
18.218 Sprint 2017 — Problem Set 1

due Monday, April 3, 2017

Turn in as many problems as you want.

Problem 1. LetG be a simple graph (undirected, no loops, no multiple
edges) on vertices 1, . . . , n. A configuration is a collection of nonnneg-
ative integers c1, . . . , cn assigned to the vertices of G.

We say that a vertex i of G is unhappy if

ci <
1

2

∑
j is a neighbor of i

cj.

We also say that a vertex i is excited if

ci >
1

2

∑
j is a neighbor of i

cj.

The Sponsor Game is the following game on configurations:

• Start with a configuration (c1, . . . , cn) = (0, . . . , 0, 1, 0, . . . , 0).
• Pick any vertex of i which is unhappy and add 1 to ci.
• Stop if there are no unhappy vertices.

The Excited Sponsor Game is the following modification of the game:

• Start with the configuration (c1, . . . , cn) = (0, . . . , 0).
• Pick any vertex of i which is not excited and add 1 to ci.
• Stop if all vertices are exited.

(a) For both the Sponsor Game and the Excited Sponsor Game, show
that, if there is a way to play the game so that it stops after N steps,
then any way to play the game will produce the same result (the same
final configuration) after N steps.

(b) Prove that, if G is a simply-laced Dynkin diagram (types ADE),
then the Sponsor Game stops after finitely many steps.

(c) Prove that, if G is a simply-laced Dynkin diagram, then the
Excited Sponsor Game stops after finitely many steps.

(d) Classify all graphs G for which the Sponsor Game stops.

(e) Classify all graphs G for which the Excited Sponsor Game stops.

Problem 2. Kostant’s Game is the following game on configurations:

• Start with a configuration (c1, . . . , cn) = (0, . . . , 0, 1, 0, . . . , 0).
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• Pick any vertex of i which is unhappy and replace ci by

−ci +
∑

j neighbor of i

cj.

• Stop if there are no unhappy vertices.

Show that, if G is a simply-laced affine Dynkin diagram (i.e., an ex-
tended Dynkin diagram of type Ã, D̃, Ẽ), then there exists an infinite
periodic way to play Kostant’s Game, that is, the sequence of vertices
where we apply the moves has the form i1, ..., iN , i1, . . . , iN , i1, . . . , iN , . . . .

Problem 3. Let A = (aij) be a symmetric n × n matrix such that
aij ≤ 0, for any i 6= j.

Show that the following two conditions are equivalent:

(1) There exists an n-vector v > 0 such that Av > 0. (Here the
notation v > 0 means that all entries of v are positive.)

(2) The matrix A is positive-definite, that is, all principal minors
of A are positive.

Problem 4. Prove that, for every crystallographic root system, the
root poset has a unique maximal element (the highest root). (If possi-
ble, try to avoid using the classification of root systems.)

Problem 5. Let A0 be the fundamental alcove of a root system of
type Ar. (A0 is an r-dimensional simplex.) Find all isometries (i.e.,
distance preserving affine transformations x→Mx+ b of the space V )
that preserve the simplex A0.

Problem 6. For a crystallographic root system, prove that each alcove
of the affine Coxeter arrangement contains exactly one point of the
rescaled coroot lattice 1

h
Q∨ in its interior. (Here h = ht(θ) + 1 is the

Coxeter number.)

Problem 7. (a) Let I be a subset of {(i, j) | 1 ≤ i < j ≤ n}. Prove
that I is the set of inversions Inv(w) := {(i, j) | 1 ≤ i < j ≤ n,w(i) >
w(j)} of a permutation w ∈ Sn if and only if, for any i < j < k, the
set I satisfies:

(1) if (i, j) and (j, k) are in I, then (i, k) is in I.
(2) If (i, j) and (j, k) are not in I, then (i, k) is not in I.

(b) For any crystallographic root system Φ, prove that a subset I of
positive roots Φ+ is the inversion set Inv(w) := {α ∈ Φ+ | w(α) 6∈ Φ+}
of an element of the Weyl group w ∈ W if and only if, for any triple of
positive roots α, β, γ ∈ Φ+ such that α + γ = β, the set I satisfies:

(1) If α and γ are in I, then β is in I.
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(2) If α and γ are not in I, then β is in not I.

Problem 8. Let us label the boxes of the staircase Young diagram
λ = (n− 1, n− 2, . . . , 1) by pairs (i, j), 1 ≤ i < j ≤ n, as follows:

(1, n) (2, n) (3, n) · · · (n− 2, n) (n− 1, n)
(1, n− 1) (2, n− 1) (3, n− 1) · · · (n− 2, n− 1)
...

...
...

. . .
(1, 4) (2, 4) (3, 4)
(1, 3) (2, 3)
(1, 2)

A balanced tableau T of the staircase shape λ = (n− 1, n− 2, . . . , 1)
if a filling of the Young diagram λ by the numbers 1, 2, . . . , N =

(
n
2

)
(without repetitions) such that, for any i < j < k in [N ], the entries
a, b, c of the boxes (i, j), (i, k), (j, k) in T satisfy a < b < c or a > b > c.

Prove that the following construction gives a bijection between re-
duced decompositions w0 = si1si2 · · · siN of the longest permutation
w0 in the symmetric group Sn and balanced tableaux T of the shape
λ = (n− 1, . . . , 1).

Let w0 = si1si2 · · · siN = skN lN · · · sk2l2sk1l1 , where, for a = 1, . . . , N ,
skala is the transposition of ka < la given by

skala = si1si2 · · · sia−1siasia−1 · · · si2si1 .

Then, for a = 1, . . . , N , the entry of the box (ka, la) in T is a.

Problem 9. Generalize the previous problem to any root system Φ
(and prove it).

Problem 10. For any group G and m ≥ 2, the Hurwitz action is
the action on m-tuples (g1, . . . , gm) of elements of G generated by the
generators σi, i = 1, . . . ,m− 1, given by

σi : (g1, . . . , gn) 7→ (g1, . . . , gi−1, gigi+1g
−1
i , gi, gi+2, . . . , gm).

Assume that G = Sn (the symmetric group) and m = n − 1. Let
s1, s2, . . . , sn−1 be the simple transpositions in Sn (with the standard
indexing). Prove that the number of (n−1)-tuples in Sn obtained from
from (s1, . . . , sn−1) by the Hurwitz action equals the number nn−2 of
spanning trees of the complete graph Kn.

For example, for n = 3, we obtain 3 = 33−2 pairs (s1, s2), (s1s2s1, s1),
(s2, s2s1s2).

Problem 11. A non-crossing tree inKn (with vertices labelled 1, 2, . . . , n)
is a tree without a pair of edges (i, j) and (k, l) such that i < k < j < l.
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For any ordered (n − 1)-tuple (g1, . . . , gn−1) of transpositions in Sn

obtained from (s1, . . . , sn−1) by the Hurwitz action (see the previous
problem), consider the unordered (n−1)-tuple {g1, . . . , gn−1} and iden-
tify it with edges of a subgraph in Kn. (The transposition of i and j
correspondes to an edge (i, j).)

(a) Prove that all subgraphs of Kn obtained by this procedure are
exactly all non-crossing trees.

(b) Find a formula for the number of non-crossing trees in Kn.

Problem 12. (a) For two permutations u,w ∈ Sn, show that u ≤ w
in the weak Bruhat order on Sn if and only if Inv(u−1) ⊆ Inv(w−1).

(b) For two permutations u,w ∈ Sn, show that u ≤ w in the strong
Bruhat order on Sn if and only if rij(u) ≥ rij, for any i, j ∈ [n], where

rij(w) := #{k | 1 ≤ k ≤ i, w(i) ≤ j}.

Problem 13. A permutation w ∈ Sn is called fully commutative if all
reduced decompositions of w are obtained from each other by using a
sequence of the commutation relations sisj = sjsi, for |i− j| ≥ 2.

Show that the symmetric group Sn contains exactly the Catalan
number Cn = 1

n+1

(
2n
n

)
of fully commutative elements.

Problem 14. An upper order ideal in the root poset (Φ+,≤) is a subset
I ⊂ Φ+ such that if α ∈ I and β ≥ α then β ∈ I.

An upper order ideal I in the root poset is called an abelian ideal if
I does not contain a triple of roots α, β, γ such that β = α + γ.

(a) For type An−1, show that the number of upper order ideals in
the root poset equals the Catalan number Cn.

(b) For type An−1, show that the number of abelian ideals in the
root poset equals 2n−1.

(c) For any crystallographic root system Φ of rank r, show that the
number of abelian ideals in Φ+ equals 2r.


