18.217 Problem Set 1 (due Friday, October 20, 2023)

Problem 1. Show that the linear span of Schubert polynomials \mathfrak{S}_{w}, $w \in S_{n}$ (as a linear subspace of the space of all polynomials in x_{1}, \ldots, x_{n}) coincides with the linear span of the set of monomials $x_{1}^{a_{1}} \ldots x_{n}^{a_{n}}$, for all $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Z}^{n}$ such that $0 \leq a_{k} \leq n-k$, for $k=1, \ldots, n$.

Problem 2. The coinvariant algebra C_{n} is defined as the quotient algebra $C_{n}:=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] / I_{n}$, where $I_{n}=\left\langle e_{1}, \ldots, e_{n}\right\rangle$ is the ideal in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ generated by the elementary symmetric polynomials

$$
e_{k}=e_{k}\left(x_{1}, \ldots, x_{n}\right):=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n} x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}},
$$

for $k=1, \ldots, n$.
Prove that the coinvariant algebra C_{n} is n ! dimensional (as a linear space over \mathbb{C}), and the cosets of monomials $x_{1}^{a_{1}} \ldots x_{n}^{a_{n}}$, for all $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Z}^{n}$ such that $0 \leq a_{k} \leq n-k$, for $k=1, \ldots, n$, form a linear basis of the coinvariant algebra C_{n}.

Problem 3. The Lehmer code of a permutation $w=w_{1}, \ldots, w_{n} \in S_{n}$ is defined as code $(w)=\left(c_{1}, \ldots, c_{n}\right)$, where $c_{i}=\#\left\{j \mid j>i, w_{j}<w_{i}\right\}$. A permutation is called dominant if its Lehmer code is weakly decreasing $c_{1} \geq c_{2} \geq \cdots \geq c_{n}$.

Prove that a permutation w dominant if and only if it is 132-avoiding. Find the number of dominant permutations in S_{n}

Problem 4. A permutation is called strictly dominant if its Lehmer code satisfies $c_{1}>c_{2}>\cdots>c_{k}=\cdots=c_{n}=0$.

Prove that a permutation w strictly dominant if and only if it is both 132 -avoiding and 231-avoiding. Find the number of strictly dominant permutations in S_{n}.

Problem 5. Prove that, for a dominant permutation $w \in S_{n}$, the Schubert polynomial \mathfrak{S}_{w} equals $\mathfrak{S}_{w}=x_{1}^{c_{1}} \cdots x_{n}^{c_{n}}$, where $\left(c_{1}, \ldots, c_{n}\right)=$ code (w).

Problem 6. Let $\partial_{i}:=\left(x_{i}-x_{i+1}\right)^{-1}\left(1-s_{i}\right)$ be the i th divided difference operator; and let $\partial_{w}:=\partial_{i_{1}} \cdots \partial_{i_{l}}$ for a reduced decomposition $w=$ $s_{i_{1}} \cdots s_{i_{l}}$ of a permutation $w \in S_{n}$.

Prove that, for the longest permutation $w_{\circ} \in S_{n}$, the operator $\partial_{w_{\circ}}$ acts on polynomials $f=f\left(x_{1}, \ldots, x_{n}\right)$ as

$$
\partial_{w_{\circ}}: f \mapsto \prod_{1 \leq i<j \leq n}\left(x_{i}-x_{j}\right)^{-1} \sum_{w \in S_{n}}(-1)^{\ell(w)} f\left(x_{w_{1}}, \ldots x_{w_{n}}\right) .
$$

Problem 7. The i th Demazure operator is given by $D_{i}: f \mapsto \partial_{i}\left(x_{i} f\right)$. For a permutation $w \in S_{n}$ and a reduced decomposition $w=s_{i_{1}} \cdots s_{i_{l}}$, define the operator D_{w} by $D_{w}:=D_{i_{1}} \cdots D_{i_{l}}$.

Characterize all permutations $w \in S_{n}$ for which the operator D_{w} coincides with the operator $f \mapsto \partial_{w}\left(x_{1}^{c_{1}} \cdots x_{n}^{c_{n}} f\right)$, where $\left(c_{1}, \ldots, c_{n}\right)=$ code (w).

Problem 8. Use the symmetry of the RSK correspondence ($A \mapsto$ (P, Q) iff $A^{T} \mapsto(Q, P)$) to deduce a closed-form product formula for the (infinite) sum of Schur polynomials $\sum_{\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)} s_{\lambda}\left(x_{1}, \ldots, x_{n}\right)$ over all partitions λ with at most n parts.

Problem 9. Recall that f^{λ} denotes the number of standard Young tableaux of shape λ. A skew Young diagram λ / μ is the set-theoretic difference of two Young diagrams $\lambda \supset \mu$ (considered as collections of boxes on the plane). Let $f^{\lambda / \mu}$ be the number of standard Young tableaux of skew shape λ / μ.

Find a closed-form formula for the sum

$$
\sum_{\lambda, \mu, \nu} f^{\lambda} f^{\lambda / \mu} f^{\nu / \mu} f^{\nu}
$$

over triples of partitions λ, μ, ν such that $\lambda \supset \mu \subset \nu,|\lambda|=|\nu|=2 n$, and $|\mu|=n$.

For example, for $n=1$, this sum equals 4 .

Problem 10. Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ be a Young diagram that fits inside the $n \times n$ square i.e., $\lambda_{1} \leq n$ and $\lambda_{1}^{\prime} \leq n$. The number placements of n non-attacking rooks on the "chessboard" of shape λ equals $\prod_{k=0}^{n-1}\left(\lambda_{n-k}-k\right)$. Clearly, by symmetry, the number of such rook placements can also be calculated using parts of the conjugate partitions λ^{\prime} as $\prod_{k=0}^{n-1}\left(\lambda_{n-k}^{\prime}-k\right)$.

Prove that the multiset $\left\{\lambda_{n}, \lambda_{n-1}-1, \lambda_{n-2}-2, \ldots, \lambda_{1}-n+1\right\}$ coincides with the multiset $\left\{\lambda_{n}^{\prime}, \lambda_{n-1}^{\prime}-1, \lambda_{n-2}^{\prime}-2, \ldots, \lambda_{1}^{\prime}-n+1\right\}$, for any Young diagram λ that fits inside the $n \times n$ square. Can you describe a permutation of entries of the first multiset that gives entries of the second multiset?

Problem 11. Find a closed-form expression for the sum

$$
\sum_{\lambda \subset n \times n} \prod_{k=0}^{n-1}\left(\lambda_{n-k}-k\right)
$$

over all Young diagrams $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ that fit inside the $n \times n$ square.

Problem 12. Prove the following "tropical hooklength-type formula".
Fix a Young diagram λ with n boxes. The content of a box (i, j) in λ is defined as $j-i$. Let $\operatorname{SYT}(\lambda)$ be the set of standard Young tableaux of shape λ. For $T \in \operatorname{SYT}(\lambda)$ and $k \in[n]$, let $\operatorname{cont}(k, T)$ be the content $j-i$ of the box (i, j) with entry k in T. Let H_{a} be the hook at box a of λ. Let $x_{s}, x_{s+1}, \ldots, x_{t}$ be some variables, where s and t are the minimal and the maximal contents among all boxes of λ.

Show that

$$
\max _{T \in \operatorname{SYT}(\lambda)}\left(\sum_{i=1}^{n} \min _{k \in\{i, i+1, \ldots, n\}} x_{\operatorname{cont}(k, T)}\right)=\sum_{a \in \lambda} \min _{(i, j) \in H_{a}} x_{j-i} .
$$

For example, for $\lambda=(2,1)$, we have

$$
\begin{aligned}
& \max \left(x_{1}+\min \left(x_{1}, x_{-1}\right)+\min \left(x_{1}, x_{-1}, x_{0}\right),\right. \\
& \left.\quad x_{-1}+\min \left(x_{-1}, x_{1}\right)+\min \left(x_{-1}, x_{1}, x_{0}\right)\right) \\
& =x_{1}+x_{-1}+\min \left(x_{1}, x_{0}, x_{-1}\right) .
\end{aligned}
$$

Problem 13. Let $h_{1}(x), \ldots, h_{n-1}(x)$ be the elements of the nilCoxeter algebra given by $h_{i}(x)=1+x u_{i}$, where x is a commutative parameter. The $h_{i}(x)$ satisfy the Yang-Baxter relations:
(1) $h_{i}(x) h_{i}(y)=h_{i}(x+y)$,
(2) $h_{i}(x) h_{j}(y)=h_{j}(y) h_{i}(x)$ if $|i-j| \geq 2$,
(3) $h_{i}(x) h_{i+1}(x+y) h_{i}(y)=h_{i+1}(y) h_{i}(x+y) h_{i+1}(x)$.

Let

$$
\mathfrak{S}\left(x_{1}, \ldots, x_{n-1} ; y_{1}, \ldots, y_{n-1}\right):=\prod_{i=1}^{n-1} \prod_{j=n-i}^{1} h_{i+j-1}\left(x_{i}-y_{j}\right) .
$$

Use the Yang-Baxter relations to show that

$$
\begin{aligned}
& \mathfrak{S}\left(x_{1}, \ldots,\right. \\
& \left.\quad x_{n-1} ; y_{1}, \ldots, y_{n-1}\right)= \\
& \quad=\mathfrak{S}\left(0, \ldots, 0 ; y_{1}, \ldots, y_{n-1}\right) \mathfrak{S}\left(x_{1}, \ldots, x_{n-1} ; 0, \ldots, 0\right)
\end{aligned}
$$

For example, for $n=3$, we have the identity

$$
\begin{aligned}
& h_{2}\left(x_{1}-y_{2}\right) h_{1}\left(x_{1}-y_{1}\right) h_{2}\left(x_{2}-y_{1}\right)= \\
& \quad=h_{2}\left(-y_{2}\right) h_{1}\left(-y_{1}\right) h_{2}\left(-y_{1}\right) \quad h_{2}\left(x_{1}\right) h_{1}\left(x_{1}\right) h_{2}\left(x_{2}\right) .
\end{aligned}
$$

Problem 14. Calculate the volume of the polytope $P \subset \mathbb{R}^{n^{2}}$ of $n \times n$ matrices $A=\left(a_{i j}\right)$ with real entries $a_{i j} \in[0,1]$ that weakly increase in rows and columns. (In other words, P is the polytopes of \mathbb{R}-valued reverse plane partitions of shape $n \times n$ with entries bounded by 1.)

Problem 15. Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. Let $G T(\lambda) \subset \mathbb{R}^{\binom{n}{2}}$ be the convex polytope of all \mathbb{R}-valued Gelfand-Tsetlin patterns with top row $\lambda_{1}, \ldots, \lambda_{n}$. Find an explicit expression for the volume of the polytope $G T(\lambda)$. For example, for $\lambda=(3,2,1), G T(\lambda)$ is given by

$$
\left\{(x, y, z) \in \mathbb{R}^{3} \mid 3 \geq x \geq 2 \geq y \geq 1, x \geq z \geq y\right\}
$$

One can show that its volume is 1 .

Problem 16. In class, we gave a recursive construction of the generalized $R S K$ correspondence $\phi_{\kappa}: A \mapsto B$ from the set of non-negative matrices A of shape κ to the set of reverse plane partitions B of shape κ using toggle operations. We also formulated the generalized Greene's theorem that gives a non-recursive description of the map ϕ_{κ} in terms of maximums of certain sums over certain collections of non-crossing lattice paths. Prove the generalized Greene's theorem by showing that these expressions in terms lattice paths satisfy the toggle recurrence. Hint: It might be easier to prove a "detropicalized version" of this theorem.

