
18.315 Problem Set 2 (due Thursday, October 12, 2006)

1. Let fλ be the number of standard Young tableaux of shape λ.
(a) (5 points)Prove that the sum

∑
(fλ)2 over all partitions λ of

n with at most 2 parts (that is λ = (λ1, λ2), λ1 ≥ λ2 ≥ 0, λ1 +
λ2 = n) equals the Catalan number Cn = 1

n+1

(
2n
n

)
. (You can use the

combinatorial interpretation of Cn as the number of Dyck paths.)
(b) (5 points) Find (and prove) a closed formula for the sum

∑
fλ

over partitions λ of n with at most 2 parts. The formula might involve
a summation.

2. Let V := {(z1, . . . , zn) | z1 + · · ·+ zn = 0} ' Cn−1. The symmetric
group Sn acts on V by permutations of the coordinates.

(a) (5 points) Find the Gelfand-Tsetlin basis of the representation
V .

Hint: Find the basis v1, . . . , vn−1 of V such that each vi is a common
eigenvector of the Jucys-Murphy elements Xi = (1, i) + (2, i) + · · · +
(i− 1, i) ∈ C[Sn], for i = 1, . . . , n− 1.

(b) (5 points) Prove that V is equivalent to a certain irreducible
representation Vλ of Sn and identify the partition λ.

Hint: Look at eigenvalues of the Jucys-Murphy elements and use the
correspondence with content vectors of Young tableaux.

3. (a) (5 points) Prove that the Jucys-Murphy elements Xi and Xj

commute with each other (that it XiXj = XjXi) using only the defi-
nition of these elements.

(b) (5 points) Let Cycn be the element the group algebra C[Sn]
given by Cycn =

∑
w over all permutations w ∈ Sn with a single cycle

of size n. Express Cycn in terms of the Jucys-Murphy elements for
n = 1, 2, 3, 4.

(c)∗ (5 points) Express Cycn in terms of the Jucys-Murphy elements
for an arbitrary n.

(d)∗ (5 points) It is clear that X1 = 0, X2
2 = 1. Check that X3

3 =
3X3 + 2X2. For any i, express some power (Xi)

d as a polynomial in
f(X1, . . . , Xi) of degree deg f < d.

4. (10 points) Let T be a rooted tree on n nodes. Prove the following
“baby hooklength formula:”

ext(T ) =
n!∏

v∈T h(v)
.

Here ext(T ) is the number of linear extensions of T , that is ext(T ) is
the number of ways to label the nodes of T by 1, . . . , n so that, for each
node labeled i, all children of this node have labels greater than i. The
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“hooklength” h(v) of a node v in T is the total number of descendants
of v (including the node v itself).

5. (a) (5 points) An involution is a permutation w ∈ Sn such that
w2 = 1 (that is w has only cycles of sizes 1 or 2). Prove that the
number of involutions in Sn equals

In =

bn/2c∑
k=0

n!

2k k! (n− 2k)!
.

(b) (5 points) We know that
∑

|λ|=n(fλ)2 = n!. Prove that the sum∑
|λ|=n fλ equals the number In of involutions w ∈ Sn.

6. A skew Young diagram κ = λ/µ is the set-theoretic difference of two
usual Young diagrams shapes λ and µ. For example, λ/1 is the Young
diagram of shape λ with the top left box removed. One can define
standard Young tableaux for skew shapes in the usual way as fillings
of boxes with numbers 1, . . . , n that increase in rows and columns. Let
fκ be the number of such skew Young tableaux.

A ribbon is a skew Young diagram such that that (i) it has a single
connected component, and (ii) it contains no 2 × 2-box inside. (We
consider ribbons up to parallel translations.) For example, there are

2 ribbons with 2 boxes: ��, �
� ; 4 ribbons with 3 boxes: ���,

�
�
�

,

��
� , �

�� , etc.

(a) (5 points) Find the number of ribbons with n boxes.
(b) (5 points) Find the sum

∑
fκ, where κ varies over all ribbons

with n boxes.
(c)∗ (10 points) For given n, find a ribbon κ with n boxes such that

fκ has the maximal possible value (among all ribbons with n boxes).
Prove that this is the maximal possible value.

7. A horizontal k-strip is a skew Young shape with k boxes that con-
tains no two boxes in the same column. (It may contain several con-
nected components.)

Let Uk and Dl be the operators that act on the space CY of linear
combinations of Young diagrams, as follows. Uk : λ 7→

∑
µ, there

the sum is over all µ obtained from λ by adding a horizontal k-strip.
Dl : λ 7→

∑
µ there the sum is over all µ obtained from λ by removing

a horizontal l-strip. In particular, U1 and D1 are the “up” and “down”
operators for the Young lattice.

(a) (10 points) Prove that, for any k, l ≥ 0,

UkUl = UlUk, DkDl = DlDk
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DkUl =

min(k,l)∑
r=0

Ul−rDk−r

(b)∗ (10 points) Use these operations to give an alternative proof
of the fact that the number of pairs (P, Q) of semi-standard Young
tableaux of the same shape and with weights (β1, β2, . . . ) and (γ1, γ2, . . . )
equals the number of matrices A = (aij) with nonnegative integer en-
tries, with row sums

∑
j aij = βi and column sums

∑
i aij = γj (as in

RSK-correspondence).

8. Fix two sequences of integers r1, . . . , rn and c1, . . . , cn. Let S1 be
the set of nonegative integer n × n-matrices A = (aij) with given row
sums

∑
j aij = ci and column sums

∑
i aij = rj. Let S2 be the set of

nonnegative integer n × n-matrices B = (bij) such the entries weakly
decrease in the rows and in the columns (that is bij ≥ bi′,j′ whenever
i ≤ i′ and j ≤ j′) and the diagonal sums dk =

∑
j−i=k bij are equal to

dn−i = r1 + · · ·+ ri and d−n+i = c1 + · · ·+ ci, for i = 1, . . . , n.
(a) (5 points) Construct an explicit bijection between S1 and S2 for

n = 2, 3.
(b) (5 points) Prove that |S1| = |S2|, for any n.

9∗. (10 points) In class we constructed the tranformations of semi-
standard Young tableaux s̃i : T 7→ T̃ such that (1) T and T̃ have the
same shape, and (2) if the weight of T is (β1, . . . , βi, βi+1, . . . ) then
the weight of T̃ is (β1, . . . , βi+1, βi, . . . ). Modify these operations and
define new operations si acting on semi-standard tableaux that satisfy
the above properties and, in addition, satisfy the Coxeter relations:
sisi+1si = si+1sisi+1, s2

i = 1, sisj = sjsi for j 6= i± 1.
Then these operations can be extended to the action of the symmetric

group on semi-standard tableaux by setting w(T ) := si1 · · · sil(T ) for a
permutation w = si1 · · · sil .


