due Monday, April 3, 2017

Turn in as many problems as you want.

Problem 1. Let G be a simple graph (undirected, no loops, no multiple edges) on vertices $1, \ldots, n$. A *configuration* is a collection of nonnnegative integers c_1, \ldots, c_n assigned to the vertices of G.

We say that a vertex i of G is unhappy if

$$c_i < \frac{1}{2} \sum_{j \text{ is a neighbor of } i} c_j.$$

We also say that a vertex i is *excited* if

$$c_i > \frac{1}{2} \sum_{j \text{ is a neighbor of } i} c_j.$$

The Sponsor Game is the following game on configurations:

- Start with a configuration $(c_1, ..., c_n) = (0, ..., 0, 1, 0, ..., 0).$
- Pick any vertex of i which is unhappy and add 1 to c_i .
- Stop if there are no unhappy vertices.

The *Excited Sponsor Game* is the following modification of the game:

- Start with the configuration $(c_1, \ldots, c_n) = (0, \ldots, 0)$.
- Pick any vertex of i which is not excited and add 1 to c_i .
- Stop if all vertices are exited.

(a) For both the Sponsor Game and the Excited Sponsor Game, show that, if there is a way to play the game so that it stops after N steps, then any way to play the game will produce the same result (the same final configuration) after N steps.

(b) Prove that, if G is a simply-laced Dynkin diagram (types ADE), then the Sponsor Game stops after finitely many steps.

(c) Prove that, if G is a simply-laced Dynkin diagram, then the Excited Sponsor Game stops after finitely many steps.

(d) Classify all graphs G for which the Sponsor Game stops.

(e) Classify all graphs G for which the Excited Sponsor Game stops.

Problem 2. Kostant's Game is the following game on configurations:

• Start with a configuration $(c_1, ..., c_n) = (0, ..., 0, 1, 0, ..., 0).$

• Pick any vertex of i which is unhappy and replace c_i by

$$-c_i + \sum_{j \text{ neighbor of } i} c_j$$

• Stop if there are no unhappy vertices.

Show that, if G is a simply-laced affine Dynkin diagram (i.e., an extended Dynkin diagram of type \tilde{A} , \tilde{D} , \tilde{E}), then there exists an infinite *periodic* way to play Kostant's Game, that is, the sequence of vertices where we apply the moves has the form $i_1, \ldots, i_N, i_1, \ldots, i_N, i_1, \ldots, i_N, \ldots$.

Problem 3. Let $A = (a_{ij})$ be a symmetric $n \times n$ matrix such that $a_{ij} \leq 0$, for any $i \neq j$.

Show that the following two conditions are equivalent:

- (1) There exists an *n*-vector v > 0 such that Av > 0. (Here the notation v > 0 means that all entries of v are positive.)
- (2) The matrix A is positive-definite, that is, all principal minors of A are positive.

Problem 4. Prove that, for every crystallographic root system, the root poset has a unique maximal element (the highest root). (If possible, try to avoid using the classification of root systems.)

Problem 5. Let \mathcal{A}_0 be the fundamental alcove of a root system of type A_r . (\mathcal{A}_0 is an *r*-dimensional simplex.) Find all isometries (i.e., distance preserving affine transformations $x \to Mx + b$ of the space V) that preserve the simplex \mathcal{A}_0 .

Problem 6. For a crystallographic root system, prove that each alcove of the affine Coxeter arrangement contains exactly one point of the rescaled coroot lattice $\frac{1}{h}Q^{\vee}$ in its interior. (Here $h = ht(\theta) + 1$ is the Coxeter number.)

Problem 7. (a) Let I be a subset of $\{(i, j) \mid 1 \leq i < j \leq n\}$. Prove that I is the set of inversions $Inv(w) := \{(i, j) \mid 1 \leq i < j \leq n, w(i) > w(j)\}$ of a permutation $w \in S_n$ if and only if, for any i < j < k, the set I satisfies:

- (1) if (i, j) and (j, k) are in I, then (i, k) is in I.
- (2) If (i, j) and (j, k) are not in I, then (i, k) is not in I.

(b) For any crystallographic root system Φ , prove that a subset I of positive roots Φ^+ is the inversion set $Inv(w) := \{\alpha \in \Phi^+ \mid w(\alpha) \notin \Phi^+\}$ of an element of the Weyl group $w \in W$ if and only if, for any triple of positive roots $\alpha, \beta, \gamma \in \Phi^+$ such that $\alpha + \gamma = \beta$, the set I satisfies:

(1) If α and γ are in *I*, then β is in *I*.

2

(2) If α and γ are not in *I*, then β is in not *I*.

Problem 8. Let us label the boxes of the staircase Young diagram $\lambda = (n - 1, n - 2, ..., 1)$ by pairs $(i, j), 1 \le i < j \le n$, as follows:

A balanced tableau T of the staircase shape $\lambda = (n - 1, n - 2, ..., 1)$ if a filling of the Young diagram λ by the numbers $1, 2, ..., N = \binom{n}{2}$ (without repetitions) such that, for any i < j < k in [N], the entries a, b, c of the boxes (i, j), (i, k), (j, k) in T satisfy a < b < c or a > b > c.

Prove that the following construction gives a bijection between reduced decompositions $w_0 = s_{i_1}s_{i_2}\cdots s_{i_N}$ of the longest permutation w_0 in the symmetric group S_n and balanced tableaux T of the shape $\lambda = (n - 1, ..., 1)$.

Let $w_0 = s_{i_1} s_{i_2} \cdots s_{i_N} = s_{k_N l_N} \cdots s_{k_2 l_2} s_{k_1 l_1}$, where, for $a = 1, \ldots, N$, $s_{k_a l_a}$ is the transposition of $k_a < l_a$ given by

$$s_{k_a l_a} = s_{i_1} s_{i_2} \cdots s_{i_{a-1}} s_{i_a} s_{i_{a-1}} \cdots s_{i_2} s_{i_1}.$$

Then, for a = 1, ..., N, the entry of the box (k_a, l_a) in T is a.

Problem 9. Generalize the previous problem to any root system Φ (and prove it).

Problem 10. For any group G and $m \ge 2$, the *Hurwitz action* is the action on *m*-tuples (g_1, \ldots, g_m) of elements of G generated by the generators σ_i , $i = 1, \ldots, m-1$, given by

$$\sigma_i: (g_1, \ldots, g_n) \mapsto (g_1, \ldots, g_{i-1}, g_i g_{i+1} g_i^{-1}, g_i, g_{i+2}, \ldots, g_m).$$

Assume that $G = S_n$ (the symmetric group) and m = n - 1. Let $s_1, s_2, \ldots, s_{n-1}$ be the simple transpositions in S_n (with the standard indexing). Prove that the number of (n-1)-tuples in S_n obtained from from (s_1, \ldots, s_{n-1}) by the Hurwitz action equals the number n^{n-2} of spanning trees of the complete graph K_n .

For example, for n = 3, we obtain $3 = 3^{3-2}$ pairs (s_1, s_2) , $(s_1s_2s_1, s_1)$, $(s_2, s_2s_1s_2)$.

Problem 11. A non-crossing tree in K_n (with vertices labelled 1, 2, ..., n) is a tree without a pair of edges (i, j) and (k, l) such that i < k < j < l.

For any ordered (n-1)-tuple (g_1, \ldots, g_{n-1}) of transpositions in S_n obtained from (s_1, \ldots, s_{n-1}) by the Hurwitz action (see the previous problem), consider the unordered (n-1)-tuple $\{g_1, \ldots, g_{n-1}\}$ and identify it with edges of a subgraph in K_n . (The transposition of *i* and *j* correspondes to an edge (i, j).)

(a) Prove that all subgraphs of K_n obtained by this procedure are exactly all non-crossing trees.

(b) Find a formula for the number of non-crossing trees in K_n .

Problem 12. (a) For two permutations $u, w \in S_n$, show that $u \leq w$ in the weak Bruhat order on S_n if and only if $Inv(u^{-1}) \subseteq Inv(w^{-1})$.

(b) For two permutations $u, w \in S_n$, show that $u \leq w$ in the strong Bruhat order on S_n if and only if $r_{ij}(u) \geq r_{ij}$, for any $i, j \in [n]$, where

$$r_{ij}(w) := \#\{k \mid 1 \le k \le i, w(i) \le j\}.$$

Problem 13. A permutation $w \in S_n$ is called *fully commutative* if all reduced decompositions of w are obtained from each other by using a sequence of the commutation relations $s_i s_j = s_j s_i$, for $|i - j| \ge 2$.

Show that the symmetric group S_n contains exactly the Catalan number $C_n = \frac{1}{n+1} {2n \choose n}$ of fully commutative elements.

Problem 14. An *upper order ideal* in the root poset (Φ^+, \leq) is a subset $I \subset \Phi^+$ such that if $\alpha \in I$ and $\beta \geq \alpha$ then $\beta \in I$.

An upper order ideal I in the root poset is called an *abelian ideal* if I does not contain a triple of roots α, β, γ such that $\beta = \alpha + \gamma$.

(a) For type A_{n-1} , show that the number of upper order ideals in the root poset equals the Catalan number C_n .

(b) For type A_{n-1} , show that the number of abelian ideals in the root poset equals 2^{n-1} .

(c) For any crystallographic root system Φ of rank r, show that the number of abelian ideals in Φ^+ equals 2^r .