18.217 PROBLEM SET 1 (due Friday, October 18, 2024)

Problem 1. Define the hypersimplex A, for integers n > k > 0, as

AN {(xl,...,xn)E]R”|in:kand0§xi§1fori€[n]}

i=1
(1) Describe vertices, edges, and facets of the hypersimplex A,.

(2) Calculate the f-vector (fo, fi,--., fu_1) of Auk. Your answer for
fi might involve a single summation.

Problem 2. Show that the Minkowski sum of hypersimplices ZZ;% Ak
is the standard permutohedron

P, := conv{(wy,...,wy,) | wy,...,w, is permutation of 1,..., n}

translated by the vector —(1,...,1).

Problem 3. True or false: Let P be a convex 3-dimensional polytope
such that P is centrally symmetric and all facets of P are a centrally
symmetric polygons. Then P is a zonotope. (Prove or find a coun-
terexample.)

Problem 4. Let G = (V,E) be a simple connected graph on the
vertex set V = {1,...,n}. The graphical zonotope Zq is defined as the
Minkowski sum of line segments

ZG = Z [ei,ej],
{(i.j}eE
where ey, ..., e, are the standard coordinate vectors in R".

Consider a fine zonotopal tiling 7 of Z5. We say that F' C Zg is a
face the tiling 7 if F'is a face of (at least one) tile in 7. Let f; = f;(7)
be the number of ¢-dimensional faces in 7. Define the f-vector of 7
as (fo, f1,-.., fu_1). For example, the zonotopal tiling of a regular
hexagon into 3 rhombuses has f-vector (7,9, 3).

Show that all fine zonotopal tilings of Z5 have the same f-vector.
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Problem 5. For a graph G = (V, E) as in the previous problem, a
G-tournament T is an orientation of all edges of G. (Here vertices of G
represent teams; an edge {i,j} € E represents a game between teams i
and 7; and an orientation ¢ — j of an edge means that team ¢ won the
game with team j in a tournament 7'.) The score vector (si,...,s,) of
a tournament 7T is defined by s; = outdegree, (i), for : = 1,...,n. In
other words, s; is the number of games that team ¢ won.

(1) Prove that score vectors of all G-tournaments are exactly all
integer lattice points of the graphical zonotope Z.

(2) Prove that v is a vertex of the graphical zonotope Z if and only
if there exists a unique G-tournament 7" such that v is the score vector
of T.

Problem 6. In class, we defined the nth associahedron A, as the
Minkowski sum of simplices

A, = Z conv{e;, €;i1,...,€;} C R™

1<i<j<n

We explained how to describe vertices of A,, in terms of binary trees.

Describe all faces of the polytope A,. Show that the number fi(A,)
of k-dimensional faces of A, equals the number of subdivisions of an
(n+2)-gon by n — k — 1 nonintersecting diagonals. (Here the diagonals
are not allowed to intersect in the interior of the (n + 2)-gon, but they
are allowed to have common vertices.)

Problem 7. The Narayana number N(n,k), for 1 <k < n, is defined
as the number of Dyck paths with 2n steps (n “up” steps and n “down”
steps) and exactly k peaks. (A peak in a Dyck path is an “up” step
followed by a “down” step.)

In class, we showed that the kth component hy(A,) of the h-vector
of the associahedron A, equals the number binary trees on n nodes
with exactly k left edges.

Prove that hi(A,) = N(n,k + 1). In other words, show that the
number of binary trees on n nodes with k left edges equals the number
of Dyck paths with 2n steps and k + 1 peaks. Preferably, construct a
bijection between these sets.
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Problem 8. Recall the relation f(x) = h(z + 1) between the f-
polynomial and the h-polynomial of a simple polytope. For the as-
sociahedron A,,, this gives the combinatorial identity

i fi(A,) 2k = i hi(A,) (x + 1)F,

where fi(A,) is the number of subdivisions of an (n+2)-gon by n—k—1
nonintersecting diagonals and h(A,,) is the Narayana number N (n, k+
1) (see the previous two problems). Give a direct combinatorial proof
of this identity.

Problem 9. (cf. previous problem) Similarly, for the standard per-
mutohedron P, we obtain the combinatorial identity

ij fu(P) o = i hi(Py) (z + 1)

We showed in class that fi(P,) = (n —k)! S(n,n — k), where S(n,n —
k) is the Stirling number of the second kind, i.e., the number of set
partitions of [n] with n—k nonempty blocks. On the other hand, hy(P,)
is the Eulerian number A(n, k), i.e., the number of permutations in .S,
with exactly k£ descents.

Give a direct combinatorial proof of this identity relating Stirling
numbers of the second kind with Eulerian numbers.

Problem 10. Construct a bijection between integer lattice points of
the standard permutohedron P, and forests on n labelled vertices.

Problem 11. Construct a decomposition of the permutohedron P,
into a disjoint union P, = m UmU --- Uy, of half-open parallelo-
topes m; (of various dimensions d) such that each d-dimensional par-
allelotope ; is isomorphic to the half-open cube [1,0[? via an integer
invertible (over Z) linear map. (In class, we showed such a decomposi-
tion for Ps.)

Problem 12. We say that f : Z>¢o — R is a quasipolynomial function if
there exist a positive integer k& and polynomials fo(t), f1(t), ..., fe_1(¢)
such that f(t) = f;(t), for any t € Zsp and i € {0,...,k— 1} such that

= i (mod k). For example, [t/2] is a quasipolynomial with k& = 2,
fo(t) =t/2, and fi(t) = (t —1)/2.



Let P C RY be a rational polytope, i.e., all vertices of P belong to
Q<. Show that the function

ip(t) = #(APNZY, for t € Zsg

is quasipolynomial. (Here you may assume that we already know poly-
nomiality of Ehrhart polynomials of integer lattice polytopes.)

Problem 13. For a simple connected graph G, let Foqq(G) (resp.,
Feven(G)) and be the number of forests F' C G containing all vertices
of G with odd (resp., even) number of connected components.

(1) Show that Foqa(G) > Feven(G) for any G.

(2) Give a simple combinatorial characterization of graphs G for
which -Fodd<G) = Jreven(G>-



