
18.217 Problem Set 2 (due Friday, December 3, 2021)

Solve 5 (or more) of the following problems.

Problem 1. A tree T on vertices labelled 1, 2, 3, . . . is called alternat-
ing if it has no pair of edges (a, b) and (b, c) with a < b < c. A tree
T is called non-crossing if it has no pair of edges (a, c) and (b, d) with
a < b < c < d. A tree T is called non-nesting if it has no pair of edges
(a, d) and (b, c) with a < b < c < d.

Prove bijectively that the number of non-crossing alternating trees
on n+ 1 vertices equals the number of non-nesting alternating trees on
n+ 1 vertices equals the Catalan number Cn.

Problem 2. Prove that the number of alternating trees on n+1 vertices
equals the number of binary trees on n vertices labelled by 1, . . . , n such
that the left child of a vertex in always greater than its parent and the
right child of a vertex is always less than its parent.

Problem 3. Find a formula for the number of alternating trees on n
vertices. (Your formula might involve a single summation.)

Problem 4. Find a formula for the number of non-crossing trees on n
vertices.

Problem 5. Calculate the value µNCn(0̂, 1̂) of the Möbius function for
the lattice NCn of non-crossing partitions.

Problem 6. Prove transitivity of the Hurwitz action for the symmetric
group Sn. In other words, show that any two factorizations t1t2 · · · tn−1
and t′1 t

′
2 · · · t′n−1 of the long cycle c = (1, 2, . . . , n) ∈ Sn into products

of n− 1 transpositions can be obtained from each other by a sequence
of Hurwitz moves σi, i = 1, . . . , n− 2:

σi : · · · ti−1 ti ti+1 ti+2 · · · −→ · · · ti−1 ti+1 (t−1i+1titi+1) ti+2 · · ·

Problem 7. For the Hurwitz moves σi acting on factorizations of the
long cycle c ∈ Sn into products of n− 1 transpositions (as in the pre-
vious problem) show that (σ1σ2 · · ·σn−2)n(n−1) is the identity operator.
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Problem 8. Prove that the number of m-tuples (t1, . . . , tm) of trans-
positions ti ∈ Sn such that

(a) t1 t2 · · · tm = 1 ∈ Sn ,
(b) t1, . . . , tm generate the symmetric group Sn, and
(c) m = 2n− 2

equals nn−3 (2n− 2)! .

Problem 9. In class, we showed that the lattice of non-crossing par-
titions NCn is isomorphic to the interval [1, c]abs between the identity
permutation 1 and the long cycle c = (1, 2, . . . , n) in the absolute re-
flection order on the symmetric group Sn. Thus the Kreweras comple-
mentation map K : NCn → NCn induces a map on saturated chains in
the poset [1, c]abs. These saturated chains correspond to factorizations
t1t2 · · · tn−1 of c in products on n− 1 reflections.

Show that the map t1t2 · · · tn−1 → t′1 t
′
2 · · · t′n−1 acting on factoriza-

tions of c obtained from the Kreweras complementation can be de-
scribed as follows:
t′1 = tn−1,
t′2 = t−1n−1 tn−2 tn−1,
t′3 = t−1n−1 t

−1
n−2 tn−3 tn−2 tn−1, etc.

Problem 10. Let A be the affine hyperplane arrangement in the space
{(x1, . . . , xn) ∈ Rn | x1 + · · · + xn = 0} ' Rn−1 with

(
n
2

)
affine hyper-

planes Hij, 1 ≤ i < j ≤ n, given by the equations

xi − xj = aij ,

where aij are some fixed generic real numbers. Show that

(a) The number of vertices of the arrangement A (i.e., the number
of 0-dimensional intersections of some hyperplanes Hij) equals
the number nn−2 of trees on n labelled vertices.

(b) The number of regions of the arrangement A equals the number
of forests on n labelled vertices.

Problem 11. Find an explicit formula for the number of regions of
the hyperplane arrangement in Rn with 5

(
n
2

)
hyperplanes given by the

equations
xi − xj = −2,−1, 0, 1, 2,

for 1 ≤ i < j ≤ n.
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Problem 12. Find an explicit formula for the number of regions of
the hyperplane arrangement in Rn with 4

(
n
2

)
hyperplanes given by the

equations
xi − xj = −1, 0, 1, 2,

for 1 ≤ i < j ≤ n.

Problem 13. For a finite matroid M without loops, let L(M) be the
lattice of flats of M . Prove that

(a) L(M) is a geometric lattice, and
(b) any geometric lattice L is isomorphic to L(M) for some M .

Problem 14. Let M = (M,B) be a matroid, where E is the ground
set of M , and B is the set of bases of M . Let M∗ = (E,B∗), where
B∗ := {E \ I | I ∈ B} ⊂ 2E. Prove that M∗ is a matroid. In other
words, show that the Exchange Condition for the set of bases B is
equivalent to the Exchange Condition for the set of bases B∗.

Problem 15. Let Am,n be the number of acyclic orientations of the
complete bipartite graph Km,n. Prove that

(a) Am,n equals the number of m × n matrices filled with 0’s and

1’s such that no 2× 2 submatrix equals

(
0 1
1 0

)
or

(
1 0
0 1

)
.

(b) Am,n equals the number of m × n matrices filled with 0’s and

1’s such that no 2× 2 submatrix equals

(
0 1
1 0

)
or

(
1 1
1 0

)
.

(A “2 × 2 submatrix” means a submatrix located in any 2 rows and
any 2 columns of a matrix, not necessarily consecutive rows/columns.)

Problem 16. Find an explicit formula for the number Am,n of acyclic
orientations of Km,n. (Your answer that might involve a single sum-
mation.)

Problem 17. An increasing forest is a forest with vertices labelled by
1, 2, 3, . . . that contains no pair of edges (a, c) and (b, c) with a < b < c.

Prove bijectively that the number of increasing forests on n labelled
vertices with k edges equals the Stirling number of the first kind s(n, n−
k), i.e., the number of permutations in Sn with n− k cycles.
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Problem 18. Construct a linear basis of the Orlik-Solomon algebra
for the Catalan hyperplane arrangement. Describe a bijection between
elements of your basis and some set of combinatorial objects of cardi-
nality n!Cn.

Problem 19. In class, we discussed the following map φ from the set of
Young diagrams λ that fit inside the staircase shape (n−1, n−2, . . . , 1)
and certain posets P on n labelled vertices 1, . . . , n. (Clearly, such
Young diagrams λ correspond to Dyck paths with 2n steps.) The poset
P = φ(λ) is given by i <P j if and only if the box (i, n+ 1− j) belongs
to λ.

Prove that the map φ induces a bijection between Dyck paths with
2n steps and all unlabelled semiorders on n vertices.

Problem 20. Let v1, . . . , vN be a collection of vectors that span a
vector space V ' Rd, and let Λ ⊂ V , Λ ' Zd, be the Z-span of these
vectors vi (i.e., the set of their integer linear combinations). We say that
a collection of vectors v1, . . . , vN is unimodular if, whenever a subset of
these vectors forms a linear basis of V , the Z-span of this subset equals
Λ. For a example, the collection of vectors (1, 0), (0, 1), (1, 1) ∈ Z2 ⊂ R2

is unimodular, but the collection of vectors (1, 0), (0, 1), (1, 2) it not
unimodular because the Z-span of (1, 0) and (1, 2) is not Z2.

In class, we discussed the graphical arrangement AG and the co-
graphical arrangement A∗G associated with a graph G. Show that, for
each of these arrangements, one can pick normal vectors to the hyper-
planes so that they form a unimodular collection of vectors.

Problem 21. For n ≥ 4, the wheel graph Wn is the simple graph on
n vertices obtained from the (n − 1)-cycle graph Cn−1 by adding one
extra vertex connected to all vertices of Cn−1. Show that the number of
acyclic orientations of the wheel graph Wn equals the number of totally
cyclic orientations of Wn.

Problem 22. Show that the evaluation TKn+1(1,−1) of the Tutte poly-
nomial for the complete graph Kn+1 equals the number of alternating
permutations in Sn. (Recall that a permutation w ∈ Sn is alternating
if w1 < w2 > w3 < w4 > · · · .)


