18.217 PROBLEM SET 2 (due Friday, December 3, 2021)

Solve 5 (or more) of the following problems.

Problem 1. A tree T on vertices labelled 1, 2, 3, ... is called *alternating* if it has no pair of edges (a, b) and (b, c) with a < b < c. A tree T is called *non-crossing* if it has no pair of edges (a, c) and (b, d) with a < b < c < d. A tree T is called *non-nesting* if it has no pair of edges (a, c) and (b, d) with a < b < c < d. A tree T is called *non-nesting* if it has no pair of edges (a, d) and (b, c) with a < b < c < d.

Prove bijectively that the number of non-crossing alternating trees on n+1 vertices equals the number of non-nesting alternating trees on n+1 vertices equals the Catalan number C_n .

Problem 2. Prove that the number of alternating trees on n+1 vertices equals the number of binary trees on n vertices labelled by $1, \ldots, n$ such that the left child of a vertex in always greater than its parent and the right child of a vertex is always less than its parent.

Problem 3. Find a formula for the number of alternating trees on n vertices. (Your formula might involve a single summation.)

Problem 4. Find a formula for the number of non-crossing trees on n vertices.

Problem 5. Calculate the value $\mu_{NC_n}(\hat{0}, \hat{1})$ of the Möbius function for the lattice NC_n of non-crossing partitions.

Problem 6. Prove transitivity of the Hurwitz action for the symmetric group S_n . In other words, show that any two factorizations $t_1t_2 \cdots t_{n-1}$ and $t'_1 t'_2 \cdots t'_{n-1}$ of the long cycle $c = (1, 2, \ldots, n) \in S_n$ into products of n-1 transpositions can be obtained from each other by a sequence of Hurwitz moves σ_i , $i = 1, \ldots, n-2$:

$$\sigma_i:\cdots t_{i-1} t_i t_{i+1} t_{i+2} \cdots \longrightarrow \cdots t_{i-1} t_{i+1} \left(t_{i+1}^{-1} t_i t_{i+1} \right) t_{i+2} \cdots$$

Problem 7. For the Hurwitz moves σ_i acting on factorizations of the long cycle $c \in S_n$ into products of n-1 transpositions (as in the previous problem) show that $(\sigma_1 \sigma_2 \cdots \sigma_{n-2})^{n(n-1)}$ is the identity operator.

Problem 8. Prove that the number of *m*-tuples (t_1, \ldots, t_m) of transpositions $t_i \in S_n$ such that

(a) $t_1 t_2 \cdots t_m = 1 \in S_n$, (b) t_1, \ldots, t_m generate the symmetric group S_n , and (c) m = 2n - 2equals $n^{n-3} (2n - 2)!$.

Problem 9. In class, we showed that the lattice of non-crossing partitions NC_n is isomorphic to the interval $[1, c]_{abs}$ between the identity permutation 1 and the long cycle c = (1, 2, ..., n) in the absolute reflection order on the symmetric group S_n . Thus the Kreweras complementation map $K : NC_n \to NC_n$ induces a map on saturated chains in the poset $[1, c]_{abs}$. These saturated chains correspond to factorizations $t_1t_2 \cdots t_{n-1}$ of c in products on n-1 reflections.

Show that the map $t_1t_2\cdots t_{n-1} \to t'_1t'_2\cdots t'_{n-1}$ acting on factorizations of c obtained from the Kreweras complementation can be described as follows:

$$\begin{aligned} t_1' &= t_{n-1}, \\ t_2' &= t_{n-1}^{-1} t_{n-2} t_{n-1}, \\ t_3' &= t_{n-1}^{-1} t_{n-2}^{-1} t_{n-3} t_{n-2} t_{n-1}, \text{ etc.} \end{aligned}$$

Problem 10. Let \mathcal{A} be the affine hyperplane arrangement in the space $\{(x_1, \ldots, x_n) \in \mathbb{R}^n \mid x_1 + \cdots + x_n = 0\} \simeq \mathbb{R}^{n-1}$ with $\binom{n}{2}$ affine hyperplanes $H_{ij}, 1 \leq i < j \leq n$, given by the equations

$$x_i - x_j = a_{ij}$$

where a_{ij} are some fixed generic real numbers. Show that

5

- (a) The number of vertices of the arrangement \mathcal{A} (i.e., the number of 0-dimensional intersections of some hyperplanes H_{ij}) equals the number n^{n-2} of trees on n labelled vertices.
- (b) The number of regions of the arrangement \mathcal{A} equals the number of forests on n labelled vertices.

Problem 11. Find an explicit formula for the number of regions of the hyperplane arrangement in \mathbb{R}^n with $5\binom{n}{2}$ hyperplanes given by the equations

$$x_i - x_j = -2, -1, 0, 1, 2,$$

for $1 \leq i < j \leq n$.

Problem 12. Find an explicit formula for the number of regions of the hyperplane arrangement in \mathbb{R}^n with $4\binom{n}{2}$ hyperplanes given by the equations

$$x_i - x_j = -1, 0, 1, 2$$

for $1 \leq i < j \leq n$.

Problem 13. For a finite matroid M without loops, let L(M) be the lattice of flats of M. Prove that

- (a) L(M) is a geometric lattice, and
- (b) any geometric lattice L is isomorphic to L(M) for some M.

Problem 14. Let $M = (M, \mathcal{B})$ be a matroid, where E is the ground set of M, and \mathcal{B} is the set of bases of M. Let $M^* = (E, \mathcal{B}^*)$, where $\mathcal{B}^* := \{E \setminus I \mid I \in \mathcal{B}\} \subset 2^E$. Prove that M^* is a matroid. In other words, show that the Exchange Condition for the set of bases \mathcal{B} is equivalent to the Exchange Condition for the set of bases \mathcal{B}^* .

Problem 15. Let $A_{m,n}$ be the number of acyclic orientations of the complete bipartite graph $K_{m,n}$. Prove that

- (a) A_{m,n} equals the number of m × n matrices filled with 0's and 1's such that no 2 × 2 submatrix equals \$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\$ or \$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\$.
 (b) A regular the number of m × n matrices filled with 0's and 0'
- (b) $A_{m,n}$ equals the number of $m \times n$ matrices filled with 0's and 1's such that no 2 × 2 submatrix equals $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ or $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$.

(A " 2×2 submatrix" means a submatrix located in any 2 rows and any 2 columns of a matrix, not necessarily consecutive rows/columns.)

Problem 16. Find an explicit formula for the number $A_{m,n}$ of acyclic orientations of $K_{m,n}$. (Your answer that might involve a single summation.)

Problem 17. An *increasing forest* is a forest with vertices labelled by $1, 2, 3, \ldots$ that contains no pair of edges (a, c) and (b, c) with a < b < c.

Prove bijectively that the number of increasing forests on n labelled vertices with k edges equals the Stirling number of the first kind s(n, n-k), i.e., the number of permutations in S_n with n - k cycles.

Problem 18. Construct a linear basis of the Orlik-Solomon algebra for the Catalan hyperplane arrangement. Describe a bijection between elements of your basis and some set of combinatorial objects of cardinality $n! C_n$.

Problem 19. In class, we discussed the following map ϕ from the set of Young diagrams λ that fit inside the staircase shape $(n-1, n-2, \ldots, 1)$ and certain posets P on n labelled vertices $1, \ldots, n$. (Clearly, such Young diagrams λ correspond to Dyck paths with 2n steps.) The poset $P = \phi(\lambda)$ is given by $i <_P j$ if and only if the box (i, n+1-j) belongs to λ .

Prove that the map ϕ induces a bijection between Dyck paths with 2n steps and all *unlabelled* semiorders on n vertices.

Problem 20. Let v_1, \ldots, v_N be a collection of vectors that span a vector space $V \simeq \mathbb{R}^d$, and let $\Lambda \subset V$, $\Lambda \simeq \mathbb{Z}^d$, be the \mathbb{Z} -span of these vectors v_i (i.e., the set of their integer linear combinations). We say that a collection of vectors v_1, \ldots, v_N is *unimodular* if, whenever a subset of these vectors forms a linear basis of V, the \mathbb{Z} -span of this subset equals Λ . For a example, the collection of vectors $(1,0), (0,1), (1,1) \in \mathbb{Z}^2 \subset \mathbb{R}^2$ is unimodular, but the collection of vectors (1,0), (0,1), (1,2) it not unimodular because the \mathbb{Z} -span of (1,0) and (1,2) is not \mathbb{Z}^2 .

In class, we discussed the graphical arrangement \mathcal{A}_G and the cographical arrangement \mathcal{A}_G^* associated with a graph G. Show that, for each of these arrangements, one can pick normal vectors to the hyperplanes so that they form a unimodular collection of vectors.

Problem 21. For $n \ge 4$, the wheel graph W_n is the simple graph on n vertices obtained from the (n-1)-cycle graph C_{n-1} by adding one extra vertex connected to all vertices of C_{n-1} . Show that the number of acyclic orientations of the wheel graph W_n equals the number of totally cyclic orientations of W_n .

Problem 22. Show that the evaluation $T_{K_{n+1}}(1, -1)$ of the Tutte polynomial for the complete graph K_{n+1} equals the number of alternating permutations in S_n . (Recall that a permutation $w \in S_n$ is alternating if $w_1 < w_2 > w_3 < w_4 > \cdots$.)