18.217 PROBLEM SET 1 (due Friday, October 20, 2023)

Problem 1. Show that the linear span of Schubert polynomials &,
w € S, (as alinear subspace of the space of all polynomials in z1, ..., z,)
coincides with the linear span of the set of monomials z{*...z%", for
all (ay,...,a,) € Z" such that 0 < ar <n—k, fork=1,...,n.

Problem 2. The coinvariant algebra C, is defined as the quotient
algebra C,, := Clxy,...,x,]/I,, where I, = (ey,...,e,) is the ideal in
Clx1, ..., x,] generated by the elementary symmetric polynomials

er = ex(T1,...,xy,) 1= Z Tiy Tiy -+ Ti s
1<iy <ip<-<ig<n
fork=1,...,n.

Prove that the coinvariant algebra C,, is n! dimensional (as a lin-
ear space over C), and the cosets of monomials x7*'... 2%, for all
(ay,...,a,) € Z™ such that 0 < a, < n—k, for k = 1,...,n, form
a linear basis of the coinvariant algebra C),.

Problem 3. The Lehmer code of a permutation w = wyq, ..., w, € S, is
defined as code(w) = (c1,...,¢,), where ¢; = #{j | j > 1, w; <w;}. A
permutation is called dominant if its Lehmer code is weakly decreasing
CL 2> Cy 2> 2 Cp.

Prove that a permutation w dominant if and only if it is 132-avoiding.
Find the number of dominant permutations in .S,

Problem 4. A permutation is called strictly dominant if its Lehmer
code satisfies ¢y > cog > - >¢,=---=¢, =0.

Prove that a permutation w strictly dominant if and only if it is both
132-avoiding and 231-avoiding. Find the number of strictly dominant
permutations in S,,.

Problem 5. Prove that, for a dominant permutation w € S, the
Schubert polynomial &,, equals &,, = x{' - - - z¢*, where (c1,...,¢,) =
code(w).
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Problem 6. Let 0; := (z;—x;,1) ' (1—s;) be the ith divided difference
operator; and let 0, = 0;, ---0; for a reduced decomposition w =
si, -+ 8; of a permutation w € 5,.

Prove that, for the longest permutation w, € S, the operator 0,,

acts on polynomials f = f(xy,...,z,) as
Ow, : [ H (zi —x;) " Z (=) ) f(xy, .. Ty).
1<i<j<n wWESy

Problem 7. The ith Demazure operator is given by D; : f — 0;(x; f).
For a permutation w € 5,, and a reduced decomposition w = s;, - - - s,
define the operator D,, by D,, := D;, --- Dj,.

Characterize all permutations w € S,, for which the operator D,
coincides with the operator f +— Oy, (21" - - x5 f), where (c1,...,¢,) =

code(w).

Problem 8. Use the symmetry of the RSK correspondence (A
(P,Q) iff AT — (Q,P)) to deduce a closed-form product formula for
the (infinite) sum of Schur polynomials >0\ ysa(@1, ..., @) over
all partitions A with at most n parts.

Problem 9. Recall that f* denotes the number of standard Young
tableaux of shape A\. A skew Young diagram A\/p is the set-theoretic
difference of two Young diagrams A D p (considered as collections
of boxes on the plane). Let f»* be the number of standard Young
tableaux of skew shape \/pu.
Find a closed-form formula for the sum
Z f)\ f)\/,u fl//,u fl/
LWINZ
over triples of partitions A, u, v such that A D pu C v, |A| = |v| = 2n,
and |pu] = n.
For example, for n = 1, this sum equals 4.

Problem 10. Let A = (A,...,\,) be a Young diagram that fits in-

side the n x n square i.e., Ay < n and A} < n. The number place-

ments of n non-attacking rooks on the “chessboard” of shape A equals
n—1

v—o(An—r — k). Clearly, by symmetry, the number of such rook place-
ments can also be calculated using parts of the conjugate partitions \

as [[1Zg(\,_p — k).



3

Prove that the multiset {\,, \p_1 — 1, \p_2 —2,..., Ay —n+ 1} coin-
cides with the multiset {\,, A _; — 1, A 5 —2,... N —n+ 1}, for any
Young diagram A that fits inside the n x n square. Can you describe
a permutation of entries of the first multiset that gives entries of the
second multiset?

Problem 11. Find a closed-form expression for the sum

> f[(An_k —k)

ACnxn k=0

over all Young diagrams A = (Aq,...,A,) that fit inside the n x n
square.

Problem 12. Prove the following “tropical hooklength-type formula”.

Fix a Young diagram A\ with n boxes. The content of a box (4, 7) in
A is defined as j—i. Let SYT(X) be the set of standard Young tableaux
of shape A. For "€ SYT()) and k € [n], let cont(k,T") be the content
j — i of the box (i,j) with entry k in 7. Let H, be the hook at box
a of \. Let x4, xs.1,...,7; be some variables, where s and t are the
minimal and the maximal contents among all boxes of .

Show that

n

max E min - Teons(k,T) | = min  x;_,.

TESYT(\) \ = keliit1,..n} = (i:)€Ha
1= a

For example, for A = (2, 1), we have

max(z; + min(zy, x_1) + min(zy, z_1, xo),
r_y +min(z_y,21) + min(z_q, 1, 20))
=21+ 21 + min(xy, zg, x_1).

Problem 13. Let hy(z), ..., h,—1(z) be the elements of the nilCoxeter
algebra given by h;(z) = 1+ x u;, where z is a commutative parameter.
The h;(x) satisfy the Yang-Baxter relations:

(1) hi(x) hi(y) = hi(z +y),
(2) hi(z) hj(y) = hi(y) hi(x) if [i — j
(3) hi(x) hiy1(z +y) hi(y) = hiza(y)

| > 2,
hi(z +y) hiza1 ().



Let

n—1 1
6(1'17' ey Tp—15Y1y - - - 7yn71) = H H hiJrjfl(xi _y]) .

i=1 j=n—i
Use the Yang-Baxter relations to show that
S(x1y ey T 151y oy Yno1) =
=6(0,....0;y1,...,yn_1) S(x1,...,2,-1;0,...,0).
For example, for n = 3, we have the identity
ho(w1 — yo)hi (21 — y1)ho(w2 — 1) =
= ha(=y2)hi(=y1)ha(—y1) ho(@1)hi(@1)ha(z2).

Problem 14. Calculate the volume of the polytope P C R” of n x n
matrices A = (a;;) with real entries a;; € [0,1] that weakly increase
in rows and columns. (In other words, P is the polytopes of R-valued
reverse plane partitions of shape n x n with entries bounded by 1.)

Problem 15. Let A = (A\y,...,\,). Let GT(\) C R(2) be the con-
vex polytope of all R-valued Gelfand-Tsetlin patterns with top row
A1, ..., A\, Find an explicit expression for the volume of the polytope
GT(N). For example, for A = (3,2,1), GT'(\) is given by

{(z,y,2) eR*[3>a>2>y>1, x> 2>y}

One can show that its volume is 1.

Problem 16. In class, we gave a recursive construction of the gener-
alized RSK correspondence ¢, : A — B from the set of non-negative
matrices A of shape k to the set of reverse plane partitions B of shape
k using toggle operations. We also formulated the generalized Greene’s
theorem that gives a non-recursive description of the map ¢, in terms
of maximums of certain sums over certain collections of non-crossing
lattice paths. Prove the generalized Greene’s theorem by showing that
these expressions in terms lattice paths satisfy the toggle recurrence.
Hint: It might be easier to prove a “detropicalized version” of this
theorem.



