18.217 Problem Set 2 (due Monday, December 4, 2023)

Problem 1. For a sequence $I=\left(i_{1}, i_{2}, \ldots\right)$ of integers such that $0 \leq$ $i_{k} \leq k$, for any k, and $i_{k}=0$ for all sufficiently large k, define the polynomial

$$
e_{I}:=e_{i_{1}}\left(x_{1}\right) e_{i_{2}}\left(x_{1}, x_{2}\right) e_{i_{3}}\left(x_{1}, x_{2}, x_{3}\right) \cdots
$$

(Here $e_{i}\left(x_{1}, \ldots, x_{k}\right)$ is the i-th elementary symmetric polynomial in k variables.)

Prove that the polynomials e_{I} form a linear basis of the ring of polynomials $\mathbb{C}\left[x_{1}, x_{2}, \ldots\right]$ in infinitely many variables x_{1}, x_{2}, \ldots.

Problem 2. Give a combinatorial proof of Monk's formula

$$
\left(x_{1}+\cdots+x_{k}\right) \mathfrak{S}_{w}=\sum_{i \leq k<j, \ell\left(w t_{i j}\right)=\ell(w)+1} \mathfrak{S}_{w t_{i j}}
$$

based on the pipe dream formula for Schubert polynomials \mathfrak{S}_{w}. (Here we assume that $w \in S_{\infty}$.) In other words, construct a bijection between combinatorial objects that represent terms in both sides of the above formula.

Problem 3. Prove the following formula of Macdonald:

$$
\sum_{s_{i_{1}} s_{i_{2}} \cdots s_{i_{N}}=w_{\circ}} i_{1} \cdot i_{2} \cdots i_{N}=\binom{n}{2}!,
$$

where the sum is over all reduced decompositions $s_{i_{1}} s_{i_{2}} \cdots s_{i_{N}}=w_{\circ}$ of the longest permutation $w_{\circ} \in S_{n}$ and $N=\binom{n}{2}$.

Problem 4. Recall that the Schubert polynomials $\mathfrak{S}_{w}, w \in S_{\infty}$, form a linear basis of the polynomial ring $\mathbb{C}\left[x_{1}, x_{2}, x_{3}, \ldots\right]$ in infinitely many variables $x_{1}, x_{2}, x_{3}, \ldots$. For positive integers $i<j$, the Bruhat operator $T_{i j}$ acts on the basis of Schubert polynomials by

$$
T_{i j}: \mathfrak{S}_{w} \mapsto\left\{\begin{array}{cl}
\mathfrak{S}_{w t_{i j}} & \text { if } \ell\left(w t_{i j}\right)=\ell(w)+1 \\
0 & \text { otherwise }
\end{array}\right.
$$

Also assume that $T_{j i}=-T_{i j}$ and $T_{i i}=0$.

Prove the following formula for the product of a Schubert polynomial \mathfrak{S}_{w} with a square-free quadratic monomial $x_{i_{1}} x_{i_{2}}, i_{1} \neq i_{2}$,

$$
x_{i_{1}} x_{i_{2}} \mathfrak{S}_{w}=\sum_{\left(j_{1}, j_{2}\right)}\left(T_{i_{1} j_{1}} T_{i_{2} j_{2}}+T_{i_{2} j_{1}} T_{i_{1} j_{2}}\right)\left(\mathfrak{S}_{w}\right),
$$

where the sum is over all pairs $\left(j_{1}, j_{2}\right)$ such that $j_{1}, j_{2} \notin\left\{i_{1}, i_{2}\right\}$ and $j_{1} \leq j_{2}$. (You may use Monk's formula.)

Problem 5. Prove that the product of any Schubert polynomial \mathfrak{S}_{w} with any quadratic monomial $x_{i_{1}} x_{i_{2}}$ (not necessarily square-free) is a linear combination $\sum_{u} c_{u} \mathfrak{S}_{u}$ of Schubert polynomials \mathfrak{S}_{u} with coefficients in $c_{u} \in\{1,-1,0\}$.

Problem 6. Prove that a product of any Schubert polynomial \mathfrak{S}_{w} with any square-free monomial $x_{i_{1}} x_{i_{2}} \ldots x_{i_{k}}\left(i_{1}<i_{2}<\cdots<i_{k}\right)$ is a linear combination $\sum_{u} c_{u} \mathfrak{S}_{u}$ of Schubert polynomials \mathfrak{S}_{u} with coefficients in $c_{u} \in\{1,-1,0\}$. Give an explicit rule for coefficients (and their signs) in this expansion.

Problem 7. Recall that the Fomin-Kirillov algebra $F K_{n}$ is the associative algebra ${ }^{1}$ with generators $t_{i j}$, for $i, j \in[n], i \neq j$, satisfying the relations: (a) $t_{i j}=-t_{j i}$; (b) $t_{i j}^{2}=0$; (c) $t_{i j} t_{k l}=t_{k l} t_{i j}$, when all four indices i, j, k, l are distinct; and (d) $t_{i j} t_{j k}=t_{i k} t_{i j}+t_{j k} t_{i k}$.

Prove the following identity in the Fomin-Kirillov algebra. For any distinct $a, b_{1}, \ldots, b_{m} \in[n]$, we have

$$
\sum_{\left(c_{1}, \ldots, c_{m}\right)} t_{a c_{1}} t_{a c_{2}} \cdots t_{a c_{m}} t_{a c_{1}}=0
$$

where the sum is over all cyclic shifts $\left(c_{1}, \ldots, c_{m}\right)$ of $\left(b_{1}, \ldots, b_{m}\right)$.
For example, for $m=3$, we have

$$
t_{a b_{1}} t_{a b_{2}} t_{a b_{3}} t_{a b_{1}}+t_{a b_{2}} t_{a b_{3}} t_{a b_{1}} t_{a b_{2}}+t_{a b_{3}} t_{a b_{1}} t_{a b_{2}} t_{a b_{3}}=0 .
$$

Problem 8. Recall that a balanced tableau T of the staircase shape $\delta=(n-1, n-2, \ldots, 1)$ is a way to fill the boxes of the shape δ by numbers $1,2, \ldots,\binom{n}{2}$ (without repetitions) such that, for any hook H in T, the median entry among all entries of H is located at the upper-left corner of the hook H.

[^0]Define a proper reflection ordering as a linear ordering " \prec " of all pairs (i, j), for $1 \leq i<j \leq n$, such that, for any three indices $i_{1}, i_{2}, i_{3} \in$ $[n], i_{1}<i_{2}<i_{3}$, we have either $\left(i_{1}, i_{2}\right) \prec\left(i_{1}, i_{3}\right) \prec\left(i_{2}, i_{3}\right)$ or $\left(i_{2}, i_{3}\right) \prec$ $\left(i_{1}, i_{3}\right) \prec\left(i_{1}, i_{2}\right)$.

Construct a bijection between balanced tableaux and proper reflection orderings (and prove that it is indeed a bijection).

Problem 9. For $k<n$, let $\binom{[n]}{k+1}$ denote the set of $(k+1)$-element subsets of $[n]$. The higher Bruhat order $B(n, k)$ is defined as the partial order by containment on all subsets $\mathcal{I} \subseteq\binom{[n]}{k+1}$ that satisfy the following conditions:

- There is no $(k+2)$-element subset $J \subset[n]$ and $j_{1}<j_{2}<j_{3}$ in J such that $J \backslash j_{1} \in \mathcal{I}, J \backslash j_{2} \notin \mathcal{I}$, and $J \backslash j_{3} \in \mathcal{I}$.
- There is no $(k+2)$-element subset $J \subset[n]$ and $j_{1}<j_{2}<j_{3}$ in J such that $J \backslash j_{1} \notin \mathcal{I}, J \backslash j_{2} \in \mathcal{I}$, and $J \backslash j_{3} \notin \mathcal{I}$.
(a) Prove that $B(n, 1)$ is isomorphic to the weak Bruhat order on the symmetric group S_{n}.
(b) For a proper reflection ordering "々" (as in the previous problem), let $\mathcal{I} \subseteq\binom{[n]}{3}$ be the set of triples $\left(i_{1}, i_{2}, i_{3}\right)$ (with $i_{1}, i_{2}, i_{3} \in[n], i_{1}<i_{2}<$ $\left.i_{3}\right)$ such that $\left(i_{2}, i_{3}\right) \prec\left(i_{1}, i_{3}\right) \prec\left(i_{1}, i_{2}\right)$. Prove that \mathcal{I} is an element of the higher Bruhat order $B(n, 2)$ and that any element of $B(n, 2)$ comes from some proper reflection ordering.

Problem 10. Calculate cardinality of the higher Bruhat order $B(n, k)$ for $k \geq n-3$.

Problem 11. For $1 \leq k \leq n$, define three numbers $A_{k n}, B_{k n}$, and $C_{k n}$:

- $A_{k n}$ is the number of acyclic orientations of the complete bipartite graph $K_{k, n-k}$. (Recall, that an acyclic orientation of a graph is a way to direct all its edges, so that no directed cycles are created.)
- $B_{k n}$ is the cardinality of the interval $\left[i d, w_{k n}\right]$ in the strong Bruhat order on the symmetric group S_{n}, where $w_{k n} \in S_{n}$ is the permutation

$$
\left(\begin{array}{cccccccc}
1 & 2 & \cdots & k & k+1 & k+2 & \cdots & n \\
n-k+1 & n-k+2 & \cdots & n & 1 & 2 & \cdots & n-k
\end{array}\right)
$$

- $C_{k n}$ is the number of Le-diagrams of the rectangular shape $k \times$ $(n-k)$. Recall that a Le-diagram D is a way to place dots in some boxes the $k \times(n-k)$ rectangle, such that, if D contains dots in boxes $\left(i_{1}, j_{2}\right)$ and $\left(i_{2}, j_{1}\right)$, for some indices $i_{1}<i_{2}$ and $j_{1}<j_{2}$, then D should contain a dot in the box $\left(i_{2}, j_{2}\right)$.
Prove that $A_{k n}=B_{k n}=C_{k n}$.

Problem 12. For three permutations $u, v, w \in S_{\infty}$, let $c_{u v}^{w}$ be the generalized Littlewood-Richardson coefficients defined by the expansion of the product of two Schubert polynomials in the basis of Schubert polynomials

$$
\mathfrak{S}_{u} \cdot \mathfrak{S}_{v}=\sum_{w} c_{u v}^{w} \mathfrak{S}_{w}
$$

In class, we defined the dual Schubert polynomials $\mathfrak{D}_{w}\left(x_{1}, \ldots, x_{n}\right)$, for $w \in S_{n}$. Prove that

$$
\begin{aligned}
\mathfrak{D}_{w}\left(x_{1}+y_{1}, x_{2}\right. & \left.+y_{2}, \ldots, x_{n}+y_{n}\right)= \\
& =\sum_{u, v \in S_{n}} c_{u v}^{w} \mathfrak{D}_{u}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \cdot \mathfrak{D}_{v}\left(y_{1}, y_{2}, \ldots, y_{n}\right) .
\end{aligned}
$$

Problem 13. The permanent of a square $N \times N$-matrix $A=\left(a_{i, j}\right)$ is defined as $\operatorname{per}(A):=\sum_{w \in S_{N}} \prod_{i=1}^{N} a_{i, w(i)}$. (The same expression as $\operatorname{det}(A)$ by without signs.)

Let B be the $\binom{n}{2} \times n$ matrix whose rows are labelled by pairs (i, j) (with $1 \leq i<j \leq n$) and the row labelled (i, j) is given by the n-vector $(0, \ldots, 0,1,0, \ldots, 0,-1,0, \ldots, 0)$ with 1 in i-th position and -1 in j-th position.

Prove that $\operatorname{per}\left(B \cdot B^{T}\right)$ equals $1!2!\cdots n$!.
For example, for $n=3$, we have

$$
\operatorname{per}\left(\left(\begin{array}{ccc}
1 & -1 & 0 \\
1 & 0 & -1 \\
0 & 1 & -1
\end{array}\right) \cdot\left(\begin{array}{ccc}
1 & 1 & 0 \\
-1 & 0 & 1 \\
0 & -1 & -1
\end{array}\right)\right)=1!2!3!.
$$

Problem 14. Recall that Zelevinsky's picture rule is a combinatorial rule for the inner product of two skew Schur functions $\left\langle s_{\lambda / \mu}, s_{\nu / \gamma}\right\rangle$. A picture is defined as a bijective map ϕ between boxes of λ / μ and ν / γ such that (a) if we list the boxes of λ / μ by rows right-to-left top-tobottom, then the images of these boxes under the map ϕ form a standard Young tableau of shape ν / γ; (b) the same condition for the inverse
$\operatorname{map} \phi^{-1}$. According to the picture rule the inner product $\left\langle s_{\lambda / \mu}, s_{\nu / \gamma}\right\rangle$ equals the number of pictures $\phi: \lambda / \mu \rightarrow \nu / \gamma$.

Prove that, in case $\gamma=\emptyset$, Zelevinsky's picture rule is equivalent to the classical Littlewood-Richardson rule. In other words, construct a bijection between pictures and Littlewood-Richardson tableaux.

Problem 15. Define two partial orders " \swarrow " and " \nwarrow " of the set of boxes of a skew shape. For boxes $a=(i, j)$ and $b=\left(i^{\prime}, j^{\prime}\right)$, we have

- $a \swarrow b$ if $i \geq i^{\prime}, j \leq j^{\prime}$, and $a \neq b$. (Box a is located to the South-West of box b.)
- $a \nwarrow b$ if $i \leq i^{\prime}, j \leq j^{\prime}$, and $a \neq b$ (Box a is located to the North-West of box b.)
Prove that Zelevinsky's pictures $\phi: \lambda / \mu \rightarrow \nu / \gamma$ (defined as in the previous problem) can be described by the following conditions:
(a) There are no boxes a, b in λ / μ such that $a \swarrow b$ and $\phi(a) \nwarrow \phi(b)$.
(b) There are no boxes c, d in λ / μ such that $c \nwarrow d$ and $\phi(c) \swarrow \phi(d)$.

Problem 16. In class, we gave Stembridge's "concise proof". Actually, it proves the following extension of the Littlewood-Richardson rule.

Theorem. Let $\lambda, \mu, \nu, \gamma$ be partitions with at most n parts. The coefficient of s_{γ} in the Schur expansion of the product $s_{\lambda} \cdot s_{\mu / \nu}$ equals the number of semi-standard Young tableaux T of shape μ / ν and weight $\gamma-\lambda$ such that, for any $j, \lambda+\operatorname{weight}\left(T_{\geq j}\right)$ is a partition. (Here $T_{\geq j}$ denotes the subtableau of T formed by all boxes of T in columns $j, j+$ $1, j+2, \ldots$.)

Notice that the above theorem gives a rule for the Hall inner product $\left\langle s_{\gamma / \lambda}, s_{\mu / \nu}\right\rangle$.

Prove bijectively that this rule is equivalent to Zelevinsky's picture rule. In other words, construct a bijection between semi-standard tableaux T as above and Zelevinsky's pictures $\phi: \gamma / \lambda \rightarrow \mu / \nu$.

Problem 17. For three partitions λ, μ, ν with n parts, let $B Z(\lambda, \mu, \nu)$ be the polytope of \mathbb{R}-valued BZ-triangles with boundary conditions given by λ, μ, ν. (Equivalently, it is the polytopes of honeycombs with boundary rays given by parts of λ, μ, ν.)

Find a triple of integer partitions λ, μ, ν such that the polytope $B Z(\lambda, \mu, \nu)$ has a non-integer vertex.

Problem 18. Fix two positive integers $k<n$. Also fix k complex numbers $c_{n-k+1}, c_{n-k+2}, \ldots, c_{n} \in \mathbb{C}$.

Consider the factor algebra $A:=\mathbb{C}\left[x_{1}, \ldots, x_{k}\right]^{S_{k}} / I$ of the algebra $\mathbb{C}\left[x_{1}, \ldots, x_{k}\right]^{S_{k}}$ of symmetric polynomials in k variables modulo the ideal

$$
\left.I:=\left\langle h_{i}\left(x_{1}, \ldots, x_{k}\right)-c_{i}\right| \text { for } n-k+1 \leq i \leq n\right\rangle,
$$

where the $h_{i}\left(x_{1}, \ldots, x_{k}\right)$ are the complete homogeneous symmetric polynomials. Prove that A is a finite-dimensional (as a vector space over $\mathbb{C})$ and calculate its dimension $\operatorname{dim}_{\mathbb{C}} A$.

Problem 19. In class, we defined the cylindric Schur function $s_{\lambda / d / \mu}$ as the sum $s_{\lambda / d / \mu}:=\sum_{T} x^{\text {weight }(T)}$ over semi-standard Young tableaux T of cylindric shape $\lambda / d / \mu$. Show that $s_{\lambda / d / \mu}$ is a symmetric function.

[^0]: ${ }^{1}$ For $n \geq 3, F K_{n}$ is not a commutative algebra.

