PROBLEM SET 1 (due on Tuesday 03/01/05)
Problem 1. a) Prove that queue-sortable permutations are exactly 321-avoiding permutations. b) Prove that stack-sortable permutations are exactly 132-avoiding permutations. c) Find a bijection between these 2 classes of permutations.
Problem 2. Show that the generating function for the Catalan numbers $C_{n}=$ $\frac{1}{n+1}\binom{2 n}{n}$ is given by the following continued fraction:

$$
\sum_{n=0}^{\infty} C_{n} x^{n}=\frac{1}{1-\frac{x}{1-\frac{x}{1-\frac{x}{1-\ldots}}}}
$$

Problem 3. A man stands on the edge of a cliff. He makes 2 steps to the right (away from the cliff) with probability $1 / 2$ or he makes 1 step to the left with probability $1 / 2$. Then he continues to walk in this random fashion. Find the probability that the man dies after making some number of steps.
Problem 4. A set partition π of $[n]:=\{1, \ldots, n\}$ is a way to subdivide [n] into nonempty blocks. A set partition is called noncrossing if it contains no two blocks B and B^{\prime} such that $i, k \in B$ and $j, l \in B^{\prime}$ for some $i<j<k<l$. Show that the number of noncrossing partitions equals the Catalan number.
Problem 5. a) Suppose that the Schensted correspondence τ sends a permutation w to the pair (P, Q) of standard Young tableaux of the same shape λ. Show that the length of the longest decreasing subsequence in w equals the size of the first column in the Young diagram of shape λ. (In class, we proved a similar statement for the maximal increasing subsequence.)
b) Prove that if $\tau(w)=(P, Q)$ then $\tau\left(w^{-1}\right)=(Q, P)$, where w^{-1} denotes the inverse permutation.
Problem 6. Find the number of all permutations w of size 9 such that w contains no increasing subsequences of length 4 and no decreasing subsequences of length 4 .

Problem 7. For positive integers n_{1}, \ldots, n_{k}, let $S_{n_{1}, \ldots, n_{k}}$ be the set of sequences $w=w_{1}, \ldots, w_{n}$ of the length $n=n_{1}+\cdots+n_{k}$ with n_{1} '1's, n_{2} '2's. \ldots, n_{k} ' k 's. (Such w 's are called permutations of multisets.) An inversion in $w \in S_{n_{1}, \ldots, n_{k}}$ is a pair (i, j) such that $1 \leq i<j \leq n$ and $w_{i}>w_{j}$. Let $\operatorname{inv}(w)$ be the number of inversions in w. Show that

$$
\left[\begin{array}{c}
n \\
n_{1}, n_{2}, \ldots, n_{k}
\end{array}\right]_{q}=\sum_{w \in S_{n_{1}, \ldots, n_{k}}} q^{i n v(w)}
$$

where $\left[\begin{array}{c}n \\ n_{1}, n_{2}, \ldots, n_{k}\end{array}\right]_{q}:=\frac{[n]!}{\left[n_{1}\right]!\cdots\left[n_{k}\right]!}$ is the q-multinomial coefficient.
Problem 8. Prove the following identity for the q-binomial coefficients

$$
\sum_{k=0}^{n} q^{k^{2}}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\left[\begin{array}{c}
2 n \\
n
\end{array}\right]_{q}
$$

Problem 9. The length $\ell(w)$ of a permutation $w \in S_{n}$ is the minimal number of adjacent transpositions needed to obtain w from the identity permutation. The number of inversion is $\operatorname{inv}(w)=\#\{(i, j) \mid i<j, w(i)>w(j)\}$. Show that the length of a permutation equals its number of inversions: $\ell(w)=\operatorname{inv}(w)$.

Problem 10. A descent in a permutation $w \in S_{n}$ is an index $i, 1 \leq i \leq n-1$, such that $w_{i}>w_{i+1}$. The major index maj (w) of w is defined as the sum of all descents in w. (For example, $\operatorname{maj}(12 \ldots n)=0$ and $\operatorname{maj}(n \ldots 21)=1+2+\cdots+(n-1)$.) Show that the major index maj is equidistributed with the number of inversions $i n v$, i.e, $\sum_{w \in S_{n}} q^{\operatorname{maj}(w)}=\sum_{w \in S_{n}} q^{i n v(w)}$.
Problem 11. (a) For a permutation $w \in S_{n}$, let \tilde{w} be the permutation obtained from w by replacing n with 1 and adding 1 to all other entries. Find a relation between major indices $\operatorname{maj}(w)$ and $\operatorname{maj}(\tilde{w})$ of these permutations. (b) Show that, for any integers i, j, the number of permutations $w \in S_{n}$ such that $\operatorname{maj}(w) \equiv i(\bmod n)$ equals the number of permutation such that $\operatorname{maj}(w) \equiv j(\bmod n)$. In other words, the statistics $\operatorname{maj}(w)(\bmod n)$ is uniformly distributed on S_{n}. (c) Show that the statistics $\operatorname{inv}(w)(\bmod n)$ is also uniformly distributed.

Problem 12. Show that in a differential poset (such as the Young lattice or the Fibonacci lattice) the number of paths of length $2 n$ that start and finish at the minimal element equals $(2 n-1)!!=(2 n-1)(2 n-3)(2 n-5) \cdots 1$.

Problem 13. Let A and B be two symmetric real $n \times n$-matrices. Assume that A is positive semi-definite, i.e., all its eigenvalues are nonnegative. Also assume that B is positive definite, i.e., all its eigenvalues are strictly positive. Prove that $A+B$ is positive definite.
Problem 14. Let n, k be integers such that $1 \leq k \leq n / 2$. Find a bijection π between k-element subsets of $\{1, \ldots, n\}$ and $(n-k)$-element subsets of $\{1, \ldots, n\}$ that satisfies the property $\pi(I) \supseteq I$.

