
18.218 Spring 2020 — Problem Set 1

due Friday, March 06, 2020

Hand in solutions for four (or more) of the following problems.

Problem 1. The hypersimplex ∆kn, for 1 ≤ k < n, is the polytope in
Rn defined as the convex hull of the

(
n
k

)
points (a1, . . . , an) such that

all ai ∈ {0, 1} and a1 + · · · + an = k. Use the definition of faces of
a polytope as supporting faces of a linear function to give an explicit
description of

(a) all edges of ∆kn,
(b) all facets of ∆kn.

Problem 2. In class, we computed the f -vector and h-vector of per-
mutohedron and deduced the following identity involving the Stirling
numbers of the second kind S(n, k) and the Eulerian numbers A(n, k).
(Recall that S(n, k) is the number of set partitions of [n] with k blocks,
and A(n, k) is the number of permutations in Sn with k descents.)

n−1∑
i=0

(n− i)!S(n, n− i)xi =
n−1∑
i=0

A(n, i) (x + 1)i.

Give a direct combinatorial proof of this identity.

Problem 3. Prove that the normal fan NP+Q of the Minkowski sum
P + Q of two polytopes P and Q is the common refinement of the
normal fans NP and NQ.

Problem 4. True or false: Any centrally symmetric 3-dimensional
polytope is a zonotope. Prove this claim or find a counterexample
(and prove that it is a counterexample).

Problem 5. Prove that each vertex of the Minkowski sum P + Q of
two polytopes can be uniquely written as a sum of a vertex of P and a
vertex of Q.
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Problem 6. Find a bijection between integer lattice points of the per-
mutohedron Pn and forests on n labelled vertices.

Problem 7. Prove that the expansion of the product∏
1≤i<j≤n

(xi + xj)

contains the monomials xa1
1 · · ·xan

n (with nonzero coefficients) for all
integer lattice points a = (a1, . . . , an) of the (shifted) permutohedron
Pn + {(−1, . . . ,−1)}. Describe all monomials in this expansion whose
coefficients are equal to 1.

Problem 8. Fix (n−1)
(
n
2

)
nonzero complex constants cijk, for 1 ≤ i <

j ≤ n and k = 1, . . . , n−1. Assume that the product of any nonempty
subset of the numbers (cijk)±1 is not equal to 1. Consider the following
polynomials fk(x1, . . . , xn), k = 1, . . . , n−1, in the variables x1, . . . , xn:

fk(x1, . . . , xn) =
∏

1≤i<j≤n

(xi − cijk xj).

Find the number of solutions in (C\{0})n of the system of n equations
in the n variables x1, . . . , xn by explicitly solving this system:

f1(x1, . . . , xn) = 0

f2(x1, . . . , xn) = 0

· · ·

fn−1(x1, . . . , xn) = 0

xn = 1

Compare your answer with Kushnirenko’s theorem.

Problem 9. For a polytope P that belongs to the hyperplane H :=
{(x1, . . . , xn) | x1+ · · ·+xn = 0} ⊂ Rn, we defined the volume VolH(P )
as Vol(p(P )), where p : Rn → Rn−1 is the projection p : (x1, . . . , xn) 7→
(x1, . . . , xn−1). Also let Voleucl(P ) be the usual (n − 1)-dimensional
Euclidian volume of P .

For any n, find the constant C such that Voleucl(P ) = C · VolH(P ).
For example, for n = 2 and the line segment P = [(0, 0), (1,−1)], we

have VolH(P ) = 1 and Voleucl(P ) =
√

2, so C =
√

2.
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Problem 10. In class, we constructed a pseudoline arrangement by
splitting all triple intersections in the Pappus configuration into 3 dou-
ble intersections. Give a rigorous proof that this pseudoline arrange-
ment cannot be drawn on the plane with all straight lines.

Problem 11. Let G = (V,E) be a graph without loops. Pick ori-
entations of all edges in G. Let RE be the vector space of functions
f : E → R on edges of G, and let ZE ⊂ RE be the lattice of all
integer-valued functions on edges. For a vertex v ∈ V , fv ∈ RE is
given by

fv(e) =

 1 if e is an outgoing edge from the vertex v,
−1 if e is an incoming edge to the vertex v,
0 otherwise.

Let CG ' Rm be the quotient space of RE by the linear subspace
spanned by all fv, for v ∈ V . Let p : RE → CG be the natural
projection to CG. Also let LG := p(ZE) ' Zm be the integer lattice in
CG.

Let ee, e ∈ E, denote the coordinate vectors in the space RE. (In
other words, ee is the function on edges of G which is equal to 1 on the
edge e and 0 on all other edges.)

The cographical vector arrangement is the arrangement of the vectors
p(ee), for e ∈ E, in the vector space CG.

(a) Prove that the cographical vector arrangement is unimodular
with respect to the integer lattice LG.

(b) Describe all bases of the cographical vector arrangement.

Problem 12. Let v1, . . . , vN ∈ Zd be a unimodular collection of vec-
tors, and let Z = Zon(v1, . . . , vN) be the associated zonotope. Prove
that the Ehrhart polynomial iZ(t) of the zonotope Z equals

iZ(t) =
∑

I independent subset in [N ]

t|I|.

Use the Ehrhart reciprocity (or some other method) to deduce that
the number #(Pn \ ∂Pn) ∩ Zn of integer lattice points in the interior
of the permutohedron Pn equals (−1)n−1(F even

n − F odd
n ), where F even

n

(resp., F odd
n ) is the number of forests on n labelled vertices with even

(resp., odd) number of edges. Can you give a direct proof of this claim?



4

Problem 13. For integers n ≥ 1 and k ≥ 0, calculate the number
of regions of the extended Catalan arrangement, which consists of the
hyperplanes in Rn given by the equations:

xi − xj = r, for 1 ≤ i < j ≤ n, and r = −k,−k + 1, . . . , k − 1, k.

Problem 14. For integers n ≥ 1 and k ≥ 0, calculate the number of
regions of the extended Shi arrangement, which consists of the hyper-
planes in Rn given by the equations:

xi − xj = r, for 1 ≤ i < j ≤ n, and r = −k,−k + 1, . . . , k, k + 1.

Problem 15. Find a bijective proof for the formula (n+ 1)n−1 for the
number of regions of the Shi arrangement in Rn.


