due Wednesday, May 4, 2016

Problem 1. (a) Prove Bernoulli's formula

$$\sum_{k=1}^{n} k^{m} = \frac{1}{m+1} \sum_{r=0}^{m} {m+1 \choose r} B_{r} n^{m+1-r},$$

for $m, n \ge 0$. Here B_r are the Bernoulli numbers defined by the power series $x/(1-e^{-x}) = \sum_{r\ge 0} B_r x^r/r!$.

(b) Prove Euler's formula

$$\sum_{k=0}^{\infty} k^m x^k = \frac{x \sum_{r=0}^{m-1} A(r,m) x^r}{(1-x)^{m+1}},$$

where A(r, m) is the Eulerian number defined as the number of permutations in S_m with exactly r descents.

Problem 2. For a partition $\lambda = (\lambda_1, \dots, \lambda_n)$, $\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_n \ge 0$, define the function $b_{\lambda}(x_1, \dots, x_n)$, as follows:

$$b_{\lambda}(x_1, \dots, x_n) = \sum_{w \in S_n} w \left(\frac{x_1^{\lambda_1} \cdots x_n^{\lambda_n}}{\prod_{i=1}^{n-1} (1 - x_{i+1}/x_i)} \right).$$

(Here the symmetric group S_n acts on rational functions by permutations of the variables x_i .)

- (a) Show that $b_{\lambda}(x_1,\ldots,x_n)$ is a symmetric polynomial in $\mathbb{Z}[x_1,\ldots,x_n]^{S_n}$.
- (b) Prove that the polynomials $b_{\lambda}(x_1, \ldots, x_n)$ form a \mathbb{Z} -linear basis of $\mathbb{Z}[x_1, \ldots, x_n]^{S_n}$.

Problem 3. Prove the equivalence of the following two definitions of matroids in terms of bases and rank functions.

Fix positive integers $n \ge k > 0$.

Definition 1. The base set of a matroid is a nonempty subset $B \subseteq \binom{[n]}{k}$ that satisfies the **Exchange Axiom**:

$$\forall I, J \in B, \ \forall i \in I \setminus J \quad \exists j \in J \setminus I \text{ such that } (I \setminus \{i\}) \cup \{j\} \in B.$$

Definition 2. The rank function of a matroid is a function rank: $2^{[n]} \to \mathbb{Z}_{>0}$ such that

- (1) $rank(\emptyset) = 0$ and rank([n]) = k.
- (2) $\forall I \subset [n] \text{ and } j \in [n] \setminus I, rank(I \cup \{j\}) rank(I) \in \{0, 1\}.$
- (3) The rank function rank satisfies the **Submodular Condition**:

$$\forall I, J \subset [n], \quad rank(I) + rank(J) \ge rank(I \cup J) + rank(I \cap J).$$

The correspondence between base sets B and rank functions rank is given by

$$rank(I) = \max_{J \in B} |I \cap J|, \quad \text{for } I \subseteq [n].$$

Problem 4. In class, we showed that the *reduced deformation cone* of the permutohedron can be described as

 $\tilde{D}_n = \{ \text{ submodular functions } f: 2^{[n]} \to \mathbb{R} \} / \{ \text{ modular functions } g: 2^{[n]} \to \mathbb{R} \}.$

Recall that *submodular functions* are given by the condition

$$f(I) + f(J) \ge f(I \cup J) + f(I \cap J);$$

and modular functions are given by the condition

$$g(I)+g(J)=g(I\cup J)+g(I\cap J);$$

for any $I, J \subset [n]$.

For n = 2, 3, 4, describe all generators (i.e., one-dimensional rays) of the cone \tilde{D}_n .

Problem 5. Let V_1, \ldots, V_n be a collection of linear subspaces in \mathbb{R}^k . For $I \subseteq [n]$, let

$$f(I) = \text{ dimension of the span of } V_i, i \in I.$$

Prove that f(I) is a submodular function.

Problem 6. Consider a hypergraph $H = \{I_1, I_2, \dots, I_m\}$ with hyperedges $I_i \subseteq [n]$.

An acyclic orientation of H is a choice of a node in each hyperedge $i_s \in I_s$, $s = 1, \ldots, m$, such that the directed graph with edges $i_s \to j$, $\forall s = 1, \ldots, m, \forall j \in I_s$ is acyclic.

For a positive integer q, a q-coloring of H is a map $color : [n] \to [q]$ such that, for any hyperedge I_s of H, the map color has a unique

maximal value on I_s , i.e., $\exists i \in I_s$ such that $\forall j \in I_s \setminus \{i\}$, we have color(i) > color(j).

- (a) Prove that there exists a polynomial $\chi_H(q) \in \mathbb{Q}[q]$ (called *chromatic polynomial* of the hypergraph H) such that, for any positive integer q, the value $\chi_H(q)$ equals the number of q-colorings of H.
- (b) Prove that $(-1)^n \chi_H(-1)$ equals the number of acyclic orientations of the hypergraph H.
- (c) Find an explicit expression for the chromatic polynomial $\chi_H(q)$ of the hypergraph $H = \{I_1\}$ with a single hyperedge $I_1 = [n]$.

Problem 7. Prove the following claim

Dragon Marriage Theorem. Let J_1, \ldots, J_{n-1} be nonempty subsets $J_i \subseteq [n]$. The following conditions are equivalent:

- (1) $\forall j_0 \in [n], \exists j_1 \in J_1, j_2 \in J_2, \dots, j_{n-1} \in J_{n-1}$ such that the elements j_0, \dots, j_{n-1} are all distict.
- (2) $\forall k = 1, ..., n-1$ and \forall distinct $i_1, ..., i_k \in [n-1]$ we have $|J_{i_1} \cup \cdots \cup J_{i_k}| \geq k+1$.
- (3) \exists 2-element subsets $e_1 \subset J_1, \ldots, e_{n-1} \subset J_{n-1}$ such that $\{e_1, \ldots, e_{n-1}\}$ is the edge set of a spanning tree of the complete graph K_n .

Problem 8. The mixed volume $V(P_1, ..., P_d)$ of convex polytopes $P_1, ..., P_d \in \mathbb{R}^d$ is defined as the coefficient of $\lambda_1 ... \lambda_d$ of the polynomial

$$f(\lambda_1, \dots, \lambda_d) = \text{Vol}(\lambda_1 P_1 + \dots + \lambda_d V_d).$$

Prove that the mixed volume $V(P_1, \ldots, P_d)$ is a multilinear function of P_1, \ldots, P_d with respect to Minkowski sum. In other words, show that

$$V(a P_1 + b P'_1, P_2, \dots, P_d) = a V(P_1, P_2, \dots, P_d) + b V(P'_1, P_2, \dots, P_d),$$

for $a, b \ge 0$.

Problem 9. (a) Prove that the set of simplices

$$\Delta_T := \operatorname{conv}(0, e_i - e_j \mid (i, j) \in E(T)),$$

where T ranges over all alternating non-crossing trees on the nodes $1, \ldots, n$, forms a triangulation of the root polytope

$$R_n := \text{conv}(0, e_i - e_j \mid 1 \le i < j \le n).$$

- (b) Show that the normalized volume $(n-1)! \operatorname{Vol}(R_n)$ of the root polytope R_n equals the Catalan number $C_{n-1} = \frac{1}{n} \binom{2n-2}{n-1}$.
 - (c) Prove that the set of simplices

$$\tilde{\Delta}_T := \operatorname{conv}(e_i - e_j \mid (i, j) \in E(T)),$$

where T ranges over all non-crossing bipartite trees in $K_{m,n}$, forms a triangulation of the product of two simplices $\Delta^{m-1} \times \Delta^{n-1}$.

Problem 10. (cf. Problem 10 from Problem Set 1)

Let G be a (simple undirected) graph on the vertices $1, \ldots, n$. Let $Z_G = \sum_{(i,j) \in E(G)} [e_i, e_j]$ be the graphical zonotope for the graph G. In class we explained how a triangulation of the associated root polytope produces a bijection between lattice points of the zonotope Z_G and forests F in the graph G.

Present an explicit construction of bijection between lattice points of Z_G and forests $F \subset G$, and prove that it is indeed a bijection. Alternatively, prove that the following construction gives a needed bijection.

Fix a total ordering of vertices of G and also a total ordering of edges of G. For a forest $F \subset G$, construct the directed graph D = D(F) as follows:

- (1) For any (undirected) edge $\{i, j\}$ of F, the graph D contains two directed edges (i, j) and (j, i).
- (2) For each connected component of the forest F, the graph D contains loop (m, m) at the maximal vertex m of this connected component. (Let's call the vertex m the root of the connected component.)
- (3) For any edge e of G between two different connected components of F, orient the edge e from the component with a smaller root towards the component with larger root. The graph D contains this oriented edge e.
- (4) For any edge e of G that connects two vertices in the same connected component of F (but e is not an edge of F), let C be the unique cycle in the graph $F \cup \{e\}$. Pick the orientation of the cycle C so that the maximal edge e' of C is oriented from the larger vertex of e' towards the smaller vertex of e'. The graph D contains the edge e directed as in this oriented cycle C.

Define the map

$$\phi: F \mapsto (x_1, \dots, x_n),$$
 where $x_i = \text{outdegree}_{D(F)}(i) - 1.$

Prove that the map ϕ is a bijection between forests $F \subset G$ and lattice points of the grapical zonotope Z_G .