Hand in solutions for four (or more) of the following problems.

Problem 1. The hypersimplex $\Delta_{k n}$, for $1 \leq k<n$, is the polytope in \mathbb{R}^{n} defined as the convex hull of the $\binom{n}{k}$ points $\left(a_{1}, \ldots, a_{n}\right)$ such that all $a_{i} \in\{0,1\}$ and $a_{1}+\cdots+a_{n}=k$. Use the definition of faces of a polytope as supporting faces of a linear function to give an explicit description of
(a) all edges of $\Delta_{k n}$,
(b) all facets of $\Delta_{k n}$.

Problem 2. In class, we computed the f-vector and h-vector of permutohedron and deduced the following identity involving the Stirling numbers of the second kind $S(n, k)$ and the Eulerian numbers $A(n, k)$. (Recall that $S(n, k)$ is the number of set partitions of $[n]$ with k blocks, and $A(n, k)$ is the number of permutations in S_{n} with k descents.)

$$
\sum_{i=0}^{n-1}(n-i)!S(n, n-i) x^{i}=\sum_{i=0}^{n-1} A(n, i)(x+1)^{i}
$$

Give a direct combinatorial proof of this identity.

Problem 3. Prove that the normal fan N_{P+Q} of the Minkowski sum $P+Q$ of two polytopes P and Q is the common refinement of the normal fans N_{P} and N_{Q}.

Problem 4. True or false: Any centrally symmetric 3-dimensional polytope is a zonotope. Prove this claim or find a counterexample (and prove that it is a counterexample).

Problem 5. Prove that each vertex of the Minkowski sum $P+Q$ of two polytopes can be uniquely written as a sum of a vertex of P and a vertex of Q.

Problem 6. Find a bijection between integer lattice points of the permutohedron P_{n} and forests on n labelled vertices.

Problem 7. Prove that the expansion of the product

$$
\prod_{1 \leq i<j \leq n}\left(x_{i}+x_{j}\right)
$$

contains the monomials $x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}$ (with nonzero coefficients) for all integer lattice points $a=\left(a_{1}, \ldots, a_{n}\right)$ of the (shifted) permutohedron $P_{n}+\{(-1, \ldots,-1)\}$. Describe all monomials in this expansion whose coefficients are equal to 1 .

Problem 8. Fix $(n-1)\binom{n}{2}$ nonzero complex constants $c_{i j k}$, for $1 \leq i<$ $j \leq n$ and $k=1, \ldots, n-1$. Assume that the product of any nonempty subset of the numbers $\left(c_{i j k}\right)^{ \pm 1}$ is not equal to 1 . Consider the following polynomials $f_{k}\left(x_{1}, \ldots, x_{n}\right), k=1, \ldots, n-1$, in the variables x_{1}, \ldots, x_{n} :

$$
f_{k}\left(x_{1}, \ldots, x_{n}\right)=\prod_{1 \leq i<j \leq n}\left(x_{i}-c_{i j k} x_{j}\right) .
$$

Find the number of solutions in $(\mathbb{C} \backslash\{0\})^{n}$ of the system of n equations in the n variables x_{1}, \ldots, x_{n} by explicitly solving this system:

$$
\left\{\begin{array}{l}
f_{1}\left(x_{1}, \ldots, x_{n}\right)=0 \\
f_{2}\left(x_{1}, \ldots, x_{n}\right)=0 \\
\ldots \\
f_{n-1}\left(x_{1}, \ldots, x_{n}\right)=0 \\
x_{n}=1
\end{array}\right.
$$

Compare your answer with Kushnirenko's theorem.

Problem 9. For a polytope P that belongs to the hyperplane $H:=$ $\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{1}+\cdots+x_{n}=0\right\} \subset \mathbb{R}^{n}$, we defined the volume $\operatorname{Vol}_{H}(P)$ as $\operatorname{Vol}(p(P))$, where $p: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-1}$ is the projection $p:\left(x_{1}, \ldots, x_{n}\right) \mapsto$ $\left(x_{1}, \ldots, x_{n-1}\right)$. Also let $\operatorname{Vol}_{\text {eucl }}(P)$ be the usual $(n-1)$-dimensional Euclidian volume of P.

For any n, find the constant C such that $\operatorname{Vol}_{\text {eucl }}(P)=C \cdot \operatorname{Vol}_{H}(P)$.
For example, for $n=2$ and the line segment $P=[(0,0),(1,-1)]$, we have $\operatorname{Vol}_{H}(P)=1$ and $\operatorname{Vol}_{\text {eucl }}(P)=\sqrt{2}$, so $C=\sqrt{2}$.

Problem 10. In class, we constructed a pseudoline arrangement by splitting all triple intersections in the Pappus configuration into 3 double intersections. Give a rigorous proof that this pseudoline arrangement cannot be drawn on the plane with all straight lines.

Problem 11. Let $G=(V, E)$ be a graph without loops. Pick orientations of all edges in G. Let \mathbb{R}^{E} be the vector space of functions $f: E \rightarrow \mathbb{R}$ on edges of G, and let $\mathbb{Z}^{E} \subset \mathbb{R}^{E}$ be the lattice of all integer-valued functions on edges. For a vertex $v \in V, f_{v} \in \mathbb{R}^{E}$ is given by

$$
f_{v}(e)=\left\{\begin{array}{cl}
1 & \text { if } e \text { is an outgoing edge from the vertex } v \\
-1 & \text { if } e \text { is an incoming edge to the vertex } v \\
0 & \text { otherwise }
\end{array}\right.
$$

Let $C_{G} \simeq \mathbb{R}^{m}$ be the quotient space of \mathbb{R}^{E} by the linear subspace spanned by all f_{v}, for $v \in V$. Let $p: \mathbb{R}^{E} \rightarrow C_{G}$ be the natural projection to C_{G}. Also let $L_{G}:=p\left(\mathbb{Z}^{E}\right) \simeq \mathbb{Z}^{m}$ be the integer lattice in C_{G}.

Let $\mathbf{e}_{e}, e \in E$, denote the coordinate vectors in the space \mathbb{R}^{E}. (In other words, \mathbf{e}_{e} is the function on edges of G which is equal to 1 on the edge e and 0 on all other edges.)

The cographical vector arrangement is the arrangement of the vectors $p\left(\mathbf{e}_{e}\right)$, for $e \in E$, in the vector space C_{G}.
(a) Prove that the cographical vector arrangement is unimodular with respect to the integer lattice L_{G}.
(b) Describe all bases of the cographical vector arrangement.

Problem 12. Let $v_{1}, \ldots, v_{N} \in \mathbb{Z}^{d}$ be a unimodular collection of vectors, and let $Z=\operatorname{Zon}\left(v_{1}, \ldots, v_{N}\right)$ be the associated zonotope. Prove that the Ehrhart polynomial $i_{Z}(t)$ of the zonotope Z equals

$$
i_{Z}(t)=\sum_{I \text { independent subset in }[N]} t^{|I|} .
$$

Use the Ehrhart reciprocity (or some other method) to deduce that the number $\#\left(P_{n} \backslash \partial P_{n}\right) \cap \mathbb{Z}^{n}$ of integer lattice points in the interior of the permutohedron P_{n} equals $(-1)^{n-1}\left(F_{n}^{\text {even }}-F_{n}^{\text {odd }}\right)$, where $F_{n}^{\text {even }}$ (resp., $F_{n}^{\text {odd }}$) is the number of forests on n labelled vertices with even (resp., odd) number of edges. Can you give a direct proof of this claim?

Problem 13. For integers $n \geq 1$ and $k \geq 0$, calculate the number of regions of the extended Catalan arrangement, which consists of the hyperplanes in \mathbb{R}^{n} given by the equations:

$$
x_{i}-x_{j}=r, \text { for } 1 \leq i<j \leq n, \text { and } r=-k,-k+1, \ldots, k-1, k .
$$

Problem 14. For integers $n \geq 1$ and $k \geq 0$, calculate the number of regions of the extended Shi arrangement, which consists of the hyperplanes in \mathbb{R}^{n} given by the equations:

$$
x_{i}-x_{j}=r, \text { for } 1 \leq i<j \leq n, \text { and } r=-k,-k+1, \ldots, k, k+1 .
$$

Problem 15. Find a bijective proof for the formula $(n+1)^{n-1}$ for the number of regions of the Shi arrangement in \mathbb{R}^{n}.

