacent faces of G with no path of S passing

between them then yf and yf ′ occur with the same exponent in M . On the other

hand, if f and f ′ have a path p of S passing between them with f on the left and

f ′ on the right of p, then the exponent of yf ′ in M is one more than the exponent

of yf in M .

We now show that the vertex vS of Q(G) corresponds to a vertex of P (G). Given

the set S of non-intersecting paths as above, one can construct another perfect

orientation O of G by taking all paths in S and reversing their orientation. The

perfect orientation O corresponds to the vertex vO defined earlier, and conversely

for every vO we get a uniquely defined set S of non-intersecting paths and hence a

vertex vS of Q(G). Therefore the vertices of P (G) and Q(G) are in bijection.

The coordinates of vO are defined (up to translation by (1, 1, . . . , 1)) using the

subgraph δO,Obase
, whose edges are precisely those in the set of paths S. As before,

if f and f ′ are adjacent faces of G with no path of S passing between them then

the coordinate vO,Obase
(f) = vO,Obase

(f ′). And if f and f ′ have a path p of S

passing between them with f on the left and f ′ on the right then vO,Obase
(f ′) =

vO,Obase
(f)−1. Comparing this rule with the rule for the exponents of the yf ’s, we

see that P (G) is (a translate of) −Q(G).

�

We can use this description of our parameterization to give an alternate means of

computing the Mij . Choose any perfect orientation O of G, with source set I and

let i ∈ I and j 6∈ I. Then Mij = ±pI\{i}∪{j}/pI . We denote I\{i}∪{j} by I ′. Now,

consider some other, acyclic, perfect orientation O0 of G with source set I0. Then

pI and pI′ can be computed as the generating functions for non-crossing directed

path in (G,O0) from I0 \I to I \I0 and from I0 \I ′ to I ′\I0 respectively. It is a nice

combinatorial problem to give a direct proof that the ratio of these (polynomial)

generating functions is the rational generating function counting paths in (G,O)

from i to j, twisted by winding number.
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Although we have given a global description of the map XG → (Grkn) in pro-

jective coordinates, we note that the local formulas given by the Mij are quite

convenient for analyzing the local behavior of the map. Let O be a perfect orien-

tation of G, so VσO
is an affine open set of XG. Let zO be the torus fixed point

of VσO
. Then the formal generating function computing Mij for the orientation O

is a sum of monomials which are defined on VσO
and this generating function even

converges in a neighborhood of zO.

8. The inequality description of P (G)

In this section we give an alternate description of the polytope PObase
(G), through

a set of defining inequalities. We note that the following set of inequalities contains

redundancy; as we will show afterwards, half of the following inequalities cut out

facets of PObase
(G).

In what follows, we write points of V ∨ as
∑

yfef , where the variables yf are

defined up to adding the same constant to all of them.

Proposition 8.1. PObase
(G) is defined by the following inequalities (two inequal-

ities for each edge e of G): if f and f ′ are the two faces of G separated by e

and if, in Obase, the edge e is oriented to the left as we look from f into f ′, then

0 ≤ yf −yf ′ ≤ 1. It follows that the vO are precisely the lattice points in PObase
(G);

there are no interior lattice points.

Proof. Let Q be the intersection of the required inequalities. Then it is clear that

the vO are precisely the lattice points in Q. We claim that all of the vertices of Q are

integral, and thus that the vO are the vertices of Q, implying that Q = PObase
(G).

Now, the inequalities defining Q can be described as A · y ≤ b, where y is the

vector of the yf ’s. The matrix A is the transpose of the adjacency matrix of the

dual graph of G, and is hence totally unimodular. If A is any totally unimodular

matrix, and b any integer vector, then the polytope A · y ≤ b has only integral

vertices. (See [19, Theorem 19.1].) �

Proposition 8.2. The facets of PObase
(G) are in one-to-one correspondence with

those edges e of G which separate two distinct faces of G. The bijection is as

follows: Fix e and let (f, f ′) be the ordered pair of faces of G separated by e such

that e is oriented to the left (in Obase) as we look from f into f ′. Then if e is

directed from the black vertex to the white vertex, let we := yf − yf ′ −1. Otherwise,

let we := yf ′ − yf . The edge e corresponds to the facet inequality we ≤ 0.

Remark: If G is reduced, in the terminology of [14], then every edge of G

separates two distinct faces of G.

Proof. If e does not separate two distinct faces of G, but rather separates the face

f from itself, then the inequality associated to e is yf − yf ≥ 0, which is trivially

an equality on all of P (G) and hence doesn’t define a facet of P (G). We call such

an edge a non-separating edge.

We will show that all the inequalities from Proposition 8.1 other than those

listed above are a consequence of the inequalities listed above and of the trivial



18 ALEXANDER POSTNIKOV, DAVID SPEYER, AND LAUREN WILLIAMS

inequalities associated to non-separating edges. Consider a white vertex v of G.

Let e1, e2, . . . , em denote the edges incident to v (labeled cyclically), with e1 being

the unique edge which is directed towards v in O. Let f1, f2, . . . , fm denote the

faces incident to v, labeled such that ei separates the faces fi−1 and fi (modulo

m). Then the set S of inequalities given by Proposition 8.2 corresponding to the

ei’s are yf1
− yfm

≤ 1 and also yfi+1
− yfi

≤ 0 for 1 ≤ i ≤ m − 1. Consider the

complementary set S′ of inequalities from Proposition 8.1 corresponding to the ei’s:

yfm
− yf1

≤ 0 and also yfi
− yfi+1

≤ 1 for 1 ≤ i ≤ m− 1. It is now easy to see that

by adding m − 1 of the m inequalities in S at a time, we obtain the inequalities in

S′.

It now remains to show that each of the inequalities in Proposition 8.2 actually

defines a facet of the polytope. Fix an edge e and let Q be the convex hull of the

set of vertices of PObase
(G) which lie on the hyperplane defined by the inequality

associated to e. We will show that Q has dimension #Faces(G) − 2. Let (f, f ′)

be two faces of G separated by e as above. If e is directed from the black vertex

to the white vertex in Obase, then the vertices of PObase
(G) on which yf − yf ′ = 1

correspond exactly to the perfect orientations of G such that e is directed in the

opposite direction to Obase, namely from the white vertex to the black vertex.

Similarly, if e is directed from the white vertex to the black vertex in Obase, then

the vertices of PObase
(G) on which yf ′ − yf = 0 also correspond exactly to the

perfect orientations of G such that e is directed from the white vertex to the black

vertex.

Now note that any perfect orientation of G in which the edge e is directed from

the white vertex to the black vertex restricts to a perfect orientation of G \ e (and

vice-versa). Therefore the polytope Q is equal to the polytope P (G \ e) (up to

translation). Since we assumed that e separates two distinct faces of G, G \ e has

one fewer faces than G does. So the dimension of P (G \ e) is #Faces(G) − 2, and

we are done. �

Example 8.3. In Figure 6 we give a plabic graph G corresponding to the top-

dimensional cell of (Gr24)≥0, along with its seven perfect orientations and the cor-

responding vertices of P (G). (The coordinates of the vertices are drawn inside the

faces of G.) If we fix Obase to be the perfect orientation of G listed as “I: Base”

in the figure, then the facet inequalities of P (G) are: A + 1 ≥ B, D + 1 ≥ B, B ≥

C, B ≥ E, E ≥ A, C ≥ A, E ≥ D, and C ≥ D. Since the polytope is defined only

up to translation, we have set E = 0.

Since we know that FG is the normal fan of P (G), we now get a description of

the rays of FG.

Corollary 8.4. The rays of FG are in one-to-one correspondence with the edges e

of G, as follows. Fix e and let (f, f ′) be the ordered pair of faces of G separated by

e such that e is oriented to the left (in Obase) as we look from f into f ′. Then if

e is directed from the black vertex to the white vertex, e corresponds to the ray re

which is the image of R≥0(ef − ef ′) in V . Otherwise, e corresponds to the ray re

which is the image of R≥0(ef ′ − ef ) in V .
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Remark: Propp [15] has considered the general problem of, given a graph

H (which need not be planar) and an element ω ∈ H1(H, Z), determining all

orientations of H such that the flow around every oriented cycle γ in H is ω(γ). To

such a flow, Propp assigns a “height function” on the vertices of H . We can relate

Propp’s theory to ours in the following manner: let G be a plabic graph and let H

be the dual graph to G. (We do not include a vertex dual to the outside of the disc

in which G is embedded.) To any orientation O of G, we assign an orientation of

H by rotating each edge 90◦ clockwise. Then O is a perfect orientation if and only

if the corresponding orientation of G defines a certain class in H1(H, Z). Propp’s

height functions, in this setting, become the components of our vO. All the theory

of this section can be written in the greater generality which Propp considers.

9. The face lattice of P (G)

We now consider the lattice of faces of P (G), and give a description in terms of

unions of matchings of G. This description is very similar to the description of the

face lattice of the Birkhoff polytopes, as described by Billera and Sarangarajan [1].

In this section we assume that G is bipartite, which as noted in Section 2 is

no loss of generality. As before, we fix a perfect orientation Obase. Recall that a

planar-perfect matching of a planar graph G is a collection of edges M of G in which

every internal vertex is incident to precisely one edge in M (but boundary vertices

are not necessarily incident to an edge in M .) Note that perfect orientations O of

G are then in bijection with the planar-perfect matchings M(O) of G.

If N is a face of P (G), define H(N) to be the union of M(O) over all perfect

orientations O indexing vertices of N . H(N) then has the property that it has the
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same number of vertices as G and every edge of H(N) is in some planar-perfect

matching of G. Following [9], we call a subgraph H of G elementary if it contains

every vertex of G and if every edge of H is used in some planar-perfect matching of

H . Equivalently, the edges of H are obtained by taking a union of several planar-

perfect matchings of G.

Conversely, if H ⊂ G is an elementary graph, define

N(H) := conv{vO | M(O) ⊂ H}.

Let E be the set of edges in G \H and recall the definition of we from Proposition

8.2.

Proposition 9.1. N(H) is equal to PObase
(G) ∩ {we = 0|e ∈ K}.

Proof. Let P ′ denote PObase
(G) ∩ {we = 0|e ∈ K}. Then P ′ is the intersection of

P (G) with some of its facets – i.e. P ′ is a face of P (G) – and hence is the convex

hull of some vO.

Consider any vO ∈ P ′, and some e ∈ K. Let f and f ′ be the faces of G incident

to e such that e is oriented to the left in Obase as we look from f into f ′. If, in

Obase, the edge e is oriented from the white vertex to the black vertex then the

fact that the coordinates of vO satisfy we := yf ′ − yf = 0 implies that e is not in

δO,Obase
and hence e is oriented from white to black in O. Therefore e is not an

edge in the matching M(O). On the other hand, if in Obase the edge e is oriented

from the black vertex to the white vertex then the fact that the coordinates of vO
satisfy we := yf − yf ′ − 1 = 0 implies that e is in δO,Obase

and hence e is oriented

from white to black in O. Again, e is not an edge in the matching M(O). Since

this argument works for any e ∈ K = G \ H , we conclude that M(O) ⊂ H and

hence vO ∈ N(H).

Conversely, it is obvious that the coordinates of any vO in N(H) satisfies the

equations we = 0 for e ∈ K. �

Since N(H) is an intersection of facets of P (G), it is a face of P (G). Clearly,

H1 ⊆ H2 implies N(H1) ⊆ N(H2) and N1 ⊆ N2 implies H(N1) ⊆ H(N2). We

claim that the correspondences N 7→ H(N) and H 7→ N(H) are inverse.

Proposition 9.2. If H is any elementary subgraph of G, then H(N(H)) = H. If

N is any face of P (G), then N(H(N)) = N .

Proof. Let H be an elementary subgraph of G. From the definitions, we immedi-

ately have H ⊇ H(N(H)). To establish the converse containment, let e be any

edge of H . Since H is elementary, there is a perfect matching M of H which uses

the edge e. Let O be the corresponding perfect orientation of G; the vertex O is in

N(H) so e ∈ H(N(H)).

Now, let N be a face of P (G). From the definitions, we immediately have N ⊆

N(H(N)). Suppose (for the sake of contradiction) that vO is a vertex of N(H(N))

which is not in N . Then, by proposition 9.1, there is some edge e ∈ K = G \H(N)

for which we(vO) 6= 0. But we(vO) 6= 0 means that e ∈ M(O), so M(O) 6⊆ H(N),

contradicting our choice of vO ∈ N(H(N)). �
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This yields a description of the face lattice of P (G): it is the lattice of ele-

mentary subgraphs of G, ordered by inclusion of edges. (Plus a formal element

0̂, corresponding to the minimal element of the face lattice.) The join operation

is defined by the union of the edge sets and the meet of two elementary graphs

is defined to be the join of all elementary graphs less than both (which may be

empty). Alternatively, we may describe the meet of G1 ∩ G2 as the subgraph of

G1 ∩ G2 obtained by deleting all edges of G1 ∩ G2 not used in any planar-perfect

matching of G1 ∩ G2. So we have proved the following.

Theorem 9.3. The face lattice of P (G) is isomorphic to the lattice of all elemen-

tary subgraphs of G, ordered by inclusion.

The minimal nonempty elementary subgraphs of G are the matchings, corre-

sponding to vertices of P (G).

Corollary 9.4. Consider a cell ∆G of (Grkn)≥0 parameterized by a plabic graph

G. For any cell ∆H in the closure of ∆G, the corresponding polytope P (H) is a

face of P (G).

Proof. By [14, Theorem 18.3], every cell in the closure of ∆G can be parameterized

using a plabic graph H which is obtained by deleting some edges from G. H

is perfectly orientable and hence is an elementary subgraph of G. Therefore by

Theorem 9.3, the polytope P (H) is a face of P (G). �

In Figure 7, we have drawn the edge graph of the four-dimensional polytope

P (G), where G is the plabic graph from Example 8.3. This time we have depicted

the vertices with matchings instead of perfect orientations; note that the Roman

numerals indexing matchings in Figure 7 agree with the Roman numeral indexing

perfect orientations in Figure 6. Additionally, we have labeled each vertex with the

source set of its perfect orientation.

Lemma 9.5. Consider two (planar-perfect) matchings M1 and M2 of G. Let H =

M1∪M2. If some vertex v in G is incident to two distinct edges e1 and e2 such that

e1 ∈ M1 and e2 ∈ M2 then in fact there is a path through v comprised of edges in

H (alternating between M1 and M2) which either begins and ends on the boundary

of the disk or forms a closed loop in the interior of the disk. Furthermore, the paths

in H are vertex-disjoint.

Proof. This is just Lemma 6.1, translated into the language of matchings. �

Proposition 9.6. Consider two vertices v1 and v2 of P (G) corresponding to the

two planar-perfect matchings M1 and M2. Let H = M1 ∪ M2 and let r be the

number of regions into which the edges of H divide the disk. Then the smallest face

of P (G) containing v1 and v2 is a cube of dimension r − 1.

Proof. Since H divides the disk into r regions, by Lemma 9.5, it must consist of

precisely r− 1 disjoint closed paths or cycles (plus some isolated edges). There are

exactly 2r−1 planar-perfect matchings of G which are contained in H because for

each closed path or cycle there are two ways of picking a subset of edges to be in
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the matching. These 2r−1 planar-perfect matchings correspond to the vertices of

an r − 1-dimensional cube. �

Proposition 9.7. Let N be a face of P (G), and let r be the number of regions into

which H(N) divides the disk in which G is embedded. Then dimN = r − 1.

Proof. Recall that H(N) is the subgraph of G which is the union of the planar-

perfect matchings of G corresponding to vertices of N . Since H(N) has a planar-

perfect matching, it is perfectly orientable, so we can view it as a perfectly orientable

plabic graph in its own right. It is then easy to see that the polytope N is equal

to the polytope P (H(N)), up to translation, and hence dimN = dim P (H(N)) =

#Faces(H(N)) − 1. But this is equal to r − 1, as desired. �

As a special case of the preceding propositions, we get the following.

Remark 9.8. Let N be a face of P (G) and let r be the number of regions into

which the edges of H(N) divide the disk in which G is embedded. Then N is an

edge of P (G) if and only if r = 2. Equivalently, two vertices vO1
and vO2

of P (G)

form an edge if and only if O2 can be obtained from O1 by switching the orientation

along a directed trail in O1.

Recall that the Birkhoff polytope Bn is the convex hull of the n! points in R
n2

X(π) : π ∈ Sn where X(π)ij is equal to 1 if π(i) = j and is equal to 0 otherwise. It

is well-known that Bn is an (n−1)2 dimensional polytope, whose face lattice of Bn

is isomorphic to the lattice of all elementary subgraphs of the complete bipartite

graph Kn,n ordered by inclusion [1]. Our polytopes P (G) can be thought of as a

kind of analog of the Birkhoff polytopes for planar graphs embedded in a disk.
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10. Connection with matroid polytopes

Every perfectly orientable plabic graph encodes a realizable positroid, that is, an

oriented matroid in which all orientations are positive. The bases of the positroid

associated to a plabic graph G of type (k, n) are precisely the k-element subsets

I ⊂ [n] which occur as source sets of perfect orientations of G. This is easy to see,

as each perfect orientation of G gives rise to a parametrization of the cell ∆G of

(Grkn)≥0 in which the Plucker coordinate corresponding to I is 1. Furthermore, if

one takes a (directed) path in a perfect orientation O and switches the orientation

of each of its edges, this encodes a basis exchange.

Given this close connection of perfectly orientable plabic graphs to positroids, it

is natural to ask whether there is a connection between our polytopes P (G) and

matroid polytopes. It turns out that there is a map Ψ from P (G) to the matroid

polytope corresponding to the (unoriented) positroid associated to G.

Let M be a matroid of rank k on the ground set [n]. Recall that the matroid

polytope Q(M) is the convex hull of the vectors {e(J) | J is a basis of M} where

e(J) is the 0 − 1 vector in Rn whose ith coordinate is 1 if i ∈ J and is 0 otherwise

[8]. The vertices are in one-to-one correspondence with bases of M . This polytope

lies in the hyperplane x1 + · · · + xn = 0 and has dimension n − 1.

In contrast, if G is a plabic graph of type (k, n), one can associate to each vertex

vO of P (G) a basis of the corresponding positroid (the source set corresponding

to O), but this is in general a many-to-one correspondence from vertices of P (G)

to bases of the positroid. Another way in which P (G) differs from Q(MG) is that

P (G) has the same dimension as the corresponding cell ∆G of (Grkn)≥0 (which is

also the rank of the associated positroid). This dimension ranges from 0 to k(n−k),

and is equal to #Faces(G) − 1.

Let MG denote the matroid corresponding to G, i.e. the underlying matroid of

the positroid associated to G. We will define a map Ψ from P (G) to Q(MG).

Fix a perfect orientation Obase of G. Let S be the set of edges attached to

boundary vertices in the plabic graph which are oriented into the disk, i.e. attached

to sources. Let f1, . . . , fn denote the n faces bordering the boundary of the disk.

Recall that we represent points in PObase
(G) ⊂ V ∨ in the form

∑
yfef , where f

ranges over the faces of G and the variables yf are defined up to adding the same

constant to all of them.

Definition 10.1. We define Ψ : P (G) → Q(MG) by mapping
∑

yfef to (a1, . . . an) ∈

R
n, where ai = yfi

− yfi+1
if the edge between fi and fi+1 is not in S and

ai = yfi
− yfi+1

+ 1 if the edge between fi and fi+1 is in S. (Here indices are

regarded modulo n).

Proposition 10.2. Ψ is well-defined and is a projection of P (G) onto Q(MG).

Furthermore, if vO is a vertex of P (G) corresponding to the basis J ⊂ [n], then

Ψ(vO) is the vertex of Q(MG) corresponding to the same basis J .

Proof. Clearly Ψ is well-defined as a map on V ∨. Since there are k boundary

vertices of G which are sources with respect to Obase, |S| = k and hence
∑

ai = k.

Therefore Ψ indeed maps P (G) to Q(MG). Finally, it is easy to check that if O
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is a perfect orientation of G such that J ⊂ [n] is the set of sources, then Ψ(vO) =

e(J). Therefore Ψ is a surjection which takes vertices to vertices as specified in the

proposition. �

Example 10.3. Consider the plabic graph G from Figure 6. This corresponds

to the positroid of rank two on the ground set [4] such that all subsets of size 2

are independent. The edge graph of the four-dimensional polytope P (G) is shown

in Figure 7, and each vertex is labeled with the basis it corresponds to. The ma-

troid polytope of this matroid is the (three-dimensional) octahedron with six vertices

corresponding to the two-element subsets of [4]. Under the map Ψ, the vertex of

P (G) corresponding to the two-element subset ij gets mapped to the vertex of the

octahedron whose ith and jth coordinates are 1 (and whose other coordinates are

0).

11. Numerology of the polytopes P (G)

In this section we give some statistics about a few of the polytopes P (G). Our

computations were made with the help of the software Polymake [7].
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Figure 8.

Let G24 denote the plabic graph shown in Figure 6, and let G25, G26, and

G36 denote the plabic graphs shown in Figures 8. These four plabic graphs give

parameterizations of the top cells of (Gr24)≥0, (Gr25)≥0, (Gr26)≥0, and (Gr36)≥0,

respectively.

Then the f -vector of the polytope P (G24) is (7, 17, 18, 8).

The f -vector of P (G25) is (14, 59, 111, 106, 52, 12).

The f -vector of P (G26) is (25, 158, 440, 664, 590, 315, 98, 16).

The f -vector of P (G36) is (42, 353, 1212, 2207, 2368, 1557, 627, 149, 19).

The Ehrhart series of P (G24) is 1+2t+t2

(1−t)5 .

The Ehrhart series of P (G25) is 1+7t+12t2+4t3

(1−t)7 .

The Ehrhart series of P (G26) is 1+16t+64t2+68t315t4

(1−t)9 .

The volume of P (G24) is 1
6 = 4

4! and so the degree of the corresponding toric

variety XG24 is 4.

The volume of P (G25) is 1
30 = 24

6! and so the degree of XG25 is 24.

The volume of P (G26) is 41
10080 = 164

8! and so the degree of XG26 is 164.



TORIC GEOMETRY AND THE NON-NEGATIVE PART OF THE GRASSMANNIAN 25

The volume of P (G36) is 781
181440 = 1562

9! and so the degree of XG36 is 1562.

Note that in general there is more than one plabic graph giving a parameter-

ization of a given cell. But even if two plabic graphs G and G′ correspond to

the same cell, in general we have P (G) 6= P (G′). For example, the plabic graph

in Figure 9 gives a parameterization of the top cell of (Gr26)≥0. Let us refer

to this graph as Ĝ26. However, P (Ĝ26) 6= P (G26): the f -vector of P (Ĝ26) is

(26, 165, 460, 694, 615, 326, 100, 16).

Figure 9.
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