18.315 Problem Set 3 (due Thursday, October 26, 2006)

Turn in at most 6 problems.

1. Prove the following identity for q-binomial coefficients

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\sum_{r=0}^{\min (k, n-k)} q^{r^{2}}\left[\begin{array}{l}
k \\
r
\end{array}\right]_{q}\left[\begin{array}{c}
n-k \\
r
\end{array}\right]_{q}
$$

2. For any $n \geq k \geq 0$, calculate explicitly the value of the q-binomial coefficient $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$ at $q=-1$.
3. (a) For a nonempty partition λ, prove that the skew Schur function $s_{\lambda / 1}$ equals the sum of Schur functions s_{μ} over all partitions μ obtained from λ by removing a corner box.
(b) For a partition λ whose Young diagram has at least two rows and at least two columns, prove that $s_{\lambda /(2)}-s_{\lambda /\left(1^{2}\right)}$ equals $\sum s_{\mu}-\sum s_{\nu}$ over all partitions μ obtained from λ by removing a horizontal domino and all partitions ν obtained from λ by removing a vertical domino.
(c) Find all partitions λ such that $s_{\lambda /(2)}=s_{\lambda /\left(1^{2}\right)}$.
4. For a positive integer n and a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, let $\# S S Y T(\lambda, n)$ be the total number of semi-standard Young tableaux of shape λ filled with entries $\leq n$. Calculate the generating function

$$
F_{n}(q)=\sum_{\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)} \# S S Y T(\lambda, n) q^{|\lambda|}
$$

where the sum is over partitions $\lambda=\left(\lambda_{1} \geq \cdots \geq \lambda_{n} \geq 0\right)$ (with fixed $n)$. For example, $F_{1}(q)=1 /(1-q)$ and $F_{2}(q)=1 /\left((1-q)^{2}\left(1-q^{2}\right)\right)$.
5. Find a closed formula for the number $\# S S Y T(\lambda, n)$ of semi-standard Young tableaux of shape λ filled with entries $\leq n$ (see the previous problem).
6. For a strict partition $\lambda=\left(\lambda_{1}>\lambda_{2}>\cdots>\lambda_{l}>0\right)$, the shifted Young diagram of shape λ is the collection of boxes with coordinates $\left\{(i, j) \mid i=1, \ldots, l ; j=i, i+1, \ldots, i+\lambda_{i}\right\}$. Let $S_{k, n}$ be the number of shifted Young diagrams such that $\lambda_{1} \leq n$ and $|\lambda|=\lambda_{1}+\cdots+\lambda_{l}=k$. Prove that the sequence, $S_{0, n}, S_{1, n}, \ldots, S_{N, n}($ where $N=n(n+1) / 2)$ is unimodal, that is

$$
S_{0, n} \leq S_{1, n} \leq \cdots \leq S_{\lfloor N / 2\rfloor, n} \geq \cdots \geq S_{N, n}
$$

7. Prove that $\left(x_{1}+x_{2}+x_{3}+\cdots\right)^{n}=\sum s_{\kappa}$, where the sum of skew Schur functions is over all 2^{n-1} ribbons κ with n boxes.
8. For a subset $I \subseteq[n-1]$, let $\beta(I)$ be the number of permutations $w \in S_{n}$ with the set of descents I, that is permutations w such that $w_{i}>w_{i+1}$ if $i \in I$ and $w_{j}<w_{j+1}$ if $j \in[n-1] \backslash I$. Let $S(I):=$ $\{j \in[n-2] \mid \#(\{j, j+1\} \cap I)=1\}$. Prove that, for two subsets $I, J \subseteq[n-1]$, if $S(I) \supseteq S(J)$, then $\beta(I) \geq \beta(J)$.
9. Show that for 3 partititions λ, μ, ν such that $|\lambda|=|\mu|=|\nu|$, we have $K_{\lambda, \mu} \leq K_{\lambda, \nu}$ when $\mu \geq \nu$ in the dominance order, that is $\mu_{1}+\cdots+\mu_{i} \geq$ $\nu_{1}+\cdots+\nu_{i}$, for $i=1,2, \ldots$.
10. We constructed in class, the operation \tilde{s}_{i} acting on semi-standard Young tableaux T that swaps in the number of i 's and $(i+1)$'s in T. (This operation is called the Bender-Knuth involution.) Let $q_{i}:=$ $\left(\tilde{s}_{1} \tilde{s}_{2} \cdots \tilde{s}_{i}\right)\left(\tilde{s}_{1} \tilde{s}_{2} \cdots \tilde{s}_{i-1}\right)\left(\tilde{s}_{1} \tilde{s}_{2} \cdots \tilde{s}_{i-2}\right) \cdots\left(\tilde{s}_{1}\right)$. Let $s_{i}:=q_{i} \tilde{s}_{1}\left(q_{i}\right)^{-1}$. Show that the operators s_{i} satisfy the Coxeter relations: $\left(s_{i}\right)^{2}=\left(s_{i} s_{j}\right)^{2}=$ $\left(s_{i} s_{i+1}\right)^{3}=1$, where $j \neq i \pm 1$.
