18.217 PROBLEM SET 2 (due Monday, December 4, 2023)

Problem 1. For a sequence $I = (i_1, i_2, ...)$ of integers such that $0 \le i_k \le k$, for any k, and $i_k = 0$ for all sufficiently large k, define the polynomial

$$e_I := e_{i_1}(x_1) e_{i_2}(x_1, x_2) e_{i_3}(x_1, x_2, x_3) \cdots$$

(Here $e_i(x_1, \ldots, x_k)$ is the *i*-th elementary symmetric polynomial in k variables.)

Prove that the polynomials e_I form a linear basis of the ring of polynomials $\mathbb{C}[x_1, x_2, \ldots]$ in infinitely many variables x_1, x_2, \ldots

Problem 2. Give a combinatorial proof of Monk's formula

$$(x_1 + \dots + x_k) \mathfrak{S}_w = \sum_{i \le k < j, \ \ell(w t_{ij}) = \ell(w) + 1} \mathfrak{S}_{w t_{ij}}$$

based on the pipe dream formula for Schubert polynomials \mathfrak{S}_w . (Here we assume that $w \in S_{\infty}$.) In other words, construct a bijection between combinatorial objects that represent terms in both sides of the above formula.

Problem 3. Prove the following formula of Macdonald:

$$\sum_{s_{i_1}s_{i_2}\cdots s_{i_N}=w_\circ} i_1 \cdot i_2 \cdots i_N = \binom{n}{2}!,$$

where the sum is over all reduced decompositions $s_{i_1} s_{i_2} \cdots s_{i_N} = w_\circ$ of the longest permutation $w_\circ \in S_n$ and $N = \binom{n}{2}$.

Problem 4. Recall that the Schubert polynomials $\mathfrak{S}_w, w \in S_\infty$, form a linear basis of the polynomial ring $\mathbb{C}[x_1, x_2, x_3, \dots]$ in infinitely many variables x_1, x_2, x_3, \dots For positive integers i < j, the Bruhat operator T_{ij} acts on the basis of Schubert polynomials by

$$T_{ij}: \mathfrak{S}_w \mapsto \begin{cases} \mathfrak{S}_{wt_{ij}} & \text{if } \ell(wt_{ij}) = \ell(w) + 1, \\ 0 & \text{otherwise.} \end{cases}$$

Also assume that $T_{ji} = -T_{ij}$ and $T_{ii} = 0$.

Prove the following formula for the product of a Schubert polynomial \mathfrak{S}_w with a square-free quadratic monomial $x_{i_1}x_{i_2}$, $i_1 \neq i_2$,

$$x_{i_1}x_{i_2}\mathfrak{S}_w = \sum_{(j_1,j_2)} (T_{i_1\,j_1}T_{i_2\,j_2} + T_{i_2\,j_1}T_{i_1\,j_2})(\mathfrak{S}_w)$$

where the sum is over all pairs (j_1, j_2) such that $j_1, j_2 \notin \{i_1, i_2\}$ and $j_1 \leq j_2$. (You may use Monk's formula.)

Problem 5. Prove that the product of any Schubert polynomial \mathfrak{S}_w with any quadratic monomial $x_{i_1}x_{i_2}$ (not necessarily square-free) is a linear combination $\sum_u c_u \mathfrak{S}_u$ of Schubert polynomials \mathfrak{S}_u with coefficients in $c_u \in \{1, -1, 0\}$.

Problem 6. Prove that a product of any Schubert polynomial \mathfrak{S}_w with any square-free monomial $x_{i_1}x_{i_2}\ldots x_{i_k}$ $(i_1 < i_2 < \cdots < i_k)$ is a linear combination $\sum_u c_u \mathfrak{S}_u$ of Schubert polynomials \mathfrak{S}_u with coefficients in $c_u \in \{1, -1, 0\}$. Give an explicit rule for coefficients (and their signs) in this expansion.

Problem 7. Recall that the Fomin-Kirillov algebra FK_n is the associative algebra¹ with generators t_{ij} , for $i, j \in [n]$, $i \neq j$, satisfying the relations: (a) $t_{ij} = -t_{ji}$; (b) $t_{ij}^2 = 0$; (c) $t_{ij}t_{kl} = t_{kl}t_{ij}$, when all four indices i, j, k, l are distinct; and (d) $t_{ij}t_{jk} = t_{ik}t_{ij} + t_{jk}t_{ik}$.

Prove the following identity in the Fomin-Kirillov algebra. For any distinct $a, b_1, \ldots, b_m \in [n]$, we have

$$\sum_{(c_1,\ldots,c_m)} t_{ac_1} t_{ac_2} \cdots t_{ac_m} t_{ac_1} = 0,$$

where the sum is over all cyclic shifts (c_1, \ldots, c_m) of (b_1, \ldots, b_m) . For example, for m = 3, we have

$$t_{ab_1}t_{ab_2}t_{ab_3}t_{ab_1} + t_{ab_2}t_{ab_3}t_{ab_1}t_{ab_2} + t_{ab_3}t_{ab_1}t_{ab_2}t_{ab_3} = 0.$$

Problem 8. Recall that a *balanced tableau* T of the staircase shape $\delta = (n - 1, n - 2, ..., 1)$ is a way to fill the boxes of the shape δ by numbers $1, 2, ..., \binom{n}{2}$ (without repetitions) such that, for any hook H in T, the median entry among all entries of H is located at the upper-left corner of the hook H.

 $\mathbf{2}$

¹For $n \geq 3$, FK_n is not a commutative algebra.

Define a proper reflection ordering as a linear ordering " \prec " of all pairs (i, j), for $1 \leq i < j \leq n$, such that, for any three indices $i_1, i_2, i_3 \in [n]$, $i_1 < i_2 < i_3$, we have either $(i_1, i_2) \prec (i_1, i_3) \prec (i_2, i_3)$ or $(i_2, i_3) \prec (i_1, i_3) \prec (i_1, i_2)$.

Construct a bijection between balanced tableaux and proper reflection orderings (and prove that it is indeed a bijection).

Problem 9. For k < n, let $\binom{[n]}{k+1}$ denote the set of (k + 1)-element subsets of [n]. The *higher Bruhat order* B(n, k) is defined as the partial order by containment on all subsets $\mathcal{I} \subseteq \binom{[n]}{k+1}$ that satisfy the following conditions:

- There is no (k+2)-element subset $J \subset [n]$ and $j_1 < j_2 < j_3$ in J such that $J \setminus j_1 \in \mathcal{I}, J \setminus j_2 \notin \mathcal{I}$, and $J \setminus j_3 \in \mathcal{I}$.
- There is no (k+2)-element subset $J \subset [n]$ and $j_1 < j_2 < j_3$ in J such that $J \setminus j_1 \notin \mathcal{I}, J \setminus j_2 \in \mathcal{I}$, and $J \setminus j_3 \notin \mathcal{I}$.

(a) Prove that B(n, 1) is isomorphic to the weak Bruhat order on the symmetric group S_n .

(b) For a proper reflection ordering " \prec " (as in the previous problem), let $\mathcal{I} \subseteq {\binom{[n]}{3}}$ be the set of triples (i_1, i_2, i_3) (with $i_1, i_2, i_3 \in [n], i_1 < i_2 < i_3$) such that $(i_2, i_3) \prec (i_1, i_3) \prec (i_1, i_2)$. Prove that \mathcal{I} is an element of the higher Bruhat order B(n, 2) and that any element of B(n, 2) comes from some proper reflection ordering.

Problem 10. Calculate cardinality of the higher Bruhat order B(n, k) for $k \ge n-3$.

Problem 11. For $1 \le k \le n$, define three numbers A_{kn} , B_{kn} , and C_{kn} :

- A_{kn} is the number of acyclic orientations of the complete bipartite graph $K_{k,n-k}$. (Recall, that an *acyclic orientation* of a graph is a way to direct all its edges, so that no directed cycles are created.)
- B_{kn} is the cardinality of the interval $[id, w_{kn}]$ in the strong Bruhat order on the symmetric group S_n , where $w_{kn} \in S_n$ is the permutation

• C_{kn} is the number of Le-diagrams of the rectangular shape $k \times (n-k)$. Recall that a Le-diagram D is a way to place dots in some boxes the $k \times (n-k)$ rectangle, such that, if D contains dots in boxes (i_1, j_2) and (i_2, j_1) , for some indices $i_1 < i_2$ and $j_1 < j_2$, then D should contain a dot in the box (i_2, j_2) .

Prove that $A_{kn} = B_{kn} = C_{kn}$.

Problem 12. For three permutations $u, v, w \in S_{\infty}$, let c_{uv}^w be the generalized Littlewood-Richardson coefficients defined by the expansion of the product of two Schubert polynomials in the basis of Schubert polynomials

$$\mathfrak{S}_u \cdot \mathfrak{S}_v = \sum_w c_{uv}^w \,\mathfrak{S}_w \,.$$

In class, we defined the dual Schubert polynomials $\mathfrak{D}_w(x_1,\ldots,x_n)$, for $w \in S_n$. Prove that

$$\mathfrak{D}_w(x_1+y_1,x_2+y_2,\ldots,x_n+y_n) =$$

= $\sum_{u,v\in S_n} c_{uv}^w \mathfrak{D}_u(x_1,x_2,\ldots,x_n) \cdot \mathfrak{D}_v(y_1,y_2,\ldots,y_n).$

Problem 13. The *permanent* of a square $N \times N$ -matrix $A = (a_{i,j})$ is defined as $per(A) := \sum_{w \in S_N} \prod_{i=1}^N a_{i,w(i)}$. (The same expression as det(A) by without signs.)

Let B be the $\binom{n}{2} \times n$ matrix whose rows are labelled by pairs (i, j) (with $1 \le i < j \le n$) and the row labelled (i, j) is given by the n-vector $(0, \ldots, 0, 1, 0, \ldots, 0, -1, 0, \ldots, 0)$ with 1 in *i*-th position and -1 in *j*-th position.

Prove that $per(B \cdot B^T)$ equals $1! 2! \cdots n!$. For example, for n = 3, we have

$$\operatorname{per}\left(\begin{pmatrix}1 & -1 & 0\\1 & 0 & -1\\0 & 1 & -1\end{pmatrix} \cdot \begin{pmatrix}1 & 1 & 0\\-1 & 0 & 1\\0 & -1 & -1\end{pmatrix}\right) = 1! \, 2! \, 3!.$$

Problem 14. Recall that Zelevinsky's picture rule is a combinatorial rule for the inner product of two skew Schur functions $\langle s_{\lambda/\mu}, s_{\nu/\gamma} \rangle$. A *picture* is defined as a bijective map ϕ between boxes of λ/μ and ν/γ such that (a) if we list the boxes of λ/μ by rows right-to-left top-to-bottom, then the images of these boxes under the map ϕ form a standard Young tableau of shape ν/γ ; (b) the same condition for the inverse

4

map ϕ^{-1} . According to the picture rule the inner product $\langle s_{\lambda/\mu}, s_{\nu/\gamma} \rangle$ equals the number of pictures $\phi : \lambda/\mu \to \nu/\gamma$.

Prove that, in case $\gamma = \emptyset$, Zelevinsky's picture rule is equivalent to the classical Littlewood-Richardson rule. In other words, construct a bijection between pictures and Littlewood-Richardson tableaux.

Problem 15. Define two partial orders " \checkmark " and " \checkmark " of the set of boxes of a skew shape. For boxes a = (i, j) and b = (i', j'), we have

- $a \swarrow b$ if $i \ge i', j \le j'$, and $a \ne b$. (Box a is located to the South-West of box b.)
- $a \swarrow b$ if $i \leq i', j \leq j'$, and $a \neq b$ (Box a is located to the North-West of box b.)

Prove that Zelevinsky's pictures $\phi : \lambda/\mu \to \nu/\gamma$ (defined as in the previous problem) can be described by the following conditions:

- (a) There are no boxes a, b in λ/μ such that $a \swarrow b$ and $\phi(a) \nwarrow \phi(b)$.
- (b) There are no boxes c, d in λ/μ such that $c \leq d$ and $\phi(c) \swarrow \phi(d)$.

Problem 16. In class, we gave Stembridge's "concise proof". Actually, it proves the following extension of the Littlewood-Richardson rule.

Theorem. Let $\lambda, \mu, \nu, \gamma$ be partitions with at most n parts. The coefficient of s_{γ} in the Schur expansion of the product $s_{\lambda} \cdot s_{\mu/\nu}$ equals the number of semi-standard Young tableaux T of shape μ/ν and weight $\gamma - \lambda$ such that, for any j, $\lambda + \text{weight}(T_{\geq j})$ is a partition. (Here $T_{\geq j}$ denotes the subtableau of T formed by all boxes of T in columns $j, j + 1, j + 2, \ldots$)

Notice that the above theorem gives a rule for the Hall inner product $\langle s_{\gamma/\lambda}, s_{\mu/\nu} \rangle$.

Prove bijectively that this rule is equivalent to Zelevinsky's picture rule. In other words, construct a bijection between semi-standard tableaux T as above and Zelevinsky's pictures $\phi : \gamma/\lambda \to \mu/\nu$.

Problem 17. For three partitions λ, μ, ν with *n* parts, let $BZ(\lambda, \mu, \nu)$ be the polytope of \mathbb{R} -valued BZ-triangles with boundary conditions given by λ, μ, ν . (Equivalently, it is the polytopes of honeycombs with boundary rays given by parts of λ, μ, ν .)

Find a triple of integer partitions λ, μ, ν such that the polytope $BZ(\lambda, \mu, \nu)$ has a non-integer vertex.

Problem 18. Fix two positive integers k < n. Also fix k complex numbers $c_{n-k+1}, c_{n-k+2}, \ldots, c_n \in \mathbb{C}$.

Consider the factor algebra $A := \mathbb{C}[x_1, \ldots, x_k]^{S_k}/I$ of the algebra $\mathbb{C}[x_1, \ldots, x_k]^{S_k}$ of symmetric polynomials in k variables modulo the ideal

 $I := \left\langle h_i(x_1, \dots, x_k) - c_i \mid \text{ for } n - k + 1 \le i \le n \right\rangle,$

where the $h_i(x_1, \ldots, x_k)$ are the complete homogeneous symmetric polynomials. Prove that A is a finite-dimensional (as a vector space over \mathbb{C}) and calculate its dimension dim_{\mathbb{C}} A.

Problem 19. In class, we defined the cylindric Schur function $s_{\lambda/d/\mu}$ as the sum $s_{\lambda/d/\mu} := \sum_T x^{\text{weight}(T)}$ over semi-standard Young tableaux T of cylindric shape $\lambda/d/\mu$. Show that $s_{\lambda/d/\mu}$ is a symmetric function.