
18.217 Problem Set 1 (due Friday, October 20, 2023)

Problem 1. Show that the linear span of Schubert polynomials Sw,
w ∈ Sn (as a linear subspace of the space of all polynomials in x1, . . . , xn)
coincides with the linear span of the set of monomials xa11 . . . xann , for
all (a1, . . . , an) ∈ Zn such that 0 ≤ ak ≤ n− k, for k = 1, . . . , n.

Problem 2. The coinvariant algebra Cn is defined as the quotient
algebra Cn := C[x1, . . . , xn]/In, where In = 〈e1, . . . , en〉 is the ideal in
C[x1, . . . , xn] generated by the elementary symmetric polynomials

ek = ek(x1, . . . , xn) :=
∑

1≤i1<i2<···<ik≤n

xi1xi2 · · · xik ,

for k = 1, . . . , n.
Prove that the coinvariant algebra Cn is n! dimensional (as a lin-

ear space over C), and the cosets of monomials xa11 . . . xann , for all
(a1, . . . , an) ∈ Zn such that 0 ≤ ak ≤ n − k, for k = 1, . . . , n, form
a linear basis of the coinvariant algebra Cn.

Problem 3. The Lehmer code of a permutation w = w1, . . . , wn ∈ Sn is
defined as code(w) = (c1, . . . , cn), where ci = #{j | j > i, wj < wi}. A
permutation is called dominant if its Lehmer code is weakly decreasing
c1 ≥ c2 ≥ · · · ≥ cn.

Prove that a permutation w dominant if and only if it is 132-avoiding.
Find the number of dominant permutations in Sn

Problem 4. A permutation is called strictly dominant if its Lehmer
code satisfies c1 > c2 > · · · > ck = · · · = cn = 0.

Prove that a permutation w strictly dominant if and only if it is both
132-avoiding and 231-avoiding. Find the number of strictly dominant
permutations in Sn.

Problem 5. Prove that, for a dominant permutation w ∈ Sn, the
Schubert polynomial Sw equals Sw = xc11 · · ·xcnn , where (c1, . . . , cn) =
code(w).
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Problem 6. Let ∂i := (xi−xi+1)
−1(1−si) be the ith divided difference

operator; and let ∂w := ∂i1 · · · ∂il for a reduced decomposition w =
si1 · · · sil of a permutation w ∈ Sn.

Prove that, for the longest permutation w◦ ∈ Sn, the operator ∂w◦

acts on polynomials f = f(x1, . . . , xn) as

∂w◦ : f 7→
∏

1≤i<j≤n

(xi − xj)−1
∑
w∈Sn

(−1)`(w)f(xw1 , . . . xwn).

Problem 7. The ith Demazure operator is given by Di : f 7→ ∂i(xi f).
For a permutation w ∈ Sn and a reduced decomposition w = si1 · · · sil ,
define the operator Dw by Dw := Di1 · · ·Dil .

Characterize all permutations w ∈ Sn for which the operator Dw

coincides with the operator f 7→ ∂w(xc11 · · ·xcnn f), where (c1, . . . , cn) =
code(w).

Problem 8. Use the symmetry of the RSK correspondence (A 7→
(P,Q) iff AT 7→ (Q,P )) to deduce a closed-form product formula for
the (infinite) sum of Schur polynomials

∑
λ=(λ1,...,λn)

sλ(x1, . . . , xn) over
all partitions λ with at most n parts.

Problem 9. Recall that fλ denotes the number of standard Young
tableaux of shape λ. A skew Young diagram λ/µ is the set-theoretic
difference of two Young diagrams λ ⊃ µ (considered as collections
of boxes on the plane). Let fλ/µ be the number of standard Young
tableaux of skew shape λ/µ.

Find a closed-form formula for the sum∑
λ,µ,ν

fλ fλ/µ f ν/µ f ν

over triples of partitions λ, µ, ν such that λ ⊃ µ ⊂ ν, |λ| = |ν| = 2n,
and |µ| = n.

For example, for n = 1, this sum equals 4.

Problem 10. Let λ = (λ1, . . . , λn) be a Young diagram that fits in-
side the n × n square i.e., λ1 ≤ n and λ′1 ≤ n. The number place-
ments of n non-attacking rooks on the “chessboard” of shape λ equals∏n−1

k=0(λn−k−k). Clearly, by symmetry, the number of such rook place-
ments can also be calculated using parts of the conjugate partitions λ′

as
∏n−1

k=0(λ′n−k − k).



3

Prove that the multiset {λn, λn−1− 1, λn−2− 2, . . . , λ1−n+ 1} coin-
cides with the multiset {λ′n, λ′n−1− 1, λ′n−2− 2, . . . , λ′1−n+ 1}, for any
Young diagram λ that fits inside the n × n square. Can you describe
a permutation of entries of the first multiset that gives entries of the
second multiset?

Problem 11. Find a closed-form expression for the sum∑
λ⊂n×n

n−1∏
k=0

(λn−k − k)

over all Young diagrams λ = (λ1, . . . , λn) that fit inside the n × n
square.

Problem 12. Prove the following “tropical hooklength-type formula”.
Fix a Young diagram λ with n boxes. The content of a box (i, j) in

λ is defined as j−i. Let SYT(λ) be the set of standard Young tableaux
of shape λ. For T ∈ SYT(λ) and k ∈ [n], let cont(k, T ) be the content
j − i of the box (i, j) with entry k in T . Let Ha be the hook at box
a of λ. Let xs, xs+1, . . . , xt be some variables, where s and t are the
minimal and the maximal contents among all boxes of λ.

Show that

max
T∈SYT(λ)

(
n∑
i=1

min
k∈{i,i+1,...,n}

xcont(k,T )

)
=
∑
a∈λ

min
(i,j)∈Ha

xj−i.

For example, for λ = (2, 1), we have

max(x1 + min(x1, x−1) + min(x1, x−1, x0),
x−1 + min(x−1, x1) + min(x−1, x1, x0))

= x1 + x−1 + min(x1, x0, x−1).

Problem 13. Let h1(x), . . . , hn−1(x) be the elements of the nilCoxeter
algebra given by hi(x) = 1+xui, where x is a commutative parameter.
The hi(x) satisfy the Yang-Baxter relations:

(1) hi(x)hi(y) = hi(x+ y),
(2) hi(x)hj(y) = hj(y)hi(x) if |i− j| ≥ 2,
(3) hi(x)hi+1(x+ y)hi(y) = hi+1(y)hi(x+ y)hi+1(x).
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Let

S(x1, . . . , xn−1; y1, . . . , yn−1) :=
n−1∏
i=1

1∏
j=n−i

hi+j−1(xi − yj) .

Use the Yang-Baxter relations to show that

S(x1, . . . , xn−1; y1, . . . , yn−1) =

= S(0, . . . , 0; y1, . . . , yn−1) S(x1, . . . , xn−1; 0, . . . , 0).

For example, for n = 3, we have the identity

h2(x1 − y2)h1(x1 − y1)h2(x2 − y1) =

= h2(−y2)h1(−y1)h2(−y1) h2(x1)h1(x1)h2(x2).

Problem 14. Calculate the volume of the polytope P ⊂ Rn2
of n× n

matrices A = (aij) with real entries aij ∈ [0, 1] that weakly increase
in rows and columns. (In other words, P is the polytopes of R-valued
reverse plane partitions of shape n× n with entries bounded by 1.)

Problem 15. Let λ = (λ1, . . . , λn). Let GT (λ) ⊂ R(n
2) be the con-

vex polytope of all R-valued Gelfand-Tsetlin patterns with top row
λ1, . . . , λn. Find an explicit expression for the volume of the polytope
GT (λ). For example, for λ = (3, 2, 1), GT (λ) is given by

{(x, y, z) ∈ R3 | 3 ≥ x ≥ 2 ≥ y ≥ 1 , x ≥ z ≥ y}.
One can show that its volume is 1.

Problem 16. In class, we gave a recursive construction of the gener-
alized RSK correspondence φκ : A 7→ B from the set of non-negative
matrices A of shape κ to the set of reverse plane partitions B of shape
κ using toggle operations. We also formulated the generalized Greene’s
theorem that gives a non-recursive description of the map φκ in terms
of maximums of certain sums over certain collections of non-crossing
lattice paths. Prove the generalized Greene’s theorem by showing that
these expressions in terms lattice paths satisfy the toggle recurrence.
Hint: It might be easier to prove a “detropicalized version” of this
theorem.


