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Abstract
This paper presents a formula for products of Schubert classes in the quantum coho-
mology ring of the Grassmannian. We introduce a generalization of Schur symmetric
polynomials for shapes that are naturally embedded in a torus. Then we show that the
coefficients in the expansion of these toric Schur polynomials, in terms of the regular
Schur polynomials, are exactly the 3-point Gromov-Witten invariants, which are the
structure constants of the quantum cohomology ring. This construction implies three
symmetries of the Gromov-Witten invariants of the Grassmannian with respect to the
groups S3, (Z/nZ)2, and Z/2Z. The last symmetry is a certain curious duality of the
quantum cohomology which inverts the quantum parameter q . Our construction gives
a solution to a problem posed by Fulton and Woodward about the characterization of
the powers of the quantum parameter q which occur with nonzero coefficients in the
quantum product of two Schubert classes. The curious duality switches the smallest
such power of q with the highest power. We also discuss the affine nil-Temperley-Lieb
algebra that gives a model for the quantum cohomology.
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1. Introduction
It is well known that the Schubert calculus is related to the theory of symmetric func-
tions. The cohomology ring of the Grassmannian is a certain quotient of the ring
of symmetric functions. Schubert classes form a linear basis in the cohomology and
correspond to the Schur symmetric polynomials. There is a more general class of
symmetric polynomials known as the skew Schur polynomials. The problem of mul-
tiplying two Schubert classes is equivalent to the problem of expanding a given skew
Schur polynomial in the basis of ordinary Schur polynomials. The coefficients that ap-
pear in this expansion are explicitly computed using the Littlewood-Richardson rule.

Recently, in a series of papers by various authors, attention has been drawn to the
small quantum cohomology ring of the Grassmannian. This ring is a certain deforma-
tion of the usual cohomology. Its structure constants are the 3-point Gromov-Witten
invariants, which count the numbers of certain rational curves of fixed degree.

In this paper we present a quantum cohomology analogue of skew Schur polyno-
mials. These are certain symmetric polynomials labeled by shapes that are embedded
in a torus. We show that the Gromov-Witten invariants are the expansion coefficients
of these toric Schur polynomials in the basis of ordinary Schur polynomials. The toric
Schur polynomials are defined as sums over certain cylindric semistandard tableaux.
Note that these tableaux already appeared (under different names) in [GK] and [BCF].

This construction implies several nontrivial results. For example, it reproduces
the known result that the Gromov-Witten invariants are symmetric with respect to
the action of the product of two cyclic groups. Also, it gives a certain curious dual-
ity of the Gromov-Witten invariants which exchanges the quantum parameter q and
its inverse.∗ Geometrically, this duality implies that the number of rational curves of
small degree equals the corresponding number of rational curves of high degree. An-
other corollary of our construction is a complete characterization of all powers of q
with nonzero coefficient which appear in the expansion of the quantum product of
two Schubert classes. This problem was posed in a recent paper by Fulton and Wood-
ward [FW], in which the lowest power of q was calculated. By virtue of the curious
duality, the problem of computing the highest power of q is equivalent to finding the
lowest power.

The general outline of the paper follows. In Section 2 we review main definitions
and results related to symmetric functions and to classical and quantum cohomologies
of the Grassmannian. In Section 3 we introduce our main tool—toric shapes and toric
tableaux. In Section 4 we discuss the quantum Pieri formula and quantum Kostka
numbers. In Section 5 we define toric Schur polynomials and prove our main result
on their Schur expansion. In Section 6 we discuss the cyclic symmetry and the curious

∗After the original version of this paper appeared in the e-print arXiv, Hengelbrock informed us that he indepen-
dently found this duality of the quantum cohomology, for q = 1 (see [H]).
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duality of the Gromov-Witten invariants. In Section 7 we describe all powers of the
quantum parameter which appear in the quantum product. In Section 8 we discuss the
action of the affine nil-Temperley-Lieb algebra on quantum cohomology. In Section 9
we give final remarks, open questions, and conjectures.

2. Preliminaries
We note some definitions and results related to symmetric functions and to classical
and quantum cohomology rings of the Grassmannian (see [M], [F] and [A], [AW],
[B], [Bu], [BCF], [FW] for the quantum part of the story).

2.1. Symmetric functions
Let 3k = Z[x1, . . . , xk]

Sk be the ring of symmetric polynomials in x1, . . . , xk .
The ring 3 of symmetric functions in the infinite set of variables x1, x2, . . . is de-
fined as the inverse limit 3 = lim

←−
3k in the category of graded rings. In other

words, the elements of the ring 3 are formal power series (with bounded degrees)
in the variables x1, x2, . . . which are invariant under any finite permutation of the
variables. The ring 3 is freely generated by the elementary symmetric functions
ei =

∑
a1<···<ai

xa1 · · · xai and, alternatively, by the complete homogeneous symmet-
ric functions h j =

∑
b1≤···≤b j

xb1 · · · xb j :

3 = Z[e1, e2, e3, . . . ] = Z[h1, h2, h3, . . . ].

The two sets of generators can be recursively expressed from each other using the
identity (1+ t e1 + t2e2 + · · · ) · (1− t h1 + t2h2 − · · · ) = 1.

For a partition λ = (λ1 ≥ · · · ≥ λl ≥ 0), the Young diagram of shape λ is
the set {(i, j) ∈ Z2

| 1 ≤ j ≤ λi }. It is usually represented as a collection of
|λ| = λ1 + · · · + λl boxes arranged on the plane as one would arrange elements of a
matrix (see Fig. 1). For a pair of partitions λ and µ such that λi ≥ µi , for all i , the
skew Young diagram of shape λ/µ is the set-theoretic difference of the two Young
diagrams of shapes λ and µ. A semistandard Young tableau of shape λ/µ and weight
β = (β1, . . . , βr ) is a way to fill the boxes of the skew Young diagram with numbers
1, . . . , r such that βi is the number of i’s, for i = 1, . . . , r , and the entries in the
tableau are weakly increasing in the rows and strictly increasing in the columns of the
Young diagram. For a tableau T of weight β, let xT

= xβ
= xβ1

1 · · · x
βr
r .

The skew Schur function sλ/µ is defined as the sum

sλ/µ = sλ/µ(x) =
∑

T of shape λ/µ

xT

over all semistandard Young tableaux T of shape λ/µ. It is a homogeneous element
in the ring 3 of symmetric functions of degree |λ/µ| = |λ|− |µ|. By our convention,
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sλ/µ = 0 if some of the conditions λi ≥ µi fail. If µ = ∅ is the empty partition, then
we obtain the usual Schur function sλ = sλ/∅. The set of Schur functions sλ, for all
partitions λ, forms a Z-basis of 3.

The specializations sλ(x1, . . . , xk) = sλ(x1, . . . , xk, 0, 0, . . . ) ∈ 3k of the Schur
functions are called the Schur polynomials. The set of Schur polynomials, where λ

ranges over partitions with at most k parts, forms a Z-basis of the ring of symmetric
polynomials 3k = Z[e1, . . . , ek].

The Jacobi-Trudy formula expresses the Schur functions sλ in terms of the ele-
mentary or complete homogeneous symmetric functions:

sλ = det(hλi+ j−i )1≤i, j≤l = det(eλ′i+ j−i )1≤i, j≤s, (1)

where λ = (λ1, . . . , λl) is a partition and λ′ = (λ′1, . . . , λ
′
s) is its conjugate partition,

whose Young diagram is obtained by transposition of the Young diagram of λ (see
Fig. 1). Here we assume that e0 = h0 = 1 and ei = h j = 0 for i, j < 0.

The Littlewood-Richardson coefficients cν
λµ are defined as the structure constants

of the ring of symmetric functions 3 in the basis of Schur functions:

sλ · sµ =

∑
ν

cν
λµ sν,

where the sum is over partitions ν such that |ν| = |λ| + |µ|. The coefficients cν
λµ

are nonnegative integers. The famous Littlewood-Richardson rule gives an explicit
combinatorial formula for these numbers.

The Littlewood-Richardson coefficients cν
λµ can also be expressed using skew

Schur functions, as follows. Let 〈· , ·〉 be the inner product in the space of symmetric
functions 3 such that the usual Schur functions sλ form an orthogonal basis. Then we
have 〈sλ, sµ · sν〉 = 〈sλ/µ, sν〉 (see [M]). Thus the coefficients of expansion of a skew
Schur function in the basis of the usual Schur functions are exactly the Littlewood-
Richardson coefficients:

sλ/µ =

∑
ν

cλ
µν sν . (2)

2.2. Cohomology of Grassmannians
Let Grkn be the variety of k-dimensional subspaces in Cn . It is a complex projective
variety called the Grassmann variety or the Grassmannian. There is a cellular decom-
position of the Grassmannian Grkn into Schubert cells �◦λ. These cells are indexed by
partitions λ whose Young diagrams fit inside the (k × (n − k))-rectangle. Let

Pkn =
{
λ = (λ1, . . . , λk)

∣∣ n − k ≥ λ1 ≥ · · · ≥ λk ≥ 0
}

be the set of such partitions. The boundary of the Young diagram of a partition λ ∈

Pkn corresponds to a lattice path in the (k × (n − k))-rectangle from the lower-left
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corner to the upper-right corner. Such a path can be encoded as a sequence ω(λ) =

(ω1, . . . , ωn) of 0’s and 1’s with ω1+· · ·+ωn = k, where 0’s correspond to the right
steps and 1’s correspond to the upward steps in the path (see Fig. 1). We say that ω(λ)

is the 01-word of a partition λ ∈ Pkn . The 01-words are naturally associated with
cosets of the symmetric group Sn modulo the maximal parabolic subgroup Sk× Sn−k .

k

n − k k = 4, n = 10,

λ = (6, 4, 4, 2), |λ| = 16,

ω(λ) = (0, 0, 1, 0, 0, 1, 1, 0, 0, 1),

λ∨ = (4, 2, 2, 0), λ′ = (4, 4, 3, 3, 1, 1)

Figure 1. A partition in Pkn

Fix a standard flag of coordinate subspaces C1
⊂ C2

⊂ · · · ⊂ Cn . For λ ∈ Pkn

with ω(λ) = (ω1, . . . , ωn), the Schubert cell �◦λ consists of all k-dimensional sub-
spaces V ⊂ Cn with prescribed dimensions of intersections with the elements of the
coordinate flag: dim(V ∩Ci ) = ωn +ωn−1+· · ·+ωn−i+1 for i = 1, . . . , k. The clo-
sures �λ = �̄◦λ of Schubert cells are called the Schubert varieties. Their fundamental
cohomology classes σλ = [�λ], λ ∈ Pkn , called the Schubert classes, form a Z-
basis of the cohomology ring H∗(Grkn) of the Grassmannian. Thus dim H∗(Grkn) =

|Pkn| =
(n

k

)
. We have σλ ∈ H2|λ|(Grkn).

The cohomology ring of the Grassmannian is generated by either of the following
two families of special Schubert classes: σ(1i ) = ci (V

∗), i = 1, . . . , k, and σ( j) =

c j (Cn/V ), j = 1, . . . , n − k, where V is the universal subbundle on Grkn and ci

denotes the i th Chern class. Here (1i ) = (1, . . . , 1) is the partition with i parts equal
to 1, and ( j) is the partition with one part j .

The cohomology ring H∗(Grkn) is canonically isomorphic to the quotient of the
polynomial ring Z[e1, . . . , ek, h1, . . . , hn−k] modulo the ideal generated by the coef-
ficients in the t-expansion of (1+ t e1+· · ·+ tkek)(1− t h1+· · ·+(−t)n−khn−k)−1.
This isomorphism is given by σ(1i ) 7→ ei , i = 1, . . . , k, and σ( j) 7→ h j , j =
1, . . . , n − k. Equivalently, we can present the cohomology H∗(Grkn) as the quotient

H∗(Grkn) ' 3k/ 〈hn−k+1, . . . , hn〉 = 3/〈ei , h j | i > k, j > n − k〉. (3)

The ideal in 3 in the last expression is spanned by the Schur functions sλ, whose
shapes do not fit inside the (k× (n− k))-rectangle. In this isomorphism, the Schubert
classes σλ, for λ ∈ Pkn , map to (the cosets of) the Schur functions sλ.

This isomorphism implies that the structure constants of the cohomology ring
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H∗(Grkn) in the basis of Schubert classes are the Littlewood-Richardson coefficients:

σλ · σµ =

∑
ν∈Pkn

cν
λµ σν for λ, µ ∈ Pkn .

In particular, the structure constants in H∗(Grkn) do not depend on k and n.
Let cλµν =

∫
Grkn

σλ · σµ · σν be the intersection numbers of the three Schubert
varieties �λ, �µ, and �ν . Let ν∨ = (n− k − νk, . . . , n− k − ν1) denote the comple-
ment partition to ν ∈ Pkn; that is, ν∨ is obtained from ν by taking the complement to
its Young diagram in the (k × (n − k))-rectangle and then rotating it by 180o degrees
(see Fig. 1). Then cλµν = cνν

λµ. This equality of the structure constants and the inter-
section numbers follows from the fact that the basis of Schubert classes σλ is self-dual
with respect to the Poincaré pairing:

∫
Grkn

σλ · σµ∨ = δλµ (Kronecker’s delta). This
provides a geometric explanation for the nonnegativity of the Littlewood-Richardson
coefficients cν∨

λµ = cλµν and implies their S3-symmetry with respect to permutations
of λ, µ, and ν.

Expression (2) for the Littlewood-Richardson coefficients in terms of the skew
Schur functions can be written equivalently as

sµ∨/λ =

∑
ν∈Pkn

cν
λµ sν∨ for λ, µ ∈ Pkn . (4)

Here we use S3-symmetry of the Littlewood-Richardson coefficients. Note that ex-
pression (4) depends on particular values of k and n.

k = 5, n = 12,

λ = (5, 3, 3, 1, 0), µ = (5, 2, 1, 0, 0)
k

n − k

λ

µ

Figure 2. Skew shape associated with σλ · σµ

Formula (4) says that the coefficient cν
λµ of σν in the expansion of the product

σλ · σµ ∈ H∗(Grkn) is equal to the coefficient of sν∨ in the expansion of the skew
Schur function sµ∨/λ ∈ 3. In other words, the Poincaré dual of the product σλ · σµ

in H∗(Grkn) corresponds to the skew Schur function sµ∨/λ under isomorphism (3).
Note that the shape µ∨/λ is obtained from the (k × (n − k))-rectangle by removing
the shape λ in the northwest corner and removing the shape µ (rotated by 180◦) in
the southeast corner (see Fig. 2). In particular, σλ · σµ 6= 0 if and only if µ∨/λ is a
valid skew shape; that is, the removed shapes do not overlap in the (k × (n − k))-
rectangle. In this paper we present analogues of formulas (2) and (4) for the quantum
cohomology ring of Grkn .
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2.3. Quantum cohomology of Grassmannians
The (small) quantum cohomology ring QH∗(Grkn) of the Grassmannian is an algebra
over Z[q], where q is a variable of degree n. As a linear space, the quantum coho-
mology is equal to the tensor product H∗(Grkn) ⊗ Z[q]. Thus Schubert classes σλ,
λ ∈ Pkn , form a Z[q]-linear basis of QH∗(Grkn).

The product in QH∗(Grkn) is a certain q-deformation of the product in H∗(Grkn).
It is defined using the (3-point) Gromov-Witten invariants. The Gromov-Witten invari-
ant Cd

λµν , usually denoted 〈�λ, �µ, �ν〉d , counts the number of rational curves of
degree d in Grkn which meet generic translates of the Schubert varieties �λ, �µ, and
�ν , provided that this number is finite. The last condition implies that the Gromov-
Witten invariant Cd

λµν is defined if |λ| + |µ| + |ν| = nd + k(n − k). (Otherwise,
we set Cd

λµν = 0.) If d = 0, then a degree zero curve is just a point in Grkn and
C0

λµν = cλµν are the usual intersection numbers. In general, the geometric definition
of the Gromov-Witten invariants Cd

λµν implies that they are nonnegative integer num-
bers. We use the notation σ ∗ρ for the “quantum product” of two classes σ and ρ, that
is, their product in the ring QH∗(Grkn). This product is a Z[q]-linear operation. Thus
it is enough to specify the quantum product of any two Schubert classes. It is defined
as

σλ ∗ σµ =

∑
d, ν

qd Cν,d
λµ σν, (5)

where the sum is over nonnegative integers d and partitions ν ∈ Pkn such that |ν| =
|λ| + |µ| − d n and the structure constants are the Gromov-Witten invariants Cν,d

λµ =

Cd
λµν∨ . Properties of the Gromov-Witten invariants imply that the quantum product is

a commutative and associative operation. In the “classical limit” q → 0, the quantum
cohomology ring becomes the usual cohomology.

Unlike the usual Littlewood-Richardson coefficients cν
λµ, the Gromov-Witten in-

variants Cν,d
λµ depend not only on three partitions λ, µ, and ν but also on the numbers

k and n. If n > |λ| + |µ|, then Cν,d
λµ = δd 0 · cν

λµ. Thus all “quantum effects” vanish in
the limit n→∞.

The quantum cohomology QH∗(Grkn) is canonically isomorphic to the quotient

QH∗(Grkn) ' Z[q, e1, . . . , ek, h1, . . . , hn−k]/I q
kn = (3k ⊗ Z[q])/J q

kn, (6)

where the ideal I q
kn is generated by the coefficients in the t-expansion of the polyno-

mial (1+ t e1 + · · · + tkek)(1− t h1 + · · · + (−t)n−khn−k)− 1− (−1)n−kq tn , and
J q

kn = 〈hn−k+1, . . . , hn−1, hn + (−1)kq〉. As in the classical case, isomorphism (6)
is given by σ1i 7→ ei , i = 1, . . . , k, and σ j 7→ h j , j = 1, . . . , n− k. For λ ∈ Pkn , the
class σλ maps to (the coset of) the Schur polynomial sλ(x1, . . . , xk) ∈ 3k . Note, how-
ever, that the Schur polynomials sλ(x1, . . . , xk), for λ 6∈ Pkn , may represent nonzero
elements in QH∗(Grkn). In what follows, by a slight abuse of notation, we denote the
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special Schubert classes in (quantum) cohomology by ei = σ(1i ) and h j = σ( j), for
i = 1, . . . , k, j = 1, . . . , n − k.

Bertram, Ciocan-Fontanine, and Fulton [BCF] expressed the Gromov-Witten in-
variants as alternating sums of the Littlewood-Richardson coefficients by showing
how to reduce a Schur function sλ ∈ 3k modulo the ideal J q

kn in (6).
The Jacobi-Trudy formula in (1) specializes to the expression for a Schubert class

in terms of the special Schubert classes, known as the Giambelli formula. Bertram’s
quantum Giambelli formula in [B] claims that the same expression remains valid in
the quantum cohomology QH∗(Grkn):

σλ = det(hλi+ j−i )1≤i, j≤k = det(eλ′i+ j−i )1≤i, j≤n−k, (7)

where λ = (λ1, . . . , λk) ∈ Pkn , λ′ = (λ′1, . . . , λ
′

n−k) ∈ Pn−k n is its conjugate par-
tition, and we assume that e0 = h0 = 1 and ei = h j = 0 unless 0 ≤ i ≤ k and
0 ≤ j ≤ n − k.

Let us also mention the duality isomorphism of the quantum cohomology rings

QH∗(Grkn) ' QH∗(Grn−k n). (8)

In this isomorphism, a Schubert class σλ in QH∗(Grkn) maps to the Schubert class σλ′

in QH∗(Grn−k n). In particular, the generators ei of QH∗(Grkn) map to the generators
h j of QH∗(Grn−k n), and vice versa.

3. Cylindric and toric tableaux
Let us fix two positive integer numbers k and n such that n > k ≥ 1, and let us define
the cylinder Ckn as the quotient

Ckn = Z2/(−k, n − k) Z.

In other words, Ckn is the quotient of the integer lattice Z2 modulo the action of the
shift operator Shiftkn : (i, j) 7→ (i − k, j + n − k). For (i, j) ∈ Z2, let 〈i, j〉 =
(i, j)+ (−k, n − k) Z be the corresponding element of the cylinder Ckn .

For a partition λ ∈ Pkn and an integer r , let λ[r ] = (. . . , α−1, α0, α1, α2, . . . ) be
the integer sequence, infinite in both directions, such that
(a) αi+r = λi + r for i = 1, . . . , k, and
(b) αi = αi+k + (n − k) for any i ∈ Z.
These are exactly all weakly decreasing sequences satisfying condition (b).

The coordinatewise partial order on Z2 induces the partial order structure � on
the cylinder Ckn . A subset in a partially ordered set is called an order ideal if whenever
it contains an element a it also contains all elements that are less than a. All order
ideals in Ckn are of the form {〈i, j〉 ∈ Ckn | (i, j) ∈ Z2, j ≤ λ[r ]i } for λ ∈ Pkn ,
r ∈ Z. We call sequences of the form λ[r ] cylindric loops because the boundary of
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the corresponding order ideal forms a closed loop on the cylinder Ckn . We can think
of cylindric loops as infinite Shiftkn-invariant lattice paths on the plane. The cylindric
loop λ[r ] is obtained by shifting the loop λ[0] by r steps in the southeast direction,
that is, by shifting it by the vector (r, r) (see Fig. 3). (As usual, we arrange pairs (i, j)
on the plane as one would arrange matrix elements.)

λ[0]

λ[r ]

k = 5, n = 13,

λ = (5, 3, 3, 3, 1), r = 2

k

n − k

Figure 3. A cylindric loop λ[r ]

For two cylindric loops λ[r ] and µ[s] such that λ[r ]i ≥ µ[s]i for any i , we define
the cylindric Young diagram of type (k, n) and shape λ[r ]/µ[s] as the set-theoretic
difference of the corresponding order ideals in the cylinder Ckn:{

〈i, j〉 ∈ Ckn
∣∣ (i, j) ∈ Z2, λ[r ]i ≥ j > µ[s]i

}
.

This diagram consists of the elements of the cylinder Ckn (represented by boxes) lo-
cated between the two cylindric loops. Cylindric Young diagrams are exactly all finite
subsets in Ckn closed with respect to the operation of taking intervals. Let |λ[r ]/µ[s]|
denote the number of boxes in the cylindric Young diagram.

For two partitions λ, µ ∈ Pkn and a nonnegative integer d , let λ/d/µ be short-
hand for the cylindric shape λ[d]/µ[0]. Each cylindric Young diagram λ[r ]/µ[s] is
obtained by the shift of the diagram of shape λ/d/µ, d = r − s, by s steps in the
southeast direction. We often use the more compact notation λ/d/µ for cylindric
shapes. Each skew Young diagram of shape λ/µ, with λ, µ ∈ Pkn , that fits inside the
(k × (n − k))-rectangle gives rise to the cylindric Young diagram of shape λ/0/µ.
In this sense we regard skew Young diagrams as a special case of cylindric Young
diagrams.

Define the pth row of the cylinder Ckn as the set {〈i, j〉 | i = p}, the qth column
as the set {〈i, j〉 | j = q}, and the r th diagonal as the set {〈i, j〉 | j − i = r}. They
depend only on the residues p (mod k), q (mod n − k), and r (mod n). Thus the
cylinder Ckn has exactly k rows, n − k columns, and n diagonals. The restriction of
the partial order � on Ckn to a row, column, or diagonal induces a linear order on it.
Thus the intersection of a cylindric Young diagram with a row, column, or diagonal
of Ckn contains at most one linearly ordered interval, called row, column, or diagonal,
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respectively, of the cylindric diagram. Notice that the cylindric Young diagram of
shape λ/d/µ has exactly d elements in the (−k)th diagonal.

Definition 3.1
A semistandard cylindric tableau of shape λ[r ]/µ[s] and weight β = (β1, . . . , βl) is
a function T : D 7→ {1, . . . , l} on the cylindric Young diagram D of shape λ[r ]/µ[s]
such that βi = #{a ∈ D | T (a) = i}, for i = 1, . . . , l, and the function T weakly
increases in the rows and strictly increases in the columns of the diagram.

The semistandard cylindric tableaux are equivalent to (0, 1)-cylindric partitions intro-
duced by Gessel and Krattenthaler [GK] and to proper tableaux of Bertram, Ciocan-
Fontanine, and Fulton [BCF] (though notation of [GK] and [BCF] is different from
ours).

Figure 4 gives an example of a cylindric tableau for k = 3 and n = 8. It has
shape λ[r ]/µ[s] = (5, 2, 1)[3]/(4, 1, 1)[1] and weight β = (4, 4, 4, 4, 2). Here we
present the tableau as a Shiftkn-symmetric function defined on an infinite subset in
Z2. Representatives of Shiftkn-equivalence classes of entries are displayed in bold
font. We also indicate the (i, j)-coordinate system in Z2, the shift operator Shiftkn ,
and the (n − k)th and (−k)th diagonal.

k = 3, n = 8,

λ[r ] = (5, 2, 1)[3],

µ[s] = (4, 1, 1)[1],

β = (4, 4, 4, 2)

i

j

Shiftkn

·······

1 1 2 2

1 1 3 4 4

2 3 3 3 4

1

2

5

4 5

1 3 4 4

2 3 3 3 4 5

1 1 2 2 2 4 5

· · · · ·

4 5

1 3 4 4

2 3 3 3 4 5

1 1 2 2 2

1

Figure 4. A semistandard cylindric tableau

Let Tkn = Z/kZ×Z/(n− k)Z be the integer (k× (n− k))-torus. The torus Tkn

is the quotient of the cylinder

Tkn = Ckn/(k, 0)Z = Ckn/(0, n − k)Z. (9)

Elements in rows, columns, and diagonals of the torus Tkn , which are defined as
images of rows, columns, and diagonals of the cylinder, are cyclically ordered.

Definition 3.2
A cylindric shape λ[r ]/µ[s] is called a toric shape if the restriction of the natural
projection p : Ckn → Tkn to the cylindric Young diagram D of shape λ[r ]/µ[s] is
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an injective embedding D ↪→ Tkn . A semistandard toric tableau is a semistandard
cylindric tableau of a toric shape.

LEMMA 3.3
A cylindric shape is toric if and only if all columns of its diagram contain at most k
elements. Also, a cylindric shape is toric if and only if all rows of its diagram contain
at most n − k elements.

Proof
Both statements immediately follow from (9).

A cylindric loop λ[r ] can also be regarded as a closed loop on the torus Tkn . The
Young diagram of a toric shape λ[r ]/µ[s] is formed by the elements of the torus Tkn

between two nonintersecting loops λ[r ] and µ[s].
The tableau given in Figure 4 is not a toric tableau. It has two columns with more

than three elements and two rows with more than five elements. Figure 5 gives an
example of a toric tableau drawn inside the torus Tkn for k = 6 and n = 16. It has
shape λ/d/µ = (9, 7, 6, 2, 2, 0)/2/(9, 9, 7, 3, 3, 1) and weight β = (3, 9, 4, 6, 2, 2).

k = 6, n = 16,

λ[d] = (9, 7, 6, 2, 2, 0)[2],

µ = (9, 9, 7, 3, 3, 1),

β = (3, 9, 4, 6, 2, 2)

k

n − k

1 2 4

3 3 4 4 4

1 2 2 2 2 5

6 1 2 4

3 5 3

2 2 4 6 2

Figure 5. A semistandard toric tableau of shape λ/d/µ

Note that two different cylindric loops related by the shift by k steps in the south
direction, that is, by the vector (k, 0), represent the same loop on the torus Tkn . For
a partition λ ∈ Pkn with ω(λ) = (ω1, . . . , ωn), let diag0(λ) = ωk+1 + · · · + ωn

be the number of elements in the 0th diagonal of its Young diagram. The number
diag0(λ) is also equal to the size of the Durfee square—the maximal square inside
the Young diagram. For a cylindric loop λ[r ], let λ↓[r↓] be the cylindric loop such
that r↓ = r + diag0(λ) and λ↓ ∈ Pkn is the partition whose 01-word is equal to
ω(λ↓) = (ωk+1, . . . , ωn, ω1, . . . , ωk). Then the cylindric loop λ↓[r↓] is the shift of
λ[r ] by the vector (k, 0). This implies the following claim.

LEMMA 3.4
For any λ ∈ Pkn and integer r , the two cylindric loops λ[r ] and λ↓[r↓] represent the
same loop on the torus Tkn . Any two cylindric loops that are equivalent on the torus
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can be related by one or several transformations λ[r ] 7→ λ↓[r↓].

4. Quantum Pieri formula and quantum Kostka numbers
Bertram’s quantum Pieri formula in [B] gives a rule for the quantum product of the
Schubert classes with the generators e1, . . . , ek and h1, . . . , hn−k of QH∗(Grkn). Thus
this formula determines the multiplicative structure of QH∗(Grkn). We can formulate
this formula using our notation, as follows.

Let us say that a cylindric shape λ[r ]/µ[s] is a horizontal i-strip (resp., vertical
i-strip) if |λ[r ]/µ[s]| = i and each column (resp., row) of its diagram contains at
most one element.

PROPOSITION 4.1 (Quantum Pieri formula)
For any µ ∈ Pkn , i = 1, . . . , k, j = 1, . . . , n − k, the quantum products ei ∗ σµ and
h j ∗ σµ are given by the sums

ei ∗ σµ =

∑
λ/d/µ is

a vertical i-strip

qd σλ and h j ∗ σµ =

∑
λ/d/µ is

a horizontal j-strip

qd σλ

over d ∈ {0, 1} and λ ∈ Pkn satisfying the stated conditions.

Note that, for any vertical or horizontal strip λ/d/µ, we have d = 0 or 1. Bertram
proved this formula using quot schemes. Buch [Bu] gave a simple proof of the quan-
tum Pieri formula using only the definition of Gromov-Witten invariants. For the sake
of completeness, we give here a short combinatorial proof of Proposition 4.1 using
the Jacobi-Trudy formula (1).

Proof (cf. [BCF])
Let us first prove the formula for ei ∗ σµ. In order to find the quantum product ei ∗ σµ,
we need to express the product ei · sµ ∈ 3k of the elementary symmetric polynomial
with the Schur polynomial as a linear combination of sλ, for λ ∈ Pkn , modulo the
ideal J q

nk (see (6)). The classical Pieri formula says that the product ei · sµ ∈ 3k

equals the sum of Schur functions ei · sµ =
∑

sτ over all partitions τ with at most k
rows such that τ/µ is a (classical) vertical i-strip.

If τ ∈ Pkn , then we recover all terms with d = 0. Suppose that τ 6∈ Pkn . Then
τ1 = n − k + 1. The top row in the Jacobi-Trudy determinant for sτ is

(hn−k+1, hn−k+1, . . . , hn) ≡
(
0, . . . , 0, (−1)k−1q

)
(mod J q

kn)

(see (1)). This determinant is equivalent to q times its ((k − 1) × (k − 1))-minor
obtained by removing the first row and the last column. If τk ≥ 1, we get sτ ≡ q · sλ

(mod J q
kn), where λ = (τ2 − 1, . . . , τk − 1, 0) ∈ Pkn; otherwise, sτ ∈ J k

kn . In our
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notation this means that the cylindric shape λ/1/µ is a vertical i-strip. This gives all
terms with d = 1.

The second formula for h j ∗ σµ follows from the first formula and the duality
isomorphism (8) between QH∗(Grkn) and QH∗(Grn−k n), which switches the ei with
the h j and vertical strips with horizontal strips.

Define the quantum Kostka number K β
λ/d/µ as the number of semistandard cylindric

tableaux of shape λ/d/µ and weight β. These tableaux are in one-to-one correspon-
dence with chains of cylindric loops λ(0)

[d0] = µ[0], λ(1)
[d1], . . . , λ

(l)
[dl ] = λ[d]

such that λ(i)
[di ]/λ

(i−1)
[di−1] is a horizontal βi -strip for i = 1, . . . , l. Applying the

quantum Pieri formula repeatedly, we immediately recover the following result.

COROLLARY 4.2 (see [BCF, Sec. 3])
For a partition µ ∈ Pkn and an integer vector β = (β1, . . . , βl) with 0 ≤ βi ≤ n− k,
we have σµ ∗ hβ1 ∗ · · · ∗ hβl =

∑
d, λ qd K β

λ/d/µ σλ in QH∗(Grkn), where the sum is
over nonnegative integers d and partitions λ ∈ Pkn .

Corollary 4.2 and the commutativity of QH∗(Grkn) imply the following claim.

COROLLARY 4.3
The quantum Kostka numbers K β

λ/d/µ are invariant under permuting elements βi of
the vector β.

It is not hard to give a direct combinatorial proof of this statement by showing that the
operators of adding horizontal (vertical) r -strips to cylindric shapes commute pair-
wise. This argument is almost the same as in the classical case.

5. Toric Schur polynomials
In this section we define toric Schur polynomials. Then we prove our main result.

For a cylindric shape λ/d/µ, with λ, µ ∈ Pkn and d ∈ Z≥0, we define the
cylindric Schur function sλ/d/µ(x) as the formal series in the infinite set of variables
x1, x2, . . . given by

sλ/d/µ(x) =
∑

T

xT
=

∑
β

K β
λ/d/µ xβ ,

where the first sum is over all semistandard cylindric tableaux T of shape λ/d/µ,
the second sum is over all possible monomials xβ , and xT

= xβ
= xβ1

1 · · · x
βl
l for a

cylindric tableau T of weight β = (β1, . . . , βl).
Recall that the diagrams of shape λ/0/µ are exactly the cylindric diagrams asso-
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ciated with a skew shape λ/µ. Thus

sλ/0/µ(x) = sλ/µ(x)

is the usual skew Schur function.
Corollary 4.3 implies the following claim.

PROPOSITION 5.1
The cylindric Schur function sλ/d/µ(x) belongs to the ring 3 of symmetric functions.

Let us define the toric Schur polynomial as the specialization

sλ/d/µ(x1, . . . , xk) = sλ/d/µ(x1, . . . , xk, 0, 0, . . . )

of the cylindric Schur function sλ/d/µ(x). Here, as before, k is the number of rows in
the torus Tkn . Proposition 5.1 implies that sλ/d/µ(x1, . . . , xk) belongs to the ring 3k

of symmetric polynomials in x1, . . . , xk . The name “toric” is justified by the following
lemma.

LEMMA 5.2
The toric Schur polynomial sλ/d/µ(x1, . . . , xk) is nonzero if and only if the shape
λ/d/µ is toric.

Proof
Let us use Lemma 3.3. If the shape λ/d/µ is not toric, then it contains a column with
greater than k elements. Thus there are no cylindric tableaux of shape λ/d/µ and
weight β = (β1, . . . , βk) (given by a k-vector). This implies that sλ/d/µ(x1, . . . , xk)

is zero. If λ/d/µ is toric, then all columns have at most k elements. There are cylindric
tableaux of this shape and some weight β = (β1, . . . , βk). For example, we can put
the consecutive numbers 1, 2, . . . in each column starting from the top. This implies
that sλ/d/µ(x1, . . . , xk) 6= 0.

We are now ready to formulate and prove our main result. Each toric Schur polynomial
sλ/d/µ(x1, . . . , xn) can be uniquely expressed in the basis of the usual Schur polyno-
mials sν(x1, . . . , xk). The next theorem links this expression to the Gromov-Witten
invariants Cλ,d

µν which give the quantum product (5) of Schubert classes.

THEOREM 5.3
For two partitions λ, µ ∈ Pkn and a nonnegative integer d , we have

sλ/d/µ(x1, . . . , xk) =
∑

ν∈Pkn

Cλ,d
µν sν(x1, . . . , xk).
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Proof
By the quantum Giambelli formula (7), we have

σµ ∗ σν =

∑
w∈Sk

(−1)sign(w) σµ ∗ hν1+w1−1 ∗ hν2+w2−2 ∗ · · · ∗ hνk+wk−k,

where the sum is over all permutations w = (w1, . . . , wk) in Sk . Each of the sum-
mands in the right-hand side is given by Corollary 4.2. Extracting the coefficients of
qdσλ from both sides, we get

Cλ,d
µν =

∑
w∈Sk

(−1)sign(w) K ν+w(ρ)−ρ
λ/d/µ ,

where ν + w(ρ) − ρ = (ν1 + w1 − 1, . . . , νk + wk − k). Let us define the operator
Aν which acts on polynomials f ∈ Z[x1, . . . , xk] as

Aν( f ) =
∑
w∈Sk

(−1)sign(w)
[coefficient of xν+w(ρ)−ρ

]( f ).

Then the previous expression can be written as

Cλ,d
µν = Aν

(
sλ/d/µ(x1, . . . , xk)

)
. (10)

We claim that Aν(sλ(x1, . . . , xk)) = δλν . Of course, this is a well-known identity.
This is also a special case of (10) for µ = ∅ and d = 0. Indeed, Cλ,0

∅ ν = cλ
∅ ν = δλν

because the Schubert class σ∅ is the identity element in QH∗(Grkn). Thus Aν( f ) is the
coefficient of sν in the expansion of f in the basis of Schur polynomials. According
to (10), the Gromov-Witten invariant Cλ,d

µν is the coefficient of sν in the expansion of
sλ/d/µ, as needed.

Let us reformulate our main theorem as follows.

COROLLARY 5.4
For two partitions λ, µ ∈ Pkn and a nonnegative integer d , we have

sµ∨/d/λ(x1, . . . , xk) =
∑

ν∈Pkn

Cν,d
λµ sν∨(x1, . . . , xk).

In other words, the coefficient of qd σν in the expansion of the quantum product σλ∗σµ

is exactly the same as the coefficient of sν∨ in the Schur expansion of the toric Schur
polynomial sµ∨/d/λ. In particular, σλ ∗ σµ contains nonzero terms of the form qdσν

if and only if the toric Schur polynomial sµ∨/d/λ is nonzero, that is, if and only if
µ∨/d/λ forms a valid toric shape.
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Proof
The first claim is equivalent to Theorem 5.3. Indeed, using the S3-symmetry of the
Gromov-Witten invariants, we obtain Cν,d

λµ = Cd
λµν∨ = Cµ∨,d

λν∨ . The second claim
follows from Lemma 5.2.

This statement means that the image of the toric Schur polynomial sµ∨/d/λ in the co-
homology ring H∗(Grkn) under the natural projection (see (3)) is equal to the Poincaré
dual of the coefficient of qd in the quantum product σλ ∗ σµ of two Schubert classes.
In other words, the coefficient of qd in σλ ∗ σµ is associated with the toric shape
µ∨/d/λ in the same sense that the usual product σλ · σµ is associated with the skew
shape µ∨/λ, (see (4)).

Theorem 5.3 implies that all toric Schur polynomials sλ/d/µ(x1, . . . , xk) are
Schur-positive; that is, they are positive linear combinations of the usual Schur poly-
nomials. Indeed, the coefficients are the Gromov-Witten invariants, which are positive
according to their geometric definition. Note, however, that cylindric Schur functions
sλ/d/µ(x) (in infinitely many variables) may not be Schur-positive. For example, for
k = 1 and n = 3, we have

s∅/1/∅(x) =
∑

a≤b≤c, a<c

xa xbxc = s21(x)− s13(x).

Krattenthaler remarked that [GK, Prop. 1] implies the following dual Jacobi-
Trudy formula for the cylindric Schur functions:

sλ/d/µ(x) =
∑

l1+···+ln−k=0

det
1≤i, j≤n−k

(
eλ[d]′i−i−µ′j+ j+n li (x)

)
, (11)

where em(x) denotes the mth elementary symmetric function, and the sequence
λ[d]′ = (. . . , α−1, α0, α1, . . . ) is given by
(a) αi+d = λ′i + d for i = 1, . . . , n − k, and
(b) αi = αi+n−k + k for any i ∈ Z (cf. Sec. 3).
This formula is based on an interpretation of cylindric tableaux in terms of families of
nonintersecting lattice paths (see [GK]). For example, for k = 1 and n = 3, we have

s∅/1/∅(x) =
∑

l1+l2=0

∥∥∥∥∥e2+3l1 e3l2

e3+3l1 e1+3l2

∥∥∥∥∥ = e2 e1 − e0 e3 − e3 e0.

6. Symmetries of Gromov-Witten invariants
In this section we show that the Gromov-Witten invariants are symmetric with respect
to certain actions of the groups S3, (Z/nZ)2, and Z/2Z on triples (λ, µ, ν). While
the S3-symmetry is trivial and the cyclic symmetry has already appeared in several



AFFINE APPROACH TO QUANTUM SCHUBERT CALCULUS 489

papers, the (Z/2Z)-symmetry seems to be the most intriguing. We call it the curious
duality.

In this section it is convenient to use the following notation for the Gromov-Witten
invariants:

Cλµν(q) := qd Cd
λµν = qd Cν∨,d

λµ .

Recall that d can be expressed as d = (|λ| + |µ| + |ν| − k(n − k))/n. Also, let

QH∗
〈q〉(Grkn) = QH∗(Grkn)⊗Z[q] Z[q, q−1

].

6.1. S3-symmetry
The invariants Cλµν(q) are symmetric with respect to the six permutations of λ, µ,
and ν. This is immediately clear from their geometric definition. We have already
mentioned and used this symmetry on several occasions.

6.2. Cyclic “hidden” symmetry
Let us define the cyclic shift operation S on the set Pkn of partitions, as follows.
Let λ ∈ Pkn be a partition with the 01-word ω(λ) = (ω1, . . . , ωn) (see Sec. 2).
Its cyclic shift S(λ) is the partition λ̃ ∈ Pkn whose 01-word ω(λ̃) is equal to
(ω2, ω3, . . . , ωn, ω1). Also, for the same λ, let φi = φi (λ), i ∈ Z, be the sequence
such that φi = ω1 + · · · + ωi for i = 1, . . . , n, and φi+n = φi + k for any i ∈ Z.

PROPOSITION 6.1
For three partitions λ, µ, ν ∈ Pkn and three integers a, b, c with a + b + c = 0, we
have

CSa(λ) Sb(µ) Sc(ν)(q) = qφa(λ)+φb(µ)+φc(ν) Cλµν(q).

This symmetry was noticed by several people. The first place where it appeared in
print is Seidel’s paper [S]. Agnihotri and Woodward in [AW, Prop. 7.2] explained
the symmetry using the Verlinde algebra. In [P2] we gave a similar property of the
quantum cohomology of the complete flag manifold. We call this property the hidden
symmetry because it cannot be detected in full generality on the level of the classi-
cal cohomology. It comes from symmetries of the extended Dynkin diagram of type
An−1, which is an n-circle. This symmetry is especially transparent in the language
of toric shapes.

Proof
It is clear from the definition that toric shapes possess cyclic symmetry. More pre-
cisely, for a shape κ = λ/d/µ, the shape S(κ) = S(λ)/d̃/S(µ), where d̃ − d =
ω1(µ) − ω1(λ), is obtained by rotation of κ . Thus their toric Schur polynomials are
the same: sκ = sS(κ). This fact, empowered by Theorem 5.3, proves the proposition
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for (a, b, c) = (0, 1,−1). The general case follows by induction from this claim and
the S3-symmetry.

COROLLARY 6.2
For any λ, µ ∈ Pkn , and a ∈ Z, we have

σSa(λ) ∗ σS−a(µ) = qφa(λ)+φ−a(µ) σλ ∗ σµ

in the ring QH∗
〈q〉(Grkn).

The cyclic shift operation λ 7→ S(λ) can be described in terms of the action of the
following two Schubert classes: E = ek = σ1k and H = hn−k = σn−k . The following
claim easily follows from the quantum Pieri formula (Prop. 4.1).

PROPOSITION 6.3
For λ ∈ Pkn , we have

E ∗ σλ = qωn(λ)σS−1(λ) and H ∗ σλ = q1−ω1(λ)σS(λ)

in the quantum cohomology ring. In particular, we have En
= qk , Hn

= qn−k ,
E ∗ H = q in the quantum cohomology. The class En−k

= H k
= σ(n−k)k is the

fundamental class of a point.

The powers of E and H involve all Schubert classes σλ with rectangular shapes λ

that have k rows or n − k columns. We have E j
= σ( j)k for j = 0, 1, . . . , n − k,

and we have En−k+i
= q i σ(n−k)k−i for i = 0, 1, . . . , k. Also, H i

= σ(n−k)i for
i = 0, 1, . . . , k, and H k+ j

= q j σ(n−k− j)k for j = 0, 1, . . . , n − k.

6.3. Curious duality
The quantum product has the following symmetry related to the Poincaré duality:
σλ 7→ σλ∨ .

THEOREM 6.4
For three partitions λ, µ, ν ∈ Pkn and three integers a, b, c with a + b + c = n − k,
we have

Cλ∨ µ∨ ν∨(q) = qφa(λ)+φb(µ)+φc(ν) CSa(λ) Sb(µ) Sc(ν)(q
−1).

Before we prove this theorem, let us reformulate it in algebraic terms. Let D be the
Z-linear involution on the space QH∗

〈q〉(Grkn) given by

D : qd σλ 7−→ q−d σλ∨ .
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Notice that D(1) = σ(n−k)k is the fundamental class of a point. It is an invertible
element in the ring QH∗

〈q〉(Grkn). By Proposition 6.3, we have D(1) = H k and(
D(1)

)−1
= qk−n Hn−k .

Let us define another map D̃ : QH∗
〈q〉(Grkn)→ QH∗

〈q〉(Grkn) as the normalization of
D given by

D̃( f ) = D( f ) ∗
(
D(1)

)−1
.

According to Proposition 6.3, the map D̃ is explicitly given by

D̃ : qd σλ 7−→ q−d−diag0(λ) σSn−k(λ∨),

where diag0(λ) = φn−k(λ
∨) = k − φk(λ) is the size of the 0th diagonal of the Young

diagram of λ.

THEOREM 6.5
The map D̃ is a homomorphism of the ring QH∗

〈q〉(Grkn). The map D̃ is also an invo-

lution. It inverts the quantum parameter: D̃(q) = q−1.

For q = 1, the involution D̃ was independently discovered from a different point of
view by Hengelbrock [H]. He showed that it comes from complex conjugation of the
points in Spec R, where R = QH∗(Grkn)/ 〈q − 1〉.

The claim that D̃ is an involution of QH∗
〈q〉(Grkn) implies that the map λ 7→ λ̃ =

Sn−k(λ∨) is an involution on partitions in Pkn and diag0(λ) = diag0(λ̃). It is easy to
see this combinatorially. Indeed, if the 01-word of λ is ω(λ) = (ω1, . . . , ωn), then
the 01-word of λ̃ is ω(λ̃) = (ωk, ωk−1, . . . , ω1, ωn, ωn−1, . . . , ωk+1) and diag0(λ) =

diag0(λ̃) = ωk+1 + · · · + ωn .
Theorem 6.5 is equivalent to the following property of the involution D.

PROPOSITION 6.6
We have the identity

D( f ∗ g) ∗ D(h) = D( f ) ∗ D(g ∗ h)

for any f, g, h ∈ QH∗
〈q〉(Grkn).

We need the following lemma.

LEMMA 6.7
For any f ∈ QH∗

〈q〉(Grkn) and any i = 0, . . . , k, we have

D( f ∗ ei ) = q−1 D( f ) ∗ hn−k ∗ ek−i . (12)
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Here we assume that e0 = 1.

Proof
Since D(qk f ) = q−k D( f ), it is enough to prove the lemma for a Schubert class
f = σλ. According to the quantum Pieri formula (Prop. 4.1), σλ ∗ ei is given by the
sum over all possible ways to add a vertical i-strip to the cylindric loop λ[0]. Thus
D(σλ ∗ ei ) is given by the sum over all possible ways to remove a vertical i-strip from
λ∨[0]. In other words, we have

D(σλ ∗ ei ) =
∑

q−d σµ,

where the sum is over µ ∈ Pkn and d such that λ∨/d/µ is a vertical i-strip. By
Proposition 6.3, the right-hand side of (12) is equal to

q−1 σλ∨ ∗ hn−k ∗ ek−i = q−ω1(λ
∨) σS(λ∨) ∗ ek−i .

We obtain exactly the same expressions in both cases. Indeed, removing a vertical
i-strip from a cylindric shape means exactly the same as cyclically shifting the shape
and then adding a vertical (k − i)-strip. By looking at the formula for a minute, we
also see that the powers of q in both cases are equal to each other.

Proof of Proposition 6.6
Again, since multiplying g by a power of q does not change the formula, it is enough
to verify the statement when g belongs to some set that spans the algebra QH∗

〈q〉(Grkn)

over Z[q, q−1
]. Let us prove the statement when g = ei1 ∗ ei2 ∗ · · · ∗ eil . If l = 1, then

by Lemma 6.7, we have

D( f ∗ ei ) ∗ D(h) = q−1 hn−k ∗ ek−1 ∗ D( f ) ∗ D(h) = D( f ) ∗ D(ei ∗ h).

The general case follows from this case. We just need to move the l factors ei1, . . . , eil
one by one from the first D to the second D.

Proof of Theorem 6.5
Proposition 6.6 with h = 1 says that D( f ∗ g)∗D(1) = D( f )∗D(g). It is equivalent
to saying that the normalization D̃ is a homomorphism. We already proved com-
binatorially that D̃ is an involution. Let us also deduce this fact algebraically from
Proposition 6.6:

D̃
(
D̃( f )

)
=

D(D( f )/D(1)) ∗ D(D(1))

D(1)
=

D(D( f )) ∗ D(D(1)/D(1))

D(1)
= f.

The fact that D̃(q) = q−1 is clear from the definition.
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COROLLARY 6.8
The coefficient of qd σν∨ in the quantum product σλ∨ ∗ σµ∨ is equal to the coefficient
of qdiag0(ν)−d σSk(ν) in the quantum product σλ ∗ σµ.

Proof
By setting f = σλ∨ , g = σµ∨ , and h = 1 in Proposition 6.6, we obtain

D(σλ∨ ∗ σµ∨) ∗ D(1) = σλ ∗ σµ.

Since D(1) = σ(n−k)k is the fundamental class of a point, we get, by Proposition 6.3,

D(qd
∗ σν∨) ∗ D(1) = q−d

∗ σν ∗ σ(n−k)k = q−d H k
∗ σν = qdiag0(ν)−d σSk(ν).

Here we used the fact that diag0(ν) = k − φk(ν).

We can now prove the first claim of this subsection.

Proof of Theorem 6.4
Corollary 6.8 is equivalent to the special case of Theorem 6.4 for a = b = 0 and
c = n − k. The general case follows by Proposition 6.1.

The statement of Corollary 6.8 means that the terms in the expansion of the quantum
product σλ ∗ σµ are in one-to-one correspondence with the terms in the expansion
of the quantum product σλ∨ ∗ σµ∨ so that the coefficients of corresponding terms
are equal to each other. Notice that terms with low powers of q correspond to terms
with high powers of q and vice versa. This property seems mysterious from the point
of view of quantum cohomology. Why should the number of some rational curves
of high degree be equal to the number of some rational curves of low degree? This
curious duality is also “hidden” on the classical level. For example, if |λ| + |µ| is
sufficiently small, then the product σλ ·σµ is always nonzero and the product σλ∨ ·σµ∨

always vanishes in the classical cohomology ring H∗(Grkn).
Let us reformulate this duality in terms of toric Schur polynomials. For a toric

shape κ = λ[r ]/µ[s], let us define the complement toric shape as

κ∨ = µ↓[s↓]/λ[r ],

where the transformation µ[s] 7→ µ↓[s↓] is the same as in Lemma 3.4.
This definition has the following simple geometric meaning. The image of the

diagram of shape κ∨ in the torus Tkn is the complement to the image of the diagram
of shape κ (see Fig. 6). If κ = λ/d/µ, then κ∨ is obtained by a shift of the toric shape
µ↓/d ′/λ, where µ↓ = Sk(µ) and d ′ = diag0(µ)−d = φn−k(µ

∨)−d . Thus the toric
Schur polynomial s(λ/d/µ)∨ is equal to sµ↓/d ′/λ.
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COROLLARY 6.9
For any toric shape κ , the coefficients in the Schur expansion of the toric Schur poly-
nomial sκ correspond to the coefficients in the Schur expansion of the toric Schur
polynomial sκ∨ as follows:

sκ =

∑
ν∈Pkn

aν sν has the same coefficients aν as in sκ∨ =

∑
ν∈Pkn

aν sν∨ .

k

n − k

κ

k

n − k

κ
∨

Figure 6. The complement toric shape

Proof
Suppose that κ = λ/d/µ. By Theorem 5.3, the coefficient of sν in the Schur expan-
sion of sκ is equal to Cλ,d

µν = Cd
µνλ∨ . On the other hand, the coefficient of sν∨ in the

Schur expansion of sκ∨ = sµ↓/d ′/λ is equal to

Cµ↓,d ′

λ ν∨ = Cd ′
λ ν∨Sn−k(µ∨)

.

The equality of these two coefficients is a special case of Theorem 6.4.

6.4. Essential interval
In many cases the hidden symmetry and the curious duality imply that a Gromov-
Witten invariant vanishes. In some cases these symmetries allow us to reduce a
Gromov-Witten invariant to a certain Littlewood-Richardson coefficient. For three
partitions λ, µ, ν ∈ Pkn , let us define three numbers

dmin(λ, µ, ν) = − min
a+b+c=0

(
φa(λ)+ φb(µ)+ φc(ν)

)
,

dmax(λ, µ, ν) = − max
a+b+c=k−n

(
φa(λ)+ φb(µ)+ φc(ν)

)
,

d(λ, µ, ν) =
|λ| + |µ| + |ν| − k(n − k)

n
,

where in the first and second cases the maximum and minimum are taken over all
triples of integers a, b, and c which satisfy the given condition.
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Let us say that the integer interval [dmin(λ, µ, ν), dmax(λ, µ, ν)] ⊂ Z is the es-
sential interval for the triple of partitions λ, µ, ν ∈ Pkn .

PROPOSITION 6.10
Let λ, µ, ν ∈ Pkn be three partitions, and let dmin = dmin(λ, µ, ν), dmax =

dmax(λ, µ, ν). Then the Gromov-Witten invariant Cd
λµν is equal to zero unless d =

d(λ, µ, ν) and dmin ≤ d ≤ dmax. If d = dmin and (a, b, c) is a triple such that
a + b + c = 0 and d = −(φa(λ)+ φb(µ)+ φc(ν)), then

Cdmin
λµν = cSa(λ)Sb(µ)Sc(ν).

Similarly, if d = dmax and (a, b, c) is a triple such that a + b + c = k − n and
d = −(φa(λ)+ φb(µ)+ φc(ν)), then

Cdmax
λµν = cS−a(λ∨)S−b(µ∨)S−c(ν∨).

Proof
The claim that Cd

λµν = 0 unless d = d(λ, µ, ν) follows directly from the definition

of the Gromov-Witten invariants. Proposition 6.1 says that Cd
λµν = C d̃

Sa(λ)Sb(µ)Sc(ν)
,

where d̃ = d + φa(λ) + φb(µ) + φc(ν). The Gromov-Witten invariant in the right-
hand side vanishes if d̃ < 0, and it is a Littlewood-Richardson coefficient if d̃ = 0.
This proves that Cd

λµν = 0 for d < dmin and that Cdmin
λµν is a Littlewood-Richardson

coefficient. Similarly, the statement that Cd
λµν = 0 for d > dmax and Cdmax

λµν is a
Littlewood-Richardson coefficient is a consequence of Theorem 6.4.

7. Powers of q in the quantum product of Schubert classes
In this section we discuss the following problem: What is the set of all powers qd

which appear with nonzero coefficients in the Schubert-expansion of a given quantum
product σλ ∗ σµ? The lowest such power of q was established in [FW]. Some bounds
for the highest power of q were found in [Y]. In this section we present a simple
answer to this problem. We thank here Anders Buch, who remarked that our main
theorem resolves this problem and made several helpful suggestions.

We have already formulated the answer to this problem in Corollary 5.4. The
quantum product σλ ∗ σµ contains nonzero terms with given power qd if and only if
µ∨/d/λ forms a valid toric shape.

Let Dmin be the minimal d such that µ∨/d/λ forms a valid toric shape, and
let Dmax be the maximal such d . Graphically, this means that the loop µ∨[Dmin]

drawn on the torus Tkn touches (but does not cross) the southeast side of the toric
loop λ[0]. Similarly, the toric loop µ∨[Dmax] touches the northwest side of the toric
loop λ[0]. Figure 7 gives an example for k = 6, n = 16, λ = (9, 6, 6, 4, 3, 0), and
µ∨ = (6, 4, 3, 2, 2, 1). We have Dmin = 2 and Dmax = 3.
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k

n − k

Dmin = 2

k

n − k

Dmax = 3

Figure 7. The lowest power Dmin and the highest power Dmax

Let us give an explicit expression for the numbers Dmin and Dmax. Recall that,
for λ ∈ Pkn with 01-word ω(λ) = (ω1, . . . , ωn), the sequence φi (λ), i ∈ Z, is defined
by φi (λ) = ω1 + · · · + ωi for i = 1, . . . , n and φn+i (λ) = φi (λ) + k for any i ∈ Z
(see Sec. 6). For any λ, µ ∈ Pkn , define two integers Dmin(λ, µ) and Dmax(λ, µ) by

Dmin(λ, µ) = − min
i+ j=0

(
φi (λ)+ φ j (µ)

)
,

Dmax(λ, µ) = − max
i+ j=k−n

(
φi (λ)+ φ j (µ)

)
,

where in both cases the maximum or minimum is taken over all integers i and j which
satisfy the given condition (cf. Sec. 6.4).

THEOREM 7.1
For any pair λ, µ ∈ Pkn , we have Dmin(λ, µ) ≤ Dmax(λ, µ), and the set of all d’s
such that the power qd appears in σλ ∗ σµ with nonzero coefficient is exactly the
integer interval Dmin(λ, µ) ≤ d ≤ Dmax(λ, µ). In particular, the quantum product
σλ ∗ σµ is always nonzero.

The claim about the lowest power of q with nonzero coefficient is due to Fulton and
Woodward [FW]. Some bounds for the highest power of q were given by Yong in [Y].
He also formulated a conjecture that the powers of q which appear in the expansion
of the quantum product σλ ∗ σµ form an interval of consecutive integers.

Proof
Let us first verify that Dmin(λ, µ) ≤ Dmax(λ, µ). We need to check that, for any
integers i and j , we have−φi (λ)−φ−i (µ) ≤ −φ j (λ)−φ− j+k−n(µ) or, equivalently,
φ j (λ)−φi (λ) ≤ φ−i (µ)−φ− j+k−n(µ) = φ−i (µ)−φ− j+k(µ)+ k. We may assume
that j ∈ [i, i+n[ because the function φ j satisfies the condition φ j+n = φ j+k. Then
we have φ j (λ)− φi (λ) ≤ min( j − i, k). Indeed, φ j (λ)− φi (λ) ≤ φi+n − φi = k and
φ j (λ) − φi (λ) ≤ j − i because φs+1 − φs ∈ {0, 1} for any s. On the other hand, we
have φ−i (µ)− φ− j+k(µ)+ k ≥ min( j − i, k) or, equivalently, φk− j (µ)− φ−i (µ) ≤
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max(i+k− j, 0). Indeed, if k− j ≤ −i , then the left-hand side is nonpositive and the
right-hand side is zero; otherwise, φk− j (µ)− φ−i (µ) ≤ (k − j)− (−i) = i + k − j .
This proves the required inequality.

Let us now show that the values of d for which qd occurs with nonzero coefficient
in σλ ∗ σµ form the interval [Dmin(λ, µ), Dmax(λ, µ)]. According to Corollary 5.4,
the power qd appears in the quantum product σλ ∗ σµ whenever µ∨/d/λ is a valid
toric shape. This is true if and only if the following two conditions are satisfied:
(a) µ∨[d] ≥ λ[0]; that is, µ∨[d]i ≥ λ[0]i for all i ; and
(b) λ↓[0↓] ≥ µ∨[d], where λ↓[0↓] = Sk(λ)[diag0(λ)] (cf. Lem. 3.4).
The first condition (a) can be written as φi (λ)−φi (µ

∨)+d = φi (λ)+φ−i (µ)+d ≥ 0
for all i . It is equivalent to the inequality d ≥ Dmin(λ, µ). The second condition (b)
can be written as φi (µ

∨)−φi (λ
↓)+ 0↓− d = −φ−i (µ)− (φi+k(λ)−φk(λ))+ (k−

φk(λ))−d = −φi+k−n(λ)−φ−i (µ)−d ≥ 0 for all i . It is equivalent to the inequality
d ≤ Dmax(λ, µ).

The number Dmin was defined in [FW] in terms of overlapping diagonals in two
Young diagrams. We have Dmin(λ, µ) = maxi=−k,...,n−k(diagi (λ) − diagi (µ

∨)),
where diagi (λ) is the number of elements in the i th diagonal of shape λ. We also
have Dmax(λ, µ) = diag0(λ) − maxi=−k,...,n−k

(
diagi (µ

∨) − diagi (Sk(λ))
)
. These

expressions are equivalent to the definition of Dmin and Dmax in terms of the func-
tion φi , due to the following identities, which we leave as an exercise for the reader:
diagi−k(λ) − diagi−k(µ

∨) = φi (µ
∨) − φi (λ), diag0(λ) = k − φk(λ), φi (µ

∨) =

−φ−i (µ), and φi (Sk(λ)) = φi+k(λ)− φk(λ).
Recall that in Section 6.4, for a triple of partitions λ, µ, ν ∈ Pkn , we defined the

essential interval [dmin, dmax].

COROLLARY 7.2
For a pair of partitions λ, µ ∈ Pkn , we have

[Dmin(λ, µ), Dmax(λ, µ)] =
⋃

ν∈Pkn

[dmin(λ, µ, ν), dmax(λ, µ, ν)].

Proof
It is clear from the definitions that, for any λ, µ, ν,

[dmin(λ, µ, ν), dmax(λ, µ, ν)] ⊆ [Dmin(λ, µ), Dmax(λ, µ)].

Thus the right-hand side of the formula in Corollary 7.2 is contained in the left-hand
side. On the other hand, by Proposition 6.10, the right-hand side contains the set of
all d’s such that qd appears in σλ ∗ σµ, which is equal to the left-hand side of the
expression, by Theorem 7.1.
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Let us show that the curious duality flips the interval [Dmin, Dmax]. Indeed, it follows
from Theorem 6.4 that

Cν,d
λµ = Cν∨, diag0(λ)−d

Sn−k(λ∨) µ∨
.

In other words, the coefficient of qd σν in the quantum product σλ ∗ σµ is exactly the
same as the coefficient of qdiag0(λ)−d σν∨ in the quantum product σSn−k(λ∨)∗σµ∨ . This
means that the set of all powers of q which occur in σλ ∗σµ is obtained from the set of
all powers of q which occur in σSn−k(λ∨)∗σµ∨ by the transformation d 7→ diag0(λ)−d .
In particular, we obtain the following statement.

COROLLARY 7.3
For any λ, µ ∈ Pkn , we have

Dmin(λ, µ) = diag0(λ)− Dmax
(
Sn−k(λ∨), µ∨

)
,

Dmax(λ, µ) = diag0(λ)− Dmin
(
Sn−k(λ∨), µ∨

)
.

Recall that the map λ 7→ λ̃ = Sn−k(λ∨) is an involution on Pkn such that diag0(λ) =

diag0(λ̃) (see the second paragraph after Th. 6.5).
The lowest Dmin and the highest Dmax powers of q in the quantum product σλ∗σµ

can be easily recovered from the hidden symmetry and the curious duality of the
Gromov-Witten invariants. Moreover, the Gromov-Witten invariants Cν,d

λµ in the case
when d = Dmin or d = Dmax are equal to certain Littlewood-Richardson coefficients.

COROLLARY 7.4
Let λ, µ, ν ∈ Pkn . Let Dmin = Dmin(λ, µ) and Dmax = Dmax(λ, µ). By the definition,
there are integers a and b such that Dmin+φa(λ)+φ−a(µ) = 0 and Dmax+φ−b(λ)+

φb+k−n(µ) = 0. For such a and b, we have

Cν, Dmin
λµ = cν

Sa(λ) S−a(µ) and Cν, Dmax
λµ = cν∨

Sb(λ∨) Sn−k−b(µ∨)
.

Proof
If Dmin(λ, µ) = dmin(λ, µ, ν), then the statement about Cν, Dmin

λµ is a special case of
Proposition 6.10. If Dmin(λ, µ) < dmin(λ, µ, ν), then, by the same proposition, both
sides are equal to zero. Similarly, the statement about Cν, Dmax

λµ follows from Proposi-
tion 6.10.

This statement means that, for a toric shape κ = µ∨/d/λ with d = Dmin, there always
exists a cyclic shift Sa(κ) which is equal to the skew shape Sa(κ) = Sa(µ∨)/0/Sa(λ)

(cf. Fig. 7). If d = Dmax, then the same is true for the complement toric shape κ∨.
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8. Affine nil-Temperley-Lieb algebra
In this section we discuss the affine nil-Temperley-Lieb algebra and its action on the
quantum cohomology QH∗(Grkn). This section justifies the word “affine” that appears
in the title of this paper. The affine nil-Temperley-Lieb algebra presents a model for
the quantum cohomology of the Grassmannian.

For n ≥ 2, let us define the affine nil-Temperley-Lieb algebra AnTLn as the
associative algebra with 1 over Z with generators ai , i ∈ Z/nZ, and the following
defining relations:

ai ai = ai ai+1 ai = ai+1 ai ai+1 = 0, ai a j = a j ai if i − j 6≡ ±1. (13)

The subalgebra of AnTLn generated by a1, . . . , an−1 is called the nil-Temperley-Lieb
algebra. Its dimension is equal to the nth Catalan number. According to Fomin and
Green [FG], this algebra can also be defined as the algebra of operators acting on the
space of formal combinations of Young diagrams by adding boxes to diagonals. In the
next paragraph we extend this action to the affine nil-Temperley-Lieb algebra.

Recall that ω(λ) = (ω1, . . . , ωn) denotes the 01-word of a partition λ ∈ Pkn

(see Sec. 2). Let us define λ(ω) ∈ Pkn as the partition with ω(λ) = ω. Let εi be the
i th coordinate n-vector, and let εi j = εi − ε j . For i, j ∈ {1, . . . , n}, we define the
Z[q]-linear operator Ei j on the space QH∗(Grkn) given in the basis of Schubert cells
by

Ei j : σλ(ω) 7−→

{
σλ(ω−εi j ) if ω − εi j is a 01-word,

0 otherwise,

where ω − εi j means the coordinatewise difference of two n-vectors. We define the
action of the generators a1, . . . , an of the affine nil-Temperley-Lieb algebra AnTLn

on the quantum cohomology QH∗(Grkn) using operators Ei j as follows:

ai = Ei i+1 for i = 1, . . . , n − 1, and an = q · En1.

It is an easy exercise to check that these operators satisfy relations (13).
This action can also be interpreted in terms of Young diagrams that fit inside the

(k × (n − k))-rectangle. For i = 1, . . . , n − 1, we have ai (σλ) = σµ if the shape µ is
obtained by adding a box to the (i−k)th diagonal of the shape λ, or ai (σλ) = 0 if it is
not possible to add such a box. Also, an(σλ) = q · σµ if the shape µ is obtained from
the shape λ by removing a rim hook of size n−1, or an(σλ) = 0 if it is not possible to
remove such a rim hook. Notice that the partition µ ∈ Pkn is obtained from λ ∈ Pkn

by removing a rim hook of size n − 1 if and only if the order ideal Dµ[r+1] in the
cylinder Ckn is obtained from Dλ[r ] by adding a box to the (n − k)th diagonal. Thus
the generators ai , i = 1, . . . , n, of the affine nil-Temperley-Lieb algebra naturally act
on order ideals in Ckn by adding boxes to (i − k)th diagonals.
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Let us say a few words about a relation between the affine nil-Temperley-Lieb
algebra AnTLn and the affine Lie algebra ŝln (without central extension). The vector
space H∗(Grkn)⊗C can be regarded as the kth fundamental representation 8k of the
Lie algebra sln . A Schubert class σλ(ω) corresponds to the weight vector of weight
ω. These are exactly the weights obtained by conjugations of the kth fundamental
weight. The generator ei of sln acts on H∗(Grkn) as the operator ai above by adding a
box to the (i − k)th diagonal of the shape λ. (The generators ei of sln should not be
confused with elementary symmetric functions.) The generator fi acts as the adjoint
to the operator ei by removing a box from the (i − k)th diagonal. Recall that every
representation 0 of sln gives rise to the evaluation module 0(q), which is a represen-
tation of the affine Lie algebra ŝln (see [K]). Then the space QH∗(Grkn)⊗C[q, q−1

]

can be regarded as the evaluation module 8k(q) of the k-fundamental representation:

QH∗(Grkn)⊗ C[q, q−1
] ' 8k(q).

This equality is just a formal identification of two linear spaces over C[q, q−1
] given

by mapping a Schubert class to the corresponding weight vector in 8k(q). This
C[q, q−1

]-linear action of ŝln on QH∗(Grkn)⊗ C[q, q−1
] is explicitly given by

ei = Ei i+1, i = 1, . . . , n − 1, and en = q · En1,

fi = Ei+1 i , i = 1, . . . , n − 1, and fn = q−1
· E1n,

hi : σλ 7→
(
ωi (λ)− ωi+1(λ)

)
σλ for i = 1, . . . , n,

where we assume that ωn+1(λ) = ω1(λ).
Let n be the subalgebra of the affine algebra ŝln generated by e1, . . . , en . The

affine nil-Temperley-Lieb algebra (with complex coefficients) is exactly the following
quotient of the universal enveloping algebra U (n) of n:

AnTLn ⊗ C ' U (n)/〈(ei )
2
| i = 1, . . . , n〉.

Indeed, Serre’s relations modulo the ideal 〈(ei )
2
〉 degenerate to the defining rela-

tions (13) of AnTLn . Notice that the squares of the generators (ei )
2 and ( fi )

2 vanish
in all fundamental representations 8k and in their evaluation modules 8k(q). The ac-
tion of the affine nil-Temperley-Lieb algebra AnTLn on QH∗(Grkn) described above
in this section is exactly the action deduced from the evaluation module 8k(q).

Let us show how the affine nil-Temperley-Lieb algebra AnTLn is related to cylin-
dric shapes. Let κ be a cylindric shape of type (k, n) for some k. Let us pick any cylin-
dric tableau T of shape κ and standard weight β = (1, . . . , 1). For i = 1, . . . , |κ|,
let di be k plus the index of the diagonal that contains the entry i in the tableau T .
Let us define aκ = ad1 · · · ad|κ| . The monomials for different tableaux of the same
shape can be related by the commuting relations ai · a j = a j · ai . Thus the monomial
aκ does not depend on the choice of tableau. For two cylindric shapes κ and κ̃ of
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types (k, n) and (k̃, n), let us write κ ∼ κ̃ whenever aκ = aκ̃ . Clearly, aκ does not
change if we shift the shape κ in the southeast direction. Thus κ ∼ κ̃ for any κ̃ ob-
tained from κ by such a shift. Moreover, if the diagram Dκ of κ has several connected
components, then we can shift each connected component independently. These shifts
of connected components generate the equivalence relation “∼”. Any nonvanishing
monomial in AnTLn is equal to aκ for some κ . Thus the map κ 7→ aκ gives a one-
to-one correspondence between cylindric shapes (modulo the “∼”-equivalence) and
nonvanishing monomials in the algebra AnTLn .

For any µ ∈ Pkn and a cylindric shape κ , there is at most one cylindric loop λ[d]
of type (k, n) such that λ/d/µ ∼ κ . The action of a monomial aκ on QH∗(Grkn) is
given by

aκ : σµ 7−→

{
qd σλ if λ/d/µ ∼ κ,

0 if there are no such λ and d .
(14)

So far in this section we have treated the quantum cohomology QH∗(Grkn) as a
linear space. Let us now show that the action of the affine nil-Temperley-Lieb algebra
AnTLn is helpful for describing the multiplicative structure of QH∗(Grkn).

Let us define the elements e1, . . . , en−1 and h1, . . . , hn−1 in the algebra AnTLn ,
as follows. For a proper subset I in Z/nZ, let

∏�
i∈I ai ∈ AnTLn be the product of ai ,

i ∈ I , taken in an order such that if i, i+1 ∈ I , then ai+1 goes before ai . This product
is well defined because all such orderings of ai , i ∈ I , are obtained from each other by
switching commuting generators. Also, let

∏	
i∈I ai ∈ AnTLn be the element obtained

by reversing the “cyclic order” of ai ’s in
∏�

i∈I ai . For r = 1, . . . , n − 1, define

er =
∑
|I |=r

�∏
i∈I

ai and hr =
∑
|I |=r

	∏
i∈I

ai ,

where the sum is over all r -element subsets I in Z/nZ. For example,

e1 = h1 = a1 + · · · + an,

e2 = a2 a1 + a3 a2 + · · · + an an−1 + a1 an +

c∑
ai a j ,

h2 = a1 a2 + a2 a3 + · · · + an−1 an + an a1 +

c∑
ai a j ,

where
∑ c ai a j is the sum of products of (unordered) pairs of commuting ai and a j ,

that is, where i and j are not adjacent elements in Z/nZ. In the spirit of [FG], we
can say that the er are elementary symmetric polynomials and the hr are the com-
plete homogeneous symmetric polynomials in noncommutative variables a1, . . . , an .
Notice that the element er (resp., hr ) in AnTLn is the sum of monomials aκ for all
non-“∼”-equivalent cylindric vertical (resp., horizontal) r -strips κ .
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LEMMA 8.1
The elements ei and h j in the algebra AnTLn commute pairwise. For i + j > n, we
have ei · h j = 0. These elements are related by the equation

(
1+

n−1∑
i=1

ei t i
)
·

(
1+

n−1∑
j=1

h j (−t) j
)
= 1+

( n−1∑
k=1

(−1)n−k ek · hn−k

)
tn . (15)

Proof
Let us first show that ei · h j = 0 for i + j > n. Indeed, by the pigeonhole principle,
every monomial in the expansion of ei · h j contains two copies of some generator
as . If there is such a monomial that does not vanish in AnTLn , then it is of the form
aκ and the shape κ contains at least two elements in the (s − k)th diagonal. Thus κ

should contain a (2 × 2)-rectangle. But it is impossible to cover a (2 × 2)-rectangle
by a horizontal and a vertical strip.

Two elements hi and h j commute because the coefficient of a monomial aκ in
hi ·h j is equal to the number of cylindric tableaux of shape κ and weight (i, j), which
is the same as the number of tableaux of weight ( j, i), by Corollary 4.3.

Let us check that the coefficient of t l in the left-hand side of (15) is zero, for
0 < l < n. Indeed, any monomial that occurs in the expansion of ei ·h j , i+ j ≤ n−1,
avoids at least one variable ar . Assume, without loss of generality, that r = n. If
we remove all terms containing an from the left-hand side of (15), we obtain the
expression ((1 + t an−1) · · · (1 + t a1)) · ((1 − t a1) · · · (1 − t an−1)). This equals 1
because (1+ t as)(1− t as) = 1 in AnTLn .

Finally, the relation (15) allows one to express the elements e1, . . . , en−1 in terms
of h1, . . . , hn−1, which shows that the elements ei commute with each other and with
the elements h j .

Recall that the quantum cohomology ring QH∗(Grkn) is the quotient (6) of the poly-
nomial ring over Z[q] in the variables e1, . . . , ek, h1, . . . , hn−k . These generators are
the special Schubert classes ei = σ(1i ) and h j = σ( j). We can reformulate Bertram’s
quantum Pieri formula (see Prop. 4.1) as follows.

COROLLARY 8.2 (Quantum Pieri formula: AnTLn-version)
For any λ ∈ Pkn , the products of the Schubert class σλ in the quantum cohomology
ring QH∗(Grkn) with the generators ei and h j are given by

ei ∗ σλ = ei (σλ) and h j ∗ σλ = h j (σλ),

where i = 1, . . . , k and j = 1, . . . , n − k.
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Indeed, by (14) the operators ei and h j act on QH∗(Grkn) by adding cylindric vertical
i-strips and horizontal j-strips, respectively.

The quantum Giambelli formula (7) implies the following statement.

COROLLARY 8.3
For any λ ∈ Pkn , the element

sλ = det(hλi+ j−i )1≤i, j≤k = det(eλ′i+ j−i )1≤i, j≤n−k ∈ AnTLn

acts on the quantum cohomology QH∗(Grkn) as the operator of quantum multiplica-
tion by the Schubert class σλ.

According to this claim and (14), for κ = ν/d/µ, the coefficient of aκ in sλ is the
Gromov-Witten invariant Cν,d

λµ . Thus, even though the expansion of the determinant
contains negative signs, all negative terms cancel, and sλ always reduces to a positive
expression in AnTLn .

The algebra AnTLn acts on QH∗(Grkn) for all values of k. In order to single out
one particular k, we need to describe certain n − 1 central elements in the algebra
AnTLn . We say that a cylindric shape κ of type (k, n) is a circular ribbon if the dia-
gram of κ contains no (2×2)-rectangle and |κ| = n. Up to the “∼”-equivalence, there
are exactly

(n
k

)
circular ribbons of type (k, n). Let us define the elements z1, . . . , zn−1

in AnTLn as the sums zk =
∑

κ aκ over all
(n

k

)
non-“∼”-equivalent circular ribbons

κ of type (k, n). These elements are also given by

zk = ek · hn−k .

Indeed, a nonvanishing monomial in ek · hn−k should be of the type aκ , where κ

contains no (2×2)-rectangle (cf. proof of Lemma 8.1). Since |κ| = k+(n−k) = n, the
cylindric shape κ should be a circular ribbon. Then each circular ribbon of type (k, n)

uniquely decomposes into a product of two monomials corresponding to a vertical
k-strip and a horizontal (n − k)-strip.

LEMMA 8.4
The elements z1, . . . , zn−1 are central elements in the algebra AnTLn . For k 6= l, we
have zk · zl = 0.

Proof
For any i , both elements zk · ai and ai · zk are given by the sum of monomials aκ over
all cylindric shapes κ , |κ| = n + 1, that have exactly one (2 × 2)-rectangle centered
in the (i − k)th diagonal. Thus zk · ai = ai · zk for any i , which implies that zk is a
central element in AnTLn . The second claim follows from (14).
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Let us define the algebra AnTLkn as

AnTLkn = AnTLn ⊗ Z[q, q−1
]/ 〈z1, . . . , zk−1, zk − q, zk+1, . . . , zn−1〉 .

PROPOSITION 8.5
The ring QH∗

〈q〉(Grkn) = QH∗(Grkn)⊗Z[q]Z[q, q−1
] is isomorphic to the subalgebra

of AnTLkn generated by the elements ei and/or h j . This isomorphism is given by the
Z[q, q−1

]-linear map that sends the generators ei and h j of QH∗
〈q〉 to the elements ei

and h j in AnTLkn , respectively.

Proof
By Corollary 8.2, the algebra AnTLkn acts faithfully on QH∗

〈q〉(Grkn). The only thing
that we need to check is that the elements ei and h j in AnTLkn satisfy the same
relations as the elements ei and h j in the quantum cohomology do (cf. (6)). The
right-hand side of equation (15) becomes 1 + (−1)n−kq tn in the algebra AnTLkn .
It remains to show that ei = h j = 0 in AnTLkn whenever i > k and j > n − k.
By Lemma 8.1, we have ei · hn−k = h j · ek = 0 for i > k and j > n − k. Since
zk = ek · hn−k = q, both elements ek and hn−k are invertible in AnTLkn . Thus
ei = h j = 0, as needed.

Remark 8.6
Fomin and Kirillov [FK] defined a certain quadratic algebra and a set of its pair-
wise commuting elements, called Dunkl elements. According to the quantum Monk’s
formula from [FGP], the multiplication in the quantum cohomology ring QH∗(Fln)
of the complete flag manifold Fln can be written in terms of the Dunkl elements. A
conjecture from [FK], which was proved in [P1], says that these elements generate a
subalgebra isomorphic to QH∗(Fln). This section shows that the affine nil-Temperley-
Lieb algebra AnTLn is, in a sense, a Grassmannian analogue of Fomin-Kirillov’s
quadratic algebra. The pairwise commuting elements ei and h j are analogues of the
Dunkl elements. It would be interesting to extend these two opposite cases to the
quantum cohomology of an arbitrary partial flag manifold.

9. Open questions, conjectures, and final remarks

9.1. Quantum Littlewood-Richardson rule
The problem that still remains open is to give a generalization of the Littlewood-
Richardson rule to the quantum cohomology ring of the Grassmannian. As we have
already mentioned, it is possible to use the quantum Giambelli formula in order to
derive a rule for the Gromov-Witten invariants Cν,d

λµ which involves an alternating
sum (e.g., see [BCF] or Cor. 8.3 in the present paper). The problem is to present a
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subtraction-free rule for the Gromov-Witten invariants. In other words, one would
like to get a combinatorial or algebraic construction for the Gromov-Witten invari-
ants which would imply their nonnegativity. There are several possible approaches
to this problem. Buch, Kresch, and Tamvakis [BKT] showed that the Gromov-Witten
invariants of Grassmannians are equal to some intersection numbers for two-step flag
manifolds, and they conjectured a rule for the latter numbers.

In the next subsection we propose an algebraic approach to this problem via rep-
resentations of symmetric groups.

9.2. Toric Specht modules
For any toric shape κ = λ/d/µ, let us define a representation Sκ of the symmetric
group SN , where N = |κ|, as follows. Let us fix a labeling of the boxes of κ by
numbers 1, . . . , N . Recall that every toric shape has rows and columns (see Sec. 3).
The rows (columns) of κ give a decomposition of {1, . . . , N } into a union of disjoint
subsets. Let Rκ ⊂ SN and Cκ ⊂ SN be the row stabilizer and the column stabilizer,
correspondingly. Let C[SN ] denote the group algebra of the symmetric group SN . The
toric Specht module Sκ is defined as the subspace of C[SN ] given by

Sκ
=

( ∑
u∈Rκ

u
)( ∑

v∈Cκ

(−1)sign(v)v
)
C[SN ].

It is equipped with the action of SN by left multiplications.
If κ is a usual shape λ, then Sλ is known to be an irreducible representation

of SN . The following conjecture proposes how the SN -module Sκ decomposes into
irreducible representations, for an arbitrary toric shape κ .

CONJECTURE 9.1
For a toric shape κ = λ/d/µ, the coefficients of irreducible components in the toric
Specht module Sλ/d/µ are the Gromov-Witten invariants:

Sλ/d/µ
=

⊕
ν∈Pkn

Cλ,d
µν Sν .

Equivalently, the toric Specht module Sλ/d/µ is expressed in terms of the irreducible
modules Sν in exactly the same way that the toric Schur polynomial sλ/d/µ is ex-
pressed in terms of the usual Schur polynomials sν .

This conjecture is true (and well known) for skew shapes (see [JP]). We have
verified this conjecture for several toric shapes. For example, it is easy to prove the
conjecture for k ≤ 2. If the conjecture is true in general, it would provide an algebraic
explanation of nonnegativity of the Gromov-Witten invariants.
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Note that Reiner and Shimozono [RS] have investigated Specht modules for some
class of shapes, called percent-avoiding, which is more general than skew shapes.
However, toric shapes are not percent-avoiding, except for some degenerate cases.

9.3. Representations of GL(k) and crystal bases
According to Theorem 5.3, each toric Schur polynomial sλ/d/µ(x1, . . . , xk) is Schur-
positive. The usual Schur polynomials in k variables are the characters of irreducible
representations of the general linear group GL(k). Thus we obtain the following state-
ment.

COROLLARY 9.2
For any toric shape λ/d/µ, there exists a representation Vλ/d/µ of GL(k) such that
sλ/d/µ(x1, . . . , xk) is the character of Vλ/d/µ.

It would be extremely interesting to present a more explicit construction for this rep-
resentation Vλ/d/µ.

Recall that with every representation of GL(k) it is possible to associate its crys-
tal, which is a certain directed graph with labeled edges (e.g., see [KN]). This graph
encodes the corresponding representation of Uq(glk) modulo 〈q〉. Its vertices corre-
spond to the elements of a certain crystal basis, and the edges describe the action of
generators on the basis elements. It is well known (see [KN]) that crystals are inti-
mately related to the Littlewood-Richardson rule.

The vertices of the crystal for Vλ/d/µ should correspond to the toric tableaux of
shape λ/d/µ. Its edges should connect the vertices in a certain prescribed manner. In
a recent paper [St], Stembridge described simple local conditions that would ensure
that a given graph is a crystal of some representation. Thus, in order to find the crystal
for Vλ/d/µ, it would be enough to present a graph on the set of toric tableaux which
complies with Stembridge’s conditions.

Actually, an explicit construction of the crystal for Vλ/d/µ would immediately
produce the following subtraction-free combinatorial rule for the Gromov-Witten in-
variants: The Gromov-Witten invariant Cλ,d

µν is equal to the number of toric tableaux
T of shape λ/d/µ and weight ν such that there are no directed edges in the crystal
with initial vertex T . The last condition means that the element in the crystal basis
given by T is annihilated by the operators ẽi .

Note that all of the numerous (re)formulations of the Littlewood-Richardson rule
and all explicit constructions of crystals for representations of GL(k) use some kind
of ordering of elements in shapes. The main difficulty with toric shapes is that they
are cyclically ordered and there is no natural way to select a linear order on a cycle.
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9.4. Verlinde algebra and fusion product
Several people have observed that the specialization of the quantum cohomology ring
QH∗(Grkn) at q = 1 is isomorphic to the Verlinde algebra (also known as the fusion
ring) of U(k) at level n − k (see Witten [W] for a physical proof and Agnihotri [A]
for a mathematical proof). This ring is the Grothendieck ring of representations of
U(k) modulo some identifications. A Schubert class σλ corresponds to the irreducible
representation Vλ with highest weight given by the partition λ.

All constructions of this paper for the quantum product make perfect sense for
the Verlinde algebra and its product, called the fusion product. Our curious duality
might have a natural explanation in terms of the Verlinde algebra.

9.5. Geometrical interpretation
The relevance of skew Young diagrams to the product of Schubert classes in the coho-
mology ring H∗(Grkn) has a geometric explanation (see [F]). It is possible to see that
the intersection of two Schubert varieties �λ∩ �̃µ (where �̃µ is taken in the opposite
Schubert decomposition) is empty unless µ/λ∨ is a valid skew shape. A natural ques-
tion to ask is, How does one extend this construction to the quantum cohomology ring
QH∗(Grkn) and toric shapes? It would be interesting to obtain a “geometric” proof of
our result on toric shapes (Cor. 5.4), and also to present a geometric explanation of
the curious duality (Th. 6.4).

9.6. Generalized flag manifolds
The main theorem of [FW] is given in a uniform setup of the generalized flag manifold
G/P , where G is a complex semisimple Lie group and P is its parabolic subgroup.
It describes the minimal monomials qd in the quantum parameters qi which occur in
the quantum product of two Schubert classes. It would be interesting to describe all
monomials qd which occur with nonzero coefficients in the quantum product.

In [P3] we proved several results for G/B, where B is a Borel subgroup. We
showed that there is a unique minimal monomial qd which occurs in the quantum
product of two Schubert classes. This monomial has a simple interpretation in terms
of directed paths in the quantum Bruhat graph from [BFP]. For the flag manifold
SL(n)/B, we gave a complete characterization of all monomials qd which occur in the
quantum product. In order to do this, we defined path Schubert polynomials in terms
of paths in the quantum Bruhat graph, and we showed that their expansion coefficients
in the basis of usual Schubert polynomials are the Gromov-Witten invariants for the
flag manifold.

In forthcoming publications we will address the question of extending the con-
structions of [P3] and the present paper to the general case G/P .
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