18.315 Problem Set 2 (due Thursday, October 12, 2006)

1. Let $f^{\lambda}$ be the number of standard Young tableaux of shape $\lambda$.
(a) (5 points)Prove that the sum $\sum\left(f^{\lambda}\right)^{2}$ over all partitions $\lambda$ of $n$ with at most 2 parts (that is $\lambda=\left(\lambda_{1}, \lambda_{2}\right), \lambda_{1} \geq \lambda_{2} \geq 0, \lambda_{1}+$ $\lambda_{2}=n$ ) equals the Catalan number $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$. (You can use the combinatorial interpretation of $C_{n}$ as the number of Dyck paths.)
(b) (5 points) Find (and prove) a closed formula for the sum $\sum f^{\lambda}$ over partitions $\lambda$ of $n$ with at most 2 parts. The formula might involve a summation.
2. Let $V:=\left\{\left(z_{1}, \ldots, z_{n}\right) \mid z_{1}+\cdots+z_{n}=0\right\} \simeq \mathbb{C}^{n-1}$. The symmetric group $S_{n}$ acts on $V$ by permutations of the coordinates.
(a) (5 points) Find the Gelfand-Tsetlin basis of the representation $V$.

Hint: Find the basis $v_{1}, \ldots, v_{n-1}$ of $V$ such that each $v_{i}$ is a common eigenvector of the Jucys-Murphy elements $X_{i}=(1, i)+(2, i)+\cdots+$ $(i-1, i) \in \mathbb{C}\left[S_{n}\right]$, for $i=1, \ldots, n-1$.
(b) (5 points) Prove that $V$ is equivalent to a certain irreducible representation $V_{\lambda}$ of $S_{n}$ and identify the partition $\lambda$.

Hint: Look at eigenvalues of the Jucys-Murphy elements and use the correspondence with content vectors of Young tableaux.
3. (a) (5 points) Prove that the Jucys-Murphy elements $X_{i}$ and $X_{j}$ commute with each other (that it $X_{i} X_{j}=X_{j} X_{i}$ ) using only the definition of these elements.
(b) (5 points) Let $\mathrm{Cyc}_{n}$ be the element the group algebra $\mathbb{C}\left[S_{n}\right]$ given by $\mathrm{Cyc}_{n}=\sum w$ over all permutations $w \in S_{n}$ with a single cycle of size $n$. Express $\mathrm{Cyc}_{n}$ in terms of the Jucys-Murphy elements for $n=1,2,3,4$.
(c)* (5 points) Express Cyc ${ }_{n}$ in terms of the Jucys-Murphy elements for an arbitrary $n$.
(d)* (5 points) It is clear that $X_{1}=0, X_{2}^{2}=1$. Check that $X_{3}^{3}=$ $3 X_{3}+2 X_{2}$. For any $i$, express some power $\left(X_{i}\right)^{d}$ as a polynomial in $f\left(X_{1}, \ldots, X_{i}\right)$ of degree $\operatorname{deg} f<d$.
4. (10 points) Let $T$ be a rooted tree on $n$ nodes. Prove the following "baby hooklength formula:"

$$
\operatorname{ext}(T)=\frac{n!}{\prod_{v \in T} h(v)} .
$$

Here $\operatorname{ext}(T)$ is the number of linear extensions of $T$, that is $\operatorname{ext}(T)$ is the number of ways to label the nodes of $T$ by $1, \ldots, n$ so that, for each node labeled $i$, all children of this node have labels greater than $i$. The
"hooklength" $h(v)$ of a node $v$ in $T$ is the total number of descendants of $v$ (including the node $v$ itself).
5. (a) (5 points) An involution is a permutation $w \in S_{n}$ such that $w^{2}=1$ (that is $w$ has only cycles of sizes 1 or 2 ). Prove that the number of involutions in $S_{n}$ equals

$$
I_{n}=\sum_{k=0}^{\lfloor n / 2\rfloor} \frac{n!}{2^{k} k!(n-2 k)!} .
$$

(b) (5 points) We know that $\sum_{|\lambda|=n}\left(f^{\lambda}\right)^{2}=n$ !. Prove that the sum $\sum_{|\lambda|=n} f^{\lambda}$ equals the number $I_{n}$ of involutions $w \in S_{n}$.
6. A skew Young diagram $\kappa=\lambda / \mu$ is the set-theoretic difference of two usual Young diagrams shapes $\lambda$ and $\mu$. For example, $\lambda / 1$ is the Young diagram of shape $\lambda$ with the top left box removed. One can define standard Young tableaux for skew shapes in the usual way as fillings of boxes with numbers $1, \ldots, n$ that increase in rows and columns. Let $f^{\kappa}$ be the number of such skew Young tableaux.

A ribbon is a skew Young diagram such that that (i) it has a single connected component, and (ii) it contains no $2 \times 2$-box inside. (We consider ribbons up to parallel translations.) For example, there are 2 ribbons with 2 boxes: $\square, \boxminus ; 4$ ribbons with 3 boxes: $\square \square$,日,
, etc.
(a) ( 5 points) Find the number of ribbons with $n$ boxes.
(b) (5 points) Find the sum $\sum f^{\kappa}$, where $\kappa$ varies over all ribbons with $n$ boxes.
(c)* (10 points) For given $n$, find a ribbon $\kappa$ with $n$ boxes such that $f^{\kappa}$ has the maximal possible value (among all ribbons with $n$ boxes). Prove that this is the maximal possible value.
7. A horizontal $k$-strip is a skew Young shape with $k$ boxes that contains no two boxes in the same column. (It may contain several connected components.)

Let $U_{k}$ and $D_{l}$ be the operators that act on the space $\mathbb{C}^{Y}$ of linear combinations of Young diagrams, as follows. $U_{k}: \lambda \mapsto \sum \mu$, there the sum is over all $\mu$ obtained from $\lambda$ by adding a horizontal $k$-strip. $D_{l}: \lambda \mapsto \sum \mu$ there the sum is over all $\mu$ obtained from $\lambda$ by removing a horizontal $l$-strip. In particular, $U_{1}$ and $D_{1}$ are the "up" and "down" operators for the Young lattice.
(a) (10 points) Prove that, for any $k, l \geq 0$,

$$
U_{k} U_{l}=U_{l} U_{k}, \quad D_{k} D_{l}=D_{l} D_{k}
$$

$$
D_{k} U_{l}=\sum_{r=0}^{\min (k, l)} U_{l-r} D_{k-r}
$$

(b)* (10 points) Use these operations to give an alternative proof of the fact that the number of pairs $(P, Q)$ of semi-standard Young tableaux of the same shape and with weights $\left(\beta_{1}, \beta_{2}, \ldots\right)$ and $\left(\gamma_{1}, \gamma_{2}, \ldots\right)$ equals the number of matrices $A=\left(a_{i j}\right)$ with nonnegative integer entries, with row sums $\sum_{j} a_{i j}=\beta_{i}$ and column sums $\sum_{i} a_{i j}=\gamma_{j}$ (as in RSK-correspondence).
8. Fix two sequences of integers $r_{1}, \ldots, r_{n}$ and $c_{1}, \ldots, c_{n}$. Let $S_{1}$ be the set of nonegative integer $n \times n$-matrices $A=\left(a_{i j}\right)$ with given row sums $\sum_{j} a_{i j}=c_{i}$ and column sums $\sum_{i} a_{i j}=r_{j}$. Let $S_{2}$ be the set of nonnegative integer $n \times n$-matrices $B=\left(b_{i j}\right)$ such the entries weakly decrease in the rows and in the columns (that is $b_{i j} \geq b_{i^{\prime}, j^{\prime}}$ whenever $i \leq i^{\prime}$ and $j \leq j^{\prime}$ ) and the diagonal sums $d_{k}=\sum_{j-i=k} b_{i j}$ are equal to $d_{n-i}=r_{1}+\cdots+r_{i}$ and $d_{-n+i}=c_{1}+\cdots+c_{i}$, for $i=1, \ldots, n$.
(a) (5 points) Construct an explicit bijection between $S_{1}$ and $S_{2}$ for $n=2,3$.
(b) (5 points) Prove that $\left|S_{1}\right|=\left|S_{2}\right|$, for any $n$.

9*. (10 points) In class we constructed the tranformations of semistandard Young tableaux $\tilde{s}_{i}: T \mapsto \tilde{T}$ such that (1) $T$ and $\tilde{T}$ have the same shape, and (2) if the weight of $T$ is $\left(\beta_{1}, \ldots, \beta_{i}, \beta_{i+1}, \ldots\right)$ then the weight of $\tilde{T}$ is $\left(\beta_{1}, \ldots, \beta_{i+1}, \beta_{i}, \ldots\right)$. Modify these operations and define new operations $s_{i}$ acting on semi-standard tableaux that satisfy the above properties and, in addition, satisfy the Coxeter relations: $s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1}, s_{i}^{2}=1, s_{i} s_{j}=s_{j} s_{i}$ for $j \neq i \pm 1$.

Then these operations can be extended to the action of the symmetric group on semi-standard tableaux by setting $w(T):=s_{i_{1}} \cdots s_{i_{l}}(T)$ for a permutation $w=s_{i_{1}} \cdots s_{i_{l}}$.

