due Friday, March 06, 2020

Hand in solutions for four (or more) of the following problems.

Problem 1. The hypersimplex Δ_{kn} , for $1 \leq k < n$, is the polytope in \mathbb{R}^n defined as the convex hull of the $\binom{n}{k}$ points (a_1, \ldots, a_n) such that all $a_i \in \{0, 1\}$ and $a_1 + \cdots + a_n = k$. Use the definition of faces of a polytope as supporting faces of a linear function to give an explicit description of

(a) all edges of Δ_{kn} ,

(b) all facets of Δ_{kn} .

Problem 2. In class, we computed the *f*-vector and *h*-vector of permutohedron and deduced the following identity involving the *Stirling numbers* of the second kind S(n, k) and the *Eulerian numbers* A(n, k). (Recall that S(n, k) is the number of set partitions of [n] with k blocks, and A(n, k) is the number of permutations in S_n with k descents.)

$$\sum_{i=0}^{n-1} (n-i)! S(n,n-i) x^{i} = \sum_{i=0}^{n-1} A(n,i) (x+1)^{i}.$$

Give a direct combinatorial proof of this identity.

Problem 3. Prove that the normal fan N_{P+Q} of the Minkowski sum P + Q of two polytopes P and Q is the common refinement of the normal fans N_P and N_Q .

Problem 4. True or false: Any centrally symmetric 3-dimensional polytope is a zonotope. Prove this claim or find a counterexample (and prove that it is a counterexample).

Problem 5. Prove that each vertex of the Minkowski sum P + Q of two polytopes can be *uniquely* written as a sum of a vertex of P and a vertex of Q.

Problem 6. Find a bijection between integer lattice points of the permutohedron P_n and forests on n labelled vertices.

Problem 7. Prove that the expansion of the product

$$\prod_{1 \le i < j \le n} (x_i + x_j)$$

contains the monomials $x_1^{a_1} \cdots x_n^{a_n}$ (with nonzero coefficients) for all integer lattice points $a = (a_1, \ldots, a_n)$ of the (shifted) permutohedron $P_n + \{(-1, \ldots, -1)\}$. Describe all monomials in this expansion whose coefficients are equal to 1.

Problem 8. Fix $(n-1)\binom{n}{2}$ nonzero complex constants c_{ijk} , for $1 \le i < j \le n$ and $k = 1, \ldots, n-1$. Assume that the product of any nonempty subset of the numbers $(c_{ijk})^{\pm 1}$ is not equal to 1. Consider the following polynomials $f_k(x_1, \ldots, x_n), k = 1, \ldots, n-1$, in the variables x_1, \ldots, x_n :

$$f_k(x_1,\ldots,x_n) = \prod_{1 \le i < j \le n} (x_i - c_{ijk} x_j).$$

Find the number of solutions in $(\mathbb{C} \setminus \{0\})^n$ of the system of *n* equations in the *n* variables x_1, \ldots, x_n by explicitly solving this system:

$$\begin{cases} f_1(x_1, \dots, x_n) = 0\\ f_2(x_1, \dots, x_n) = 0\\ \dots\\ f_{n-1}(x_1, \dots, x_n) = 0\\ x_n = 1 \end{cases}$$

Compare your answer with Kushnirenko's theorem.

Problem 9. For a polytope P that belongs to the hyperplane $H := \{(x_1, \ldots, x_n) \mid x_1 + \cdots + x_n = 0\} \subset \mathbb{R}^n$, we defined the volume $\operatorname{Vol}_H(P)$ as $\operatorname{Vol}(p(P))$, where $p : \mathbb{R}^n \to \mathbb{R}^{n-1}$ is the projection $p : (x_1, \ldots, x_n) \mapsto (x_1, \ldots, x_{n-1})$. Also let $\operatorname{Vol}_{eucl}(P)$ be the usual (n-1)-dimensional Euclidian volume of P.

For any n, find the constant C such that $\operatorname{Vol}_{eucl}(P) = C \cdot \operatorname{Vol}_H(P)$.

For example, for n = 2 and the line segment P = [(0,0), (1,-1)], we have $\operatorname{Vol}_H(P) = 1$ and $\operatorname{Vol}_{eucl}(P) = \sqrt{2}$, so $C = \sqrt{2}$.

 $\mathbf{2}$

Problem 10. In class, we constructed a pseudoline arrangement by splitting all triple intersections in the Pappus configuration into 3 double intersections. Give a rigorous proof that this pseudoline arrangement cannot be drawn on the plane with all straight lines.

Problem 11. Let G = (V, E) be a graph without loops. Pick orientations of all edges in G. Let \mathbb{R}^E be the vector space of functions $f : E \to \mathbb{R}$ on edges of G, and let $\mathbb{Z}^E \subset \mathbb{R}^E$ be the lattice of all integer-valued functions on edges. For a vertex $v \in V$, $f_v \in \mathbb{R}^E$ is given by

 $f_v(e) = \begin{cases} 1 & \text{if } e \text{ is an outgoing edge from the vertex } v, \\ -1 & \text{if } e \text{ is an incoming edge to the vertex } v, \\ 0 & \text{otherwise.} \end{cases}$

Let $C_G \simeq \mathbb{R}^m$ be the quotient space of \mathbb{R}^E by the linear subspace spanned by all f_v , for $v \in V$. Let $p : \mathbb{R}^E \to C_G$ be the natural projection to C_G . Also let $L_G := p(\mathbb{Z}^E) \simeq \mathbb{Z}^m$ be the integer lattice in C_G .

Let $\mathbf{e}_e, e \in E$, denote the coordinate vectors in the space \mathbb{R}^E . (In other words, \mathbf{e}_e is the function on edges of G which is equal to 1 on the edge e and 0 on all other edges.)

The cographical vector arrangement is the arrangement of the vectors $p(\mathbf{e}_e)$, for $e \in E$, in the vector space C_G .

(a) Prove that the cographical vector arrangement is unimodular with respect to the integer lattice L_G .

(b) Describe all bases of the cographical vector arrangement.

Problem 12. Let $v_1, \ldots, v_N \in \mathbb{Z}^d$ be a unimodular collection of vectors, and let $Z = \text{Zon}(v_1, \ldots, v_N)$ be the associated zonotope. Prove that the Ehrhart polynomial $i_Z(t)$ of the zonotope Z equals

$$i_Z(t) = \sum_{I \text{ independent subset in } [N]} t^{|I|}.$$

Use the Ehrhart reciprocity (or some other method) to deduce that the number $\#(P_n \setminus \partial P_n) \cap \mathbb{Z}^n$ of integer lattice points in the *interior* of the permutohedron P_n equals $(-1)^{n-1}(F_n^{even} - F_n^{odd})$, where F_n^{even} (resp., F_n^{odd}) is the number of forests on n labelled vertices with even (resp., odd) number of edges. Can you give a direct proof of this claim? **Problem 13.** For integers $n \ge 1$ and $k \ge 0$, calculate the number of regions of the extended Catalan arrangement, which consists of the hyperplanes in \mathbb{R}^n given by the equations:

$$x_i - x_j = r$$
, for $1 \le i < j \le n$, and $r = -k, -k+1, \dots, k-1, k$.

Problem 14. For integers $n \ge 1$ and $k \ge 0$, calculate the number of regions of the extended Shi arrangement, which consists of the hyperplanes in \mathbb{R}^n given by the equations:

 $x_i - x_j = r$, for $1 \le i < j \le n$, and $r = -k, -k + 1, \dots, k, k + 1$.

Problem 15. Find a bijective proof for the formula $(n+1)^{n-1}$ for the number of regions of the Shi arrangement in \mathbb{R}^n .

4