PROBLEM SET 4 (due on Thursday 05/05/05)
Problem 1. An Eulerian tour in a (directed, underected) graph G is a sequence of its (directed, undirected) edges $\left(i_{1}, i_{2}\right),\left(i_{2}, i_{3}\right), \ldots,\left(i_{N-1}, i_{1}\right)$ such that each edge of G appears once. Find the number of Eulerian tours in the directed complete bipartite graph $K_{m, n}$ (each edge appears twice in two different orientations).

Problem 2. Prove the following generalized Hurwitz's identity
$(x+y)\left(x+y+z_{1}+\cdots+z_{n}\right)^{n-1}=\sum_{I, J} x\left(x+z_{i_{1}}+\cdots+z_{i_{k}}\right)^{k-1} y\left(x+z_{j_{1}}+\cdots+z_{j_{n-k}}\right)^{n-k-1}$
where the sum is over all 2^{n} subdivisions of the set $[n]$ into a disjoint union of two subsets $I=\left\{i_{1}, \ldots, i_{k}\right\}$ and $J=\left\{j_{1}, \ldots, j_{n-k}\right\}$.
Problem 3. For $n \geq 5$, find the number of sequences $\left(i_{1}, \ldots, i_{5 n}\right)$ such that the sequence of (ordered) pairs $\left(i_{1}, i_{2}\right),\left(i_{2}, i_{3}\right), \ldots,\left(i_{5 n-1}, i_{5 n}\right),\left(i_{5 n}, i_{1}\right)$ is a permutation of the set $\{(i, j) \mid i, j \in[n], i-j \equiv-2,-1,0,1,2(\bmod n)\}$.

Problem 4. Let H_{n} be the graph formed by the vertices and edges of the n dimensional hypercube, i.e., the vertices of the graph H_{n} are binary n-sequences and two sequences are connected by an edge if they differ in one bit. Find the total resistance between the opposite vertices $A=(0, \ldots, 0)$ and $B=(1, \ldots, 1)$ of H_{n}, assuming that each edge has the resistance 1 ohm .

Problem 5. Two people A and B play the following game of chance called "walk on the dice edge". There are n cards marked by the numbers $1, \ldots, n$. Originally, A has k cards and B has the remaining $n-k$ cards. Each turn the random number generator produces a random integer i uniformly distributed on $[n]$, and the person who has the i-th card passes it to the opponent. The game ends when one person (the winner) collects all n cards. Find the probability that A wins the game.

Problem 6. Fix positive integers n, k, l. A sequence a_{1}, \ldots, a_{n} of positive integers is called a generalized parking function if its weakly increasing rearrangement $b_{1} \leq$ $\cdots \leq b_{n}$ satisfies $b_{i} \leq l+k(i-1)$, for $i=1, \ldots, n$. (For $k=l=1$, these are the usual parking functions.) Find and prove a formula for the number of generalized parking functions.

Problem 7. A perfect matching in a graph on $2 n$ vertices is a subgraph formed by n pairwise disjoint edges. Let C_{n} be the n-cycle and [2] be the graph with 2 vertices connected by an edge. Find the number of perfect matchings in the "circular ribbon graph" $C_{n} \times[2]$.

Problem 8. Find the number of perfect matchings in the torus graph $C_{4} \times C_{4}$.
Problem 9. The 5-dimensional hypercube $\left\{\left(x_{1}, \ldots, x_{5}\right) \mid 0 \leq x_{i} \leq 1\right\} \subset \mathbb{R}^{6}$ is subdivided by the 4 hyperplanes $x_{1}+\cdots+x_{5}=k, k=1,2,3,4$ into 5 slices. Find the volumes of all slices. (The sum of the volumes should be equal to $1=$ volume of the whole hypercube.)

Problem 10. Let us expand the product $\prod_{1 \leq i<j \leq n}\left(x_{i}+x_{j}\right)$ into a sum of monomials. Show that the number of different monomials in this expansion equals the number of forests ($=$ graphs without cycles) on n labelled vertices. For example, the seven
terms of the expansion $\left(x_{1}+x_{2}\right)\left(x_{1}+x_{3}\right)\left(x_{2}+x_{3}\right)=x_{1}^{2} x_{2}+x_{1} x_{2}^{2}+x_{1}^{2} x_{3}+x_{1} x_{3}^{2}+$ $x_{2}^{2} x_{3}+x_{2} x_{3}^{2}+2 x_{1} x_{2} x_{3}$ correspond to seven forests on 3 labelled vertices.
Problem 11. Find the number of Eulerian tours in the undirected complete bipartite graph $K_{m, n}$.

Problem 12. Show that any two domino tilings of the $m \times n$ board can be obtained from each other by a sequence of flips (involving 2 dominos forming a 2×2-square). Will an analogues claim be true for an arbitary finite subset of the square grid?
Problem 13. Let H_{n} be the graph which is the hexagonal region in the infinite triangular lattice on the plane with n vertices on each side of the hexagon. Let M_{n} be the number of perfect matching in the graph H_{n}. Calculate the limit $A=$ $\lim _{n \rightarrow \infty} \ln \left(M_{n}\right) / n^{2}$. Write A as an integral and evaluate it up to 4 digits.
Problem 14. The transportation polytope $T_{m, n}$ is the set of $m \times n$ matrices $\left(x_{i j}\right)$ such that (1) $x_{i j} \geq 0 ;(2) \sum_{j} x_{i j}=n$, for any $i=1, \ldots, m ;(3) \sum_{i} x_{i j}=m$, for any $j=1, \ldots, n$. Describe all vertices of the polytope $T_{n+1, n}$. What about vertices of $T_{n+2, n}$?

