
18.217 Problem Set 2 (due Friday, December 6, 2024)

Problem 1. Fix two positive integers n and k. The extended Catalan
arrangement is the arrangement of affine hyperplanes in Rn given by
xi − xj = c, for all 1 ≤ i < j ≤ n and c ∈ {−k,−k + 1, . . . , k − 1, k}.

Find an explicit formula for the number of regions of the extended
Catalan arrangement.

(You can use the finite field method, or any other method to calculate
the number of regions.)

Problem 2. Fix two positive integers n and k. The extended Shi
arrangement is the arrangement of affine hyperplanes in Rn given by
xi − xj = c, for all 1 ≤ i < j ≤ n and c ∈ {−k + 1, . . . , k − 1, k}.

Find explicit formulas for the number of regions and the number of
bounded regions of the extended Shi arrangement.

Problem 3. In class, we defined alternating trees as labelled trees
that don’t contain an increasing 2-path i–j–k with i < j < k. We also
defined local-binary-search trees as binary trees with labelled vertices
such that a left child is less than its parent and a right child is greater
that its parent. Show that the number of alternating trees on n + 1
vertices equals the number of local binary search trees on n vertices.
For example, for n = 2, both of these numbers are 2.

Problem 4. Show that the number of alternating trees on n+1 vertices
(see the previous problem) equals

2−n
n∑
k=0

(
n

k

)
(k + 1)n−1.

Problem 5. Fix n. The Linial arrangement is the arrangement of
hyperplanes in Rn given xi − xj = 1, for all 1 ≤ i < j ≤ n. Show that
the number of regions of the Linial arrangement equals the number of
alternating trees on n+ 1 vertices. (See the previous two problems.)
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Problem 6. The Arnold-Orlik-Solomon algebra An is the algebra over
R generated by anti-commutative generators eij = eji, for i 6= j ∈ [n],
satisfying the relations:

eijejk = eijeik + eikejk, for any i < j < k.

For a graph G on vertex set [n], let eG be the monomial in eij’s defined
(up to a sign) by

eG :=
∏

(ij) is an edge of G

eij

Let us say that a chain C with vertices labelled by integers is rooted
if its vertex with the minimal label is one of its two ends. (We also
view a single vertex as a rooted chain.)

Show that the collection of monomials eG, where G ranges over all
graphs G ⊂ Kn such that each connected component G is a rooted
chain, forms a linear basis of the algebra An.

Problem 7. Prove the following identity, which is known in physics
as the Kleiss-Kuijf relation.

The Parke-Taylor factor PT (x1, . . . , xn) is the following rational ex-
pression in variables x1, . . . , xn:

PT (x1, . . . , xn) :=
n∏
i=1

1

xi − xi+1

,

where we assume that xn+1 = x1. Note that this expression depends
only on a cyclic ordering of the variables.

Let x, y, z1, . . . , zk, t1, . . . tl be some variables. We have

PT (x, z1, . . . , zk, y, t1, . . . , tl) = (−1)l
∑
X

PT (x,X, y),

where the sum is over all shuffles X of two lists of variables z1, . . . , zk
and tl, tl−1, . . . , t1 (with the reversed ordering of ti’s). A shuffle X of
two ordered lists is their permutation that preserves the ordering of
each list.

For example, for k = 1 and l = 2, we have PT (x, z1, y, t1, t2) =

= PT (x, z1, t2, t1, y) + PT (x, t2, z1, t1, y) + PT (x, t2, t1, z1, y).

Problem 8. In class, we discussed the following game on collections
of graphs G on the vertex set [n]. If we can find a pair of edges e1 and
e2 in G such that e1 = (i, j) and e2 = (j, k), where i < j < k, then we
can replace G by a pair of graphs G1 and G2 such that G1 is obtained
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from G by replacing the edge e1 with the edge e3 = (i, k) and G2 is
obtained from G by replacing the edge e2 with the edge e3. Then we
apply similar moves to each G1 and G2, etc.

We start with a single initial graph and keep playing this game until
we obtain a collection of graphs for each of which no more moves are
possible. Note that there might be many different ways to play this
game, because, at each step, there might be several possible choices for
a pair of edges e1 and e2.

(1) Show that this game always terminates after finitely many steps.

(2) Show that the number of graphs in a final collection depends only
on the initial graph and does not depend on a way to play the game.

(3) Show that, if the initial graph G in the n-chain G = 1–2– · · · –n,
then the number of graphs in any final collection equals the Catalan
number Cn = 1

n+1

(
2n
n

)
.

Problem 9. For a partition λ = (λ1 ≥ · · ·λn ≥ 0), define two sym-
metric polynomials in n variables. The Schur polynomial is defined
as

sλ(x1, . . . , xn) =
∑
w∈Sn

(
xλ11 · · ·xλnn∏

1≤i<j≤n(1− xj/xi)

)
.

Also define

bλ(x1, . . . , xn) =
∑
w∈Sn

(
xλ11 · · ·xλnn∏n−1

i=1 (1− xi+1/xi)

)
.

The Schur polynomial sλ(x1, . . . , xn) is the sum of K(λ, β)xβ11 · · · xβnn
over all lattice points (β1, . . . , βn) of the permutohedron P (λ1, . . . , λn),
and K(λ, β) is a certain integer called the Kostka number. On the
other hand, according to Brion’s formula, bλ(x1, . . . , xn) is the sum of
monomials xβ11 · · ·xβnn over the same set of lattice points (β1, . . . , βn).

Prove that {sλ} and {bλ} are two linear bases of the same linear
space.
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Problem 10. Show that the Eulerian number An,k, i.e., the number of
permutations of size n with exactly k descents, is given by the following
formula:

An,k =
k∑
j=0

(−1)j
(
n+ 1

j

)
(k + 1− j)n.

Problem 11. Fix positive integers k ≤ n. Let M be a nonempty
subset of

(
[n]
k

)
. Show that the following two conditions are equivalent:

(Exch) For any I, J ∈ M and any i ∈ I, there exists j ∈ J such that
(I \ {i}) ∪ {j} ∈M .

(StrngExch) For any I, J ∈ M and any i ∈ I, there exists j ∈ J such that
(I \ {i}) ∪ {j} ∈M and (J \ {j}) ∪ {i} ∈M .

Problem 12. In this problem we consider simple graphs G = (V,E)
on the vertex set V = [n] with vertices arranged on a circle in the
clockwise order and edges represented by chords of the circle. We say
that two edges of G intersect if they have a common vertex or the
chords intersect inside the circle. For example, the edges (1, 3) and
(2, 4) intersect; but the edges (1, 4) and (2, 3) don’t intersect.

Such a graph G is called a thrackle1 if any two edges of G intersect.
(1) Show that the maximal possible number of edges in a thrackle

on n vertices is n.
(2) Prove that the number of thrackles on n vertices with n edges

equals the Eulerian number An−1,1, i.e., the number of permutations of
size n with exactly 1 descent.

(3) Give an explicit closed-form formula for the number of thrackles
on n vertices with n edges.

Problem 13. For a thrackle G on n vertices with n edges (as in the
previous problem), let SG be the convex hull of n points ei+ej for every
edge (i, j) of G. (Here e1, . . . , en are the standard coordinate vectors
of Rn.) Show that

(1) All polytopes SG are (n− 1)-dimensional simplices.
(2) For any two thrackles G and G′ with n vertices and n edges, the

interiors of polytopes SG and SG′ don’t intersect.
1A side note: This is a special case of a more general class of Conway’s thrackles.



5

(3) The union of polytopes SG for all thrackles on n vertices with n
edges is the second hypersimplex ∆n,2.

Problem 14. For a simple graph G on the vertex set [n], define the
root polytope RG ⊂ {x1 + · · ·+ xn = 0} ⊂ Rn as the convex hull of the
origin and points ei − ej for all edges (i, j), i < j, of G.

Show that the collection of root polytopes RT , where T ranges over
all non-crossing alternating trees on [n], forms a triangulation of the
root polytope Rn := RKn .

A non-crossing alternating tree is an alternating tree T (defined in
Problem 3) such that any two edges of T with all distinct vertices do
not intersect (defined in Problem 12).

Problem 15. Let G = (V,E) be a simple connected graph on the ver-
tex set V = [n]. We say that a non-empty subset I ⊆ [n] is G-connected
if the induced graph G|I is connected. The graph-associahedron AG is
defined as the Minkowski sum of simplices:

AG :=
∑

I is G-connected

conv {ei | i ∈ I} .

(1) Show that the number of verticesN(G) of the graph-associahedron
AG satisfies the following recurrence relation:

N(G) =
∑
i∈[n]

N(G1) · · ·N(Gm(i)),

where G1, . . . , Gm(i) are the connected components of the graph ob-
tained from G be removing vertex i, i.e., the connected components of
the induced graph G|[n]\{i}.

(2) Find explicit formulas for numbers N(G) of vertices of graph-
associahedra for the following graphs on n vertices: the complete graph
Kn, the n-chain 1–2– · · · –n, the n-cycle, the (n − 1)-star. (Here the
(n − 1)-star is the graph on the vertex set [n] with edges (1, i) for all
i = 2, . . . , n.)


