
18.217 Problem Set 2 (due Monday, December 4, 2023)

Problem 1. For a sequence I = (i1, i2, . . . ) of integers such that 0 ≤
ik ≤ k, for any k, and ik = 0 for all sufficiently large k, define the
polynomial

eI := ei1(x1) ei2(x1, x2) ei3(x1, x2, x3) · · · .

(Here ei(x1, . . . , xk) is the i-th elementary symmetric polynomial in k
variables.)

Prove that the polynomials eI form a linear basis of the ring of
polynomials C[x1, x2, . . . ] in infinitely many variables x1, x2, . . . .

Problem 2. Give a combinatorial proof of Monk’s formula

(x1 + · · ·+ xk) Sw =
∑

i≤k<j, `(w tij)=`(w)+1

Sw tij

based on the pipe dream formula for Schubert polynomials Sw. (Here
we assume that w ∈ S∞.) In other words, construct a bijection between
combinatorial objects that represent terms in both sides of the above
formula.

Problem 3. Prove the following formula of Macdonald:∑
si1 si2 ··· siN=w◦

i1 · i2 · · · iN =

(
n

2

)
! ,

where the sum is over all reduced decompositions si1 si2 · · · siN = w◦
of the longest permutation w◦ ∈ Sn and N =

(
n
2

)
.

Problem 4. Recall that the Schubert polynomials Sw, w ∈ S∞, form
a linear basis of the polynomial ring C[x1, x2, x3, . . . ] in infinitely many
variables x1, x2, x3, . . . . For positive integers i < j, the Bruhat operator
Tij acts on the basis of Schubert polynomials by

Tij : Sw 7→
{

Sw tij if `(w tij) = `(w) + 1 ,
0 otherwise.

Also assume that Tji = −Tij and Tii = 0.
1
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Prove the following formula for the product of a Schubert polynomial
Sw with a square-free quadratic monomial xi1xi2 , i1 6= i2,

xi1xi2 Sw =
∑
(j1,j2)

(Ti1 j1Ti2 j2 + Ti2 j1Ti1 j2)(Sw),

where the sum is over all pairs (j1, j2) such that j1, j2 6∈ {i1, i2} and
j1 ≤ j2. (You may use Monk’s formula.)

Problem 5. Prove that the product of any Schubert polynomial Sw

with any quadratic monomial xi1xi2 (not necessarily square-free) is a
linear combination

∑
u cuSu of Schubert polynomials Su with coeffi-

cients in cu ∈ {1,−1, 0}.

Problem 6. Prove that a product of any Schubert polynomial Sw with
any square-free monomial xi1xi2 . . . xik (i1 < i2 < · · · < ik) is a linear
combination

∑
u cuSu of Schubert polynomials Su with coefficients in

cu ∈ {1,−1, 0}. Give an explicit rule for coefficients (and their signs)
in this expansion.

Problem 7. Recall that the Fomin-Kirillov algebra FK n is the asso-
ciative algebra1 with generators tij, for i, j ∈ [n], i 6= j, satisfying the
relations: (a) tij = −tji; (b) t2ij = 0; (c) tijtkl = tkltij, when all four
indices i, j, k, l are distinct; and (d) tijtjk = tiktij + tjktik.

Prove the following identity in the Fomin-Kirillov algebra. For any
distinct a, b1, . . . , bm ∈ [n], we have∑

(c1,...,cm)

tac1tac2 · · · tacmtac1 = 0,

where the sum is over all cyclic shifts (c1, . . . , cm) of (b1, . . . , bm).
For example, for m = 3, we have

tab1tab2tab3tab1 + tab2tab3tab1tab2 + tab3tab1tab2tab3 = 0.

Problem 8. Recall that a balanced tableau T of the staircase shape
δ = (n − 1, n − 2, . . . , 1) is a way to fill the boxes of the shape δ by
numbers 1, 2, . . . ,

(
n
2

)
(without repetitions) such that, for any hook H in

T , the median entry among all entries of H is located at the upper-left
corner of the hook H.

1For n ≥ 3, FKn is not a commutative algebra.
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Define a proper reflection ordering as a linear ordering “≺” of all
pairs (i, j), for 1 ≤ i < j ≤ n, such that, for any three indices i1, i2, i3 ∈
[n], i1 < i2 < i3, we have either (i1, i2) ≺ (i1, i3) ≺ (i2, i3) or (i2, i3) ≺
(i1, i3) ≺ (i1, i2).

Construct a bijection between balanced tableaux and proper reflec-
tion orderings (and prove that it is indeed a bijection).

Problem 9. For k < n, let
(

[n]
k+1

)
denote the set of (k + 1)-element

subsets of [n]. The higher Bruhat order B(n, k) is defined as the partial

order by containment on all subsets I ⊆
(

[n]
k+1

)
that satisfy the following

conditions:

• There is no (k + 2)-element subset J ⊂ [n] and j1 < j2 < j3 in
J such that J \ j1 ∈ I, J \ j2 6∈ I, and J \ j3 ∈ I.
• There is no (k + 2)-element subset J ⊂ [n] and j1 < j2 < j3 in
J such that J \ j1 6∈ I, J \ j2 ∈ I, and J \ j3 6∈ I.

(a) Prove that B(n, 1) is isomorphic to the weak Bruhat order on
the symmetric group Sn.

(b) For a proper reflection ordering “≺” (as in the previous problem),

let I ⊆
(
[n]
3

)
be the set of triples (i1, i2, i3) (with i1, i2, i3 ∈ [n], i1 < i2 <

i3) such that (i2, i3) ≺ (i1, i3) ≺ (i1, i2). Prove that I is an element of
the higher Bruhat order B(n, 2) and that any element of B(n, 2) comes
from some proper reflection ordering.

Problem 10. Calculate cardinality of the higher Bruhat order B(n, k)
for k ≥ n− 3.

Problem 11. For 1 ≤ k ≤ n, define three numbers Akn, Bkn, and Ckn:

• Akn is the number of acyclic orientations of the complete bi-
partite graph Kk,n−k. (Recall, that an acyclic orientation of a
graph is a way to direct all its edges, so that no directed cycles
are created.)
• Bkn is the cardinality of the interval [id, wkn] in the strong

Bruhat order on the symmetric group Sn, where wkn ∈ Sn is
the permutation(

1 2 · · · k k + 1 k + 2 · · · n
n− k + 1 n− k + 2 · · · n 1 2 · · · n− k

)
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• Ckn is the number of Le-diagrams of the rectangular shape k×
(n − k). Recall that a Le-diagram D is a way to place dots in
some boxes the k × (n− k) rectangle, such that, if D contains
dots in boxes (i1, j2) and (i2, j1), for some indices i1 < i2 and
j1 < j2, then D should contain a dot in the box (i2, j2).

Prove that Akn = Bkn = Ckn.

Problem 12. For three permutations u, v, w ∈ S∞, let cwuv be the gen-
eralized Littlewood-Richardson coefficients defined by the expansion
of the product of two Schubert polynomials in the basis of Schubert
polynomials

Su ·Sv =
∑
w

cwuvSw .

In class, we defined the dual Schubert polynomials Dw(x1, . . . , xn),
for w ∈ Sn. Prove that

Dw(x1 + y1, x2 + y2, . . . , xn + yn) =

=
∑
u,v∈Sn

cwuvDu(x1, x2, . . . , xn) ·Dv(y1, y2, . . . , yn).

Problem 13. The permanent of a square N × N -matrix A = (ai,j)

is defined as per(A) :=
∑

w∈SN

∏N
i=1 ai,w(i). (The same expression as

det(A) by without signs.)
Let B be the

(
n
2

)
× n matrix whose rows are labelled by pairs (i, j)

(with 1 ≤ i < j ≤ n) and the row labelled (i, j) is given by the n-vector
(0, . . . , 0, 1, 0, . . . , 0,−1, 0, . . . , 0) with 1 in i-th position and −1 in j-th
position.

Prove that per(B ·BT ) equals 1! 2! · · · n!.
For example, for n = 3, we have

per

1 −1 0
1 0 −1
0 1 −1

 ·
 1 1 0
−1 0 1
0 −1 −1

 = 1! 2! 3!.

Problem 14. Recall that Zelevinsky’s picture rule is a combinatorial
rule for the inner product of two skew Schur functions

〈
sλ/µ, sν/γ

〉
. A

picture is defined as a bijective map φ between boxes of λ/µ and ν/γ
such that (a) if we list the boxes of λ/µ by rows right-to-left top-to-
bottom, then the images of these boxes under the map φ form a stan-
dard Young tableau of shape ν/γ; (b) the same condition for the inverse
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map φ−1. According to the picture rule the inner product
〈
sλ/µ, sν/γ

〉
equals the number of pictures φ : λ/µ→ ν/γ.

Prove that, in case γ = ∅, Zelevinsky’s picture rule is equivalent to
the classical Littlewood-Richardson rule. In other words, construct a
bijection between pictures and Littlewood-Richardson tableaux.

Problem 15. Define two partial orders “↙” and “↖” of the set of
boxes of a skew shape. For boxes a = (i, j) and b = (i′, j′), we have

• a ↙ b if i ≥ i′, j ≤ j′, and a 6= b. (Box a is located to the
South-West of box b.)
• a ↖ b if i ≤ i′, j ≤ j′, and a 6= b (Box a is located to the

North-West of box b.)

Prove that Zelevinsky’s pictures φ : λ/µ → ν/γ (defined as in the
previous problem) can be described by the following conditions:

(a) There are no boxes a, b in λ/µ such that a↙ b and φ(a)↖ φ(b).
(b) There are no boxes c, d in λ/µ such that c↖ d and φ(c)↙ φ(d).

Problem 16. In class, we gave Stembridge’s “concise proof”. Actually,
it proves the following extension of the Littlewood-Richardson rule.

Theorem. Let λ, µ, ν, γ be partitions with at most n parts. The
coefficient of sγ in the Schur expansion of the product sλ·sµ/ν equals the
number of semi-standard Young tableaux T of shape µ/ν and weight
γ − λ such that, for any j, λ + weight(T≥j) is a partition. (Here T≥j
denotes the subtableau of T formed by all boxes of T in columns j, j+
1, j + 2, . . . .)

Notice that the above theorem gives a rule for the Hall inner product〈
sγ/λ, sµ/ν

〉
.

Prove bijectively that this rule is equivalent to Zelevinsky’s picture
rule. In other words, construct a bijection between semi-standard
tableaux T as above and Zelevinsky’s pictures φ : γ/λ→ µ/ν.

Problem 17. For three partitions λ, µ, ν with n parts, let BZ(λ, µ, ν)
be the polytope of R-valued BZ-triangles with boundary conditions
given by λ, µ, ν. (Equivalently, it is the polytopes of honeycombs with
boundary rays given by parts of λ, µ, ν.)

Find a triple of integer partitions λ, µ, ν such that the polytope
BZ(λ, µ, ν) has a non-integer vertex.
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Problem 18. Fix two positive integers k < n. Also fix k complex
numbers cn−k+1, cn−k+2, . . . , cn ∈ C.

Consider the factor algebra A := C[x1, . . . , xk]
Sk/I of the algebra

C[x1, . . . , xk]
Sk of symmetric polynomials in k variables modulo the

ideal
I := 〈hi(x1, . . . , xk)− ci | for n− k + 1 ≤ i ≤ n〉 ,

where the hi(x1, . . . , xk) are the complete homogeneous symmetric poly-
nomials. Prove that A is a finite-dimensional (as a vector space over
C) and calculate its dimension dimCA.

Problem 19. In class, we defined the cylindric Schur function sλ/d/µ
as the sum sλ/d/µ :=

∑
T x

weight(T ) over semi-standard Young tableaux
T of cylindric shape λ/d/µ. Show that sλ/d/µ is a symmetric function.


