
18.315 Problem Set 4 (due Thursday, November 16.)

1. Express the power symmetric function pk = xk
1 + xk

2 + xk
3 + · · · as a

linear combination of Schur functions sλ.

2. (a) Show that sλ · p2 =
∑

µ sµ −
∑

ν sν , where the first sum is over
partitions µ obtained from λ by adding a horizontal domino and the
second sum is over ν obtained from λ by adding a vertical domino.

(b) Let us encode a Young diagram λ by the 01-sequence, infinite in
both directions, where 1’s correspond to vertical steps and 0’s corre-
spond to horizontal steps as we go North-East along the border of λ.
For example, λ = (3, 1) is encoded as · · · 111101001000 · · · . Show that
adding a horizontal or a vertical domino to λ corresponds to switching
1 and 0 two steps apart in the 01-sequence.

(c) Characterize Young diagrams λ that can be subdivided into hor-
izontal and vertical dominos.

(d) Prove that the parity of the number of vertical dominos is the
same for any two domino subdivisions of the same Young diagram λ.

(e) Expand the product (p2)
n as a linear combination of Schur func-

tions sλ. (In other words, for any λ, calculate the coefficient of sλ in
this expansion.) For example, (p2)

2 = s(4)− s(3,1) + 2s(2,2)− s(2,1) + s14 .
(f)∗ Generalize parts (a)–(e) to pk and expand the product (pk)

n as
a linear combination of Schur functions.

3. Prove the following hooklength-content formula:

sλ(1, q, q
2, . . . , qn−1) = qm(λ)

∏
x∈λ

1− qn+c(x)

1− qh(x)
= qm(λ)

∏
x∈λ

[n + c(x)]q
[h(x)]q

where c(x) = j − i is the content and h(x) is the hooklength of a box
x = (i, j) in λ, and m(λ) =

∑
(i− 1)λi.

4. Let A(n, k) be the number of reverse plane partitions of the trian-
gular shape ρ = (n− 1, n− 2, . . . , 1) with entries ≤ k.

(a) Express the number A(n, k) as the determinant of a certain k×k-
matrix (with entries given by explicit expressions).

(b) Find the limit limk→∞
A(n,k)

kN , where N = |ρ| =
(

n
2

)
.

5. We have constructed the three bijections fRSK , fHG, and fV between
the set of n × n-matrices with nonnegative integer entries and the set
of reverse plane partitions of the square shape n×n, where fRSK is the
RSK correspondence written via Gelfand-Tsetlin patterns (see Problem
8 from Problem Set 2); fHG is the Hillman-Grassl correspondence; and
fV is the Viennot correspondence. Is there any relation between these
bijections?
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6. For a partition λ with |λ| = n. Let Pλ,N be the polytope of points
(xij)(i,j)∈λ ⊂ Rn given by the conditions xij ≥ 0; xij ≤ xi′j′ for i ≤ i′

and j ≤ j′;
∑

xij ≤ N .
(a) Prove that Vol(Pλ,1) = fλ Vol(∆), where fλ is the number of stan-

dard Young tableaux of shape λ and ∆ is the simplex {(x1, . . . , xn) ∈
Rn | 0 ≤ x1 ≤ · · · ≤ xn;

∑
xi ≤ 1}.

(b) We proved (using the Hillman-Grassl correspondence) that the
sum

∑
T q

P
Tij over reverse plane partitions T of shape λ equals

∏
x∈λ(1−

qh(x))−1. Deduce that the number #(Pλ,N ∩ Zn) of integer lattice
points in Pλ,N equals the N -th coefficient in the Taylor expansion of
(1− q)−1

∏
x∈λ(1− qh(x))−1.

(c) Use (a), (b), and the fact that Vol(Pλ,1) = lim
#(Pλ,N∩Zn)

Nn to

deduce the hook-length formula fλ = n!Q
x∈λ h(x)

.

7. Let u1, . . . , un be some noncommutative variables. For a tableau
T with entries a1, a2, . . . , aN ∈ {1, . . . , n} listed by columns bottom-

up, left-to-right, let uT := ua1ua2 . . . uaN
. For example, for T =

1 1 3
2 3 ,

uT = u2u1u3u1u3. The noncommutative Schur polynomial Sλ(u1, . . . , un)
is defined as the sum

∑
uT over semi-standard tableaux of shape λ.

Let Yi, i ∈ Z be the (noncommutative) operators acting on the space
linear combinations of Young diagrams by Yi(λ) = µ if µ is obtained
from λ by adding a box to the ith diagonal; otherwise (if it is impossible
to add a box to the i-th diagonal of λ), set Yi(λ) = 0. For example

Y1( ) = and Y0( ) = 0.
(a) Show that Sλ(Y−k+1, Y−k+1, . . . , Yl−1) · ∅ = λ if λ fits inside the

k × l-rectangle.
(b) Prove that the operators Yi satisfy the relations Y 2

i = Yi Yi+1 Yi =
Yi+1 Yi Yi+1 = 0 and Yi Yj = Yj Yi when |i− j| ≥ 2.

(c) Let Hk =
∑

i1≤i2≤···≤ik
Yi1 · · ·Yik and Ek =

∑
j1>j2>···>jk

Yj1 · · ·Yjk
.

Also set H0 = E0 = 1. Prove (using only relations from (b)) that all
operators E1, E2, . . . , H1, H2, . . . commute with each other. Also prove
that Ek H0 − Ek−1 H1 + Ek−2 H2 − · · ·+ (−1)k E0 Hk = 0.

(d) Prove the following “noncommutative Cauchy identities”:

m∏
i=1

l−1∏
j=−k+1

1

1− xiYj

=
∑

λ

sλ(x1, . . . , xm) Sλ(Y−k+1, . . . , Yl−1)

m∏
i=1

−k+1∏
j=l−1

(1 + xiYj) =
∑

λ

sλ′(x1, . . . , xm) Sλ(Y−k+1, . . . , Yl−1)
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where the sums are over λ fitting inside the k×l-rectangle. (Note the or-
der of terms in the product.) Here x1, . . . , xm are commutative variables
(which commute with each other and with Yj’s) and sλ(x1, . . . , xm) are
the usual Schur functions.

8. A reduced decomposition of a permutation w ∈ Sn is a way to write
w as a product of adjacent transpositions w = si1si2 · · · sil of minimal
possible length l (= the number of inversions in w). For example,
the permutation (3, 2, 1) ∈ S3 (written in one-line notation) has two
reduced decompositions: s1s2s1 and s2s1s2.

(a) For n > k ≥ 1, calculate the number of reduced decompositions
of the permutation (k + 1, k + 2, . . . , n, 1, 2, . . . , k) ∈ Sn.

(b) Calculate the number of reduced decompositions of the maximal
permutation (n, n− 1, . . . , 2, 1) ∈ Sn.

(c) Say that two reduced decompositions are commutation equivalent
if they can be obtained from each other by a sequence of switches of
adjacent entries sisj → sjsi for |i− j| ≥ 2. (Equivalently, two reduced
decomposition are commutation equivalent if the corresponding wiring
diagrams are homotopy equivalent.) For example, s2s1s3 is commuta-
tion equivalent to s2s3s1.

For positive integers k, l, m such that k + l + m = n, calculate the
number of classes of commutation equivalent reduced decompositions
of the permutation (k + l + 1, k + l + 2, . . . , n, k + 1, k + 2, . . . , k +
l, 1, 2, . . . , k) ∈ Sn.

9. (a) Let A be a pseudoline arrangement with n pseudolines such that
every pair of pseudolines have exactly one intersection. Prove that A
has at least n− 2 triangular regions.

(a)′ You can try to prove a slightly weaker version of this claim for
a line arrangement.

(b) Construct a pseudoline arrangement which is not a line arrange-
ment. (That is the pseudolines cannot be straightened.)

10. For a poset P , let Ck be the maximal number of elements in a
union of k chains, and let Ak be the maximal number of elements in a
union of k antichains. Prove that λ = (C1, C2 − C1, C3 − C2, . . . ) and
µ = (A1, A2 − A1, A3 − A2, . . . ) are partitions which are conjugate to
each other: λ′ = µ.

In particular, this implies that if k is the maximal size an antichain
(respectively, the maximal size of a chain) in P , than P can be subdi-
vided into k chains (respectively, antichains).


