
18.217 Problem Set 1 (due Friday, October 18, 2024)

Problem 1. Define the hypersimplex ∆nk, for integers n > k > 0, as

∆nk := {(x1, . . . , xn) ∈ Rn |
n∑

i=1

xi = k and 0 ≤ xi ≤ 1 for i ∈ [n]}

(1) Describe vertices, edges, and facets of the hypersimplex ∆nk.

(2) Calculate the f -vector (f0, f1, . . . , fn−1) of ∆nk. Your answer for
fi might involve a single summation.

Problem 2. Show that the Minkowski sum of hypersimplices
∑n−1

k=1 ∆nk

is the standard permutohedron

Pn := conv{(w1, . . . , wn) | w1, . . . , wn is permutation of 1, . . . , n}

translated by the vector −(1, . . . , 1).

Problem 3. True or false: Let P be a convex 3-dimensional polytope
such that P is centrally symmetric and all facets of P are a centrally
symmetric polygons. Then P is a zonotope. (Prove or find a coun-
terexample.)

Problem 4. Let G = (V,E) be a simple connected graph on the
vertex set V = {1, . . . , n}. The graphical zonotope ZG is defined as the
Minkowski sum of line segments

ZG :=
∑
{i,j}∈E

[ei, ej],

where e1, . . . , en are the standard coordinate vectors in Rn.
Consider a fine zonotopal tiling τ of ZG. We say that F ⊂ ZG is a

face the tiling τ if F is a face of (at least one) tile in τ . Let fi = fi(τ)
be the number of i-dimensional faces in τ . Define the f -vector of τ
as (f0, f1, . . . , fn−1). For example, the zonotopal tiling of a regular
hexagon into 3 rhombuses has f -vector (7, 9, 3).

Show that all fine zonotopal tilings of ZG have the same f -vector.

1



2

Problem 5. For a graph G = (V,E) as in the previous problem, a
G-tournament T is an orientation of all edges of G. (Here vertices of G
represent teams; an edge {i, j} ∈ E represents a game between teams i
and j; and an orientation i→ j of an edge means that team i won the
game with team j in a tournament T .) The score vector (s1, . . . , sn) of
a tournament T is defined by si = outdegreeT (i), for i = 1, . . . , n. In
other words, si is the number of games that team i won.

(1) Prove that score vectors of all G-tournaments are exactly all
integer lattice points of the graphical zonotope ZG.

(2) Prove that v is a vertex of the graphical zonotope ZG if and only
if there exists a unique G-tournament T such that v is the score vector
of T .

Problem 6. In class, we defined the nth associahedron An as the
Minkowski sum of simplices

An :=
∑

1≤i≤j≤n

conv{ei, ei+1, . . . , ej} ⊂ Rn.

We explained how to describe vertices of An in terms of binary trees.
Describe all faces of the polytope An. Show that the number fk(An)

of k-dimensional faces of An equals the number of subdivisions of an
(n+2)-gon by n−k−1 nonintersecting diagonals. (Here the diagonals
are not allowed to intersect in the interior of the (n+ 2)-gon, but they
are allowed to have common vertices.)

Problem 7. The Narayana number N(n, k), for 1 ≤ k ≤ n, is defined
as the number of Dyck paths with 2n steps (n “up” steps and n “down”
steps) and exactly k peaks. (A peak in a Dyck path is an “up” step
followed by a “down” step.)

In class, we showed that the kth component hk(An) of the h-vector
of the associahedron An equals the number binary trees on n nodes
with exactly k left edges.

Prove that hk(An) = N(n, k + 1). In other words, show that the
number of binary trees on n nodes with k left edges equals the number
of Dyck paths with 2n steps and k + 1 peaks. Preferably, construct a
bijection between these sets.
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Problem 8. Recall the relation f(x) = h(x + 1) between the f -
polynomial and the h-polynomial of a simple polytope. For the as-
sociahedron An, this gives the combinatorial identity

n−1∑
k=0

fk(An)xk =
n−1∑
k=0

hk(An) (x+ 1)k,

where fk(An) is the number of subdivisions of an (n+2)-gon by n−k−1
nonintersecting diagonals and hk(An) is the Narayana number N(n, k+
1) (see the previous two problems). Give a direct combinatorial proof
of this identity.

Problem 9. (cf. previous problem) Similarly, for the standard per-
mutohedron Pn we obtain the combinatorial identity

n−1∑
k=0

fk(Pn)xk =
n−1∑
k=0

hk(Pn) (x+ 1)k.

We showed in class that fk(Pn) = (n− k)! S(n, n− k), where S(n, n−
k) is the Stirling number of the second kind, i.e., the number of set
partitions of [n] with n−k nonempty blocks. On the other hand, hk(Pn)
is the Eulerian number A(n, k), i.e., the number of permutations in Sn

with exactly k descents.
Give a direct combinatorial proof of this identity relating Stirling

numbers of the second kind with Eulerian numbers.

Problem 10. Construct a bijection between integer lattice points of
the standard permutohedron Pn and forests on n labelled vertices.

Problem 11. Construct a decomposition of the permutohedron Pn

into a disjoint union Pn = π1 ∪̇π2 ∪̇ · · · ∪̇ πM of half-open parallelo-
topes πi (of various dimensions d) such that each d-dimensional par-
allelotope πi is isomorphic to the half-open cube [1, 0[d via an integer
invertible (over Z) linear map. (In class, we showed such a decomposi-
tion for P3.)

Problem 12. We say that f : Z≥0 → R is a quasipolynomial function if
there exist a positive integer k and polynomials f0(t), f1(t), . . . , fk−1(t)
such that f(t) = fi(t), for any t ∈ Z≥0 and i ∈ {0, . . . , k− 1} such that
t ≡ i (mod k). For example, bt/2c is a quasipolynomial with k = 2,
f0(t) = t/2, and f1(t) = (t− 1)/2.
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Let P ⊂ Rd be a rational polytope, i.e., all vertices of P belong to
Qd. Show that the function

iP (t) = #(tP ∩ Zd), for t ∈ Z≥0
is quasipolynomial. (Here you may assume that we already know poly-
nomiality of Ehrhart polynomials of integer lattice polytopes.)

Problem 13. For a simple connected graph G, let Fodd(G) (resp.,
Feven(G)) and be the number of forests F ⊂ G containing all vertices
of G with odd (resp., even) number of connected components.

(1) Show that Fodd(G) ≥ Feven(G) for any G.

(2) Give a simple combinatorial characterization of graphs G for
which Fodd(G) = Feven(G).


