Problem 11. Let \(X = (x_{ij}) \) be the \(m \times n \) matrix filled with the variables \(x_{ij} \). A minor of a matrix is the determinant of a square submatrix. Let \(D(X) \) be the product of all minors (of all sizes) of the matrix \(X \). Let \(SP_{m,n} \) be the Newton polytope of \(D(X) \).

In class, we showed that the vertices of the polytope \(SP_{m,n} \) are in bijection with regular triangulations of the product of two simplices \(\Delta^{m-1} \times \Delta^{n-1} \).

(a) Show that \(SP_{2,n} \) is the standard permutohedron \(P_n \).

(b) Find the number of vertices of \(SP_{3,3} \).

Problem 12. Let \(G \) be a bipartite graph. Fix a total ordering of edges of \(G \). For a spanning tree \(T \subset G \) and an edge \(e \in E(G) \setminus E(T) \), we say that \(e \) is externally semi-active with respect to \(T \) if, in the unique cycle \(C \subset T \cup \{e\} \), the maximal edge of \(C \) and the edge \(e \) are in the same parity class. Let \(esa(T) \) be the number of externally semi-active edges.

Let \(B_G(x) := \sum_{T \subset G} x^{esa(T)} \) and \(V_G := B_G(0) \).

Prove that
\[
B_G(x) = \sum_{H \subset G} V_H (x - 1)^{c(H)},
\]
where the sum is over connected subgraphs \(H \) of \(G \) (that include all vertices of \(G \)), and \(c(H) \) equals the number of edges of \(H \) minus the number of vertices of \(H \) plus 1.

Problem 13. In this problem, you’ll prove a recurrence relation for the number \(V_G \).

A subset \(S \) of vertices of a bipartite graph \(G \) is called non-expanding if it belongs to one part of \(G \) and the number of vertices that are neighbors of a vertex in \(S \) is less than or equal to \(|S| \). For a subset \(J \) of vertices of \(G \), let \(G \setminus J \) denote the graph \(G \) with vertices \(J \) and all adjacent edges removed. In class, we proved the following lemma.

Lemma 1. For a non-expanding set \(S \) in \(G \) and any spanning tree \(T \subset G \), at least one of the vertices \(i \in S \) is a leaf of \(T \).

(a) Prove the following claim.
Lemma 2. For a vertex i of G, let $G' = G \setminus \{i\}$. Let T' be a spanning tree of G' with $esa(T') = 0$. Then there is a unique edge (i, j) of G such that the tree T obtained from T' by adding the edge (i, j) has $esa(T) = 0$.

(b) Use Lemmas 1 and 2, and the inclusion-exclusion principle to show that, for any non-expanding set S in G, we have

$$V_G = \sum_{J \subseteq S, J \neq \emptyset} (-1)^{|J|-1} V_{G \setminus J}.$$