18.217 PROBLEM SET 2 (due Friday, December 3, 2021)

Solve 5 (or more) of the following problems.

Problem 1. A tree T on vertices labelled 1,2, 3, ... is called alternat-
ing if it has no pair of edges (a,b) and (b,c) with a < b < c¢. A tree
T is called non-crossing if it has no pair of edges (a, c) and (b, d) with
a<b<c<d AtreeT is called non-nesting if it has no pair of edges
(a,d) and (b,c) with a < b < ¢ < d.

Prove bijectively that the number of non-crossing alternating trees
on n+ 1 vertices equals the number of non-nesting alternating trees on
n + 1 vertices equals the Catalan number C,,.

Problem 2. Prove that the number of alternating trees on n+1 vertices
equals the number of binary trees on n vertices labelled by 1, ..., n such
that the left child of a vertex in always greater than its parent and the
right child of a vertex is always less than its parent.

Problem 3. Find a formula for the number of alternating trees on n
vertices. (Your formula might involve a single summation.)

Problem 4. Find a formula for the number of non-crossing trees on n
vertices.

Problem 5. Calculate the value pye, (0,1) of the Mdbius function for
the lattice NC), of non-crossing partitions.

Problem 6. Prove transitivity of the Hurwitz action for the symmetric
group S,. In other words, show that any two factorizations t1ty - - ¢, 1
and ) t, -- -t/ _, of the long cycle ¢ = (1,2,...,n) € S, into products
of n — 1 transpositions can be obtained from each other by a sequence
of Hurwitz moves o;, i =1,...,n — 2:

Ottt e — ot i (B tti) tia

Problem 7. For the Hurwitz moves o; acting on factorizations of the

long cycle ¢ € S, into products of n — 1 transpositions (as in the pre-

vious problem) show that (g0 - - - 0,_2)"" ™V is the identity operator.
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Problem 8. Prove that the number of m-tuples (¢y,...,t,) of trans-
positions t; € S, such that

(a) tthtm =1¢€ Sn,

(b) t1,...,t, generate the symmetric group .S, and

(¢c) m=2n-—2
equals n" 73 (2n — 2)!.

Problem 9. In class, we showed that the lattice of non-crossing par-
titions NC,, is isomorphic to the interval [1, ¢|.ps between the identity
permutation 1 and the long cycle ¢ = (1,2,...,n) in the absolute re-
flection order on the symmetric group S,,. Thus the Kreweras comple-
mentation map K : NC,, = NC,, induces a map on saturated chains in
the poset [1, ¢|aps. These saturated chains correspond to factorizations
tity - - - t,—1 of ¢ in products on n — 1 reflections.

Show that the map tito---t,—1 — t}t,---t,_, acting on factoriza-
tions of ¢ obtained from the Kreweras complementation can be de-
scribed as follows:

t/l =tn-1,
tlg = t;il tn72 tnfla

L=ttty sty ot, 1, etc.

Problem 10. Let A be the affine hyperplane arrangement in the space
{(z1,...,2,) €ER" | &1 + -+ z, = 0} =~ R"! with (}) affine hyper-
planes H;;, 1 <1i < j <mn, given by the equations

Ti — Tj = Qij
where a;; are some fixed generic real numbers. Show that

(a) The number of vertices of the arrangement A (i.e., the number
of 0-dimensional intersections of some hyperplanes H;;) equals
the number n"~2 of trees on n labelled vertices.

(b) The number of regions of the arrangement A equals the number
of forests on n labelled vertices.

Problem 11. Find an explicit formula for the number of regions of
the hyperplane arrangement in R™ with 5(3) hyperplanes given by the
equations

Ty — X5 = —2, —1, 0, 1, 2,
for1 <i<j<n.
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Problem 12. Find an explicit formula for the number of regions of
the hyperplane arrangement in R" with 4(’;) hyperplanes given by the
equations

T, —T; = —1,0,1,2,
for1 <i<j<n.

Problem 13. For a finite matroid M without loops, let L(M) be the
lattice of flats of M. Prove that

(a) L(M) is a geometric lattice, and

(b) any geometric lattice L is isomorphic to L(M) for some M.

Problem 14. Let M = (M, B) be a matroid, where E is the ground
set of M, and B is the set of bases of M. Let M* = (F,B*), where
B*:={E\I|I € B} C2F. Prove that M* is a matroid. In other
words, show that the Exchange Condition for the set of bases B is
equivalent to the Exchange Condition for the set of bases B*.

Problem 15. Let A,,, be the number of acyclic orientations of the
complete bipartite graph K,,,. Prove that

(a) An.n equals the number of m x n matrices filled with 0’s and

1’s such that no 2 x 2 submatrix equals ((1) é) or ((1] (1))

(b) A, equals the number of m x n matrices filled with 0’s and

1’s such that no 2 x 2 submatrix equals <(1) (1)> or (1 é)

(A “2 x 2 submatrix” means a submatrix located in any 2 rows and
any 2 columns of a matrix, not necessarily consecutive rows/columns.)

Problem 16. Find an explicit formula for the number A4,,,, of acyclic
orientations of K,,,. (Your answer that might involve a single sum-
mation.)

Problem 17. An increasing forest is a forest with vertices labelled by
1,2,3,... that contains no pair of edges (a, c¢) and (b, c) witha < b < c.

Prove bijectively that the number of increasing forests on n labelled
vertices with k edges equals the Stirling number of the first kind s(n, n—
k), i.e., the number of permutations in S,, with n — k cycles.
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Problem 18. Construct a linear basis of the Orlik-Solomon algebra
for the Catalan hyperplane arrangement. Describe a bijection between
elements of your basis and some set of combinatorial objects of cardi-
nality n!C,.

Problem 19. In class, we discussed the following map ¢ from the set of
Young diagrams A that fit inside the staircase shape (n—1,n—2,...,1)
and certain posets P on n labelled vertices 1,...,n. (Clearly, such
Young diagrams A correspond to Dyck paths with 2n steps.) The poset
P = ¢(\) is given by ¢ <p j if and only if the box (i,n+ 1 — j) belongs
to A

Prove that the map ¢ induces a bijection between Dyck paths with
2n steps and all unlabelled semiorders on n vertices.

Problem 20. Let vq,...,vy be a collection of vectors that span a
vector space V ~ R? and let A C V, A ~ Z¢, be the Z-span of these
vectors v; (i.e., the set of their integer linear combinations). We say that
a collection of vectors vy, ..., vy is unimodular if, whenever a subset of
these vectors forms a linear basis of V', the Z-span of this subset equals
A. For a example, the collection of vectors (1,0), (0,1),(1,1) € Z* C R?
is unimodular, but the collection of vectors (1,0),(0,1),(1,2) it not
unimodular because the Z-span of (1,0) and (1,2) is not Z.

In class, we discussed the graphical arrangement Ay and the co-
graphical arrangement A}, associated with a graph G. Show that, for
each of these arrangements, one can pick normal vectors to the hyper-
planes so that they form a unimodular collection of vectors.

Problem 21. For n > 4, the wheel graph W, is the simple graph on
n vertices obtained from the (n — 1)-cycle graph C,_; by adding one
extra vertex connected to all vertices of C,,_;. Show that the number of
acyclic orientations of the wheel graph W,, equals the number of totally
cyclic orientations of W,.

Problem 22. Show that the evaluation Tk, ,, (1, —1) of the Tutte poly-
nomial for the complete graph K, .1 equals the number of alternating
permutations in S,. (Recall that a permutation w € S, is alternating
ifw1 < Wy > w3 < Wy > )



