18.217 PROBLEM SET 1 (due Friday, October 15, 2021)

Solve 4 (or more) of the following problems.

Problem 1. The Narayana number N(n,k) is the number of Dyck paths with 2n steps and k peaks. Prove bijectively that the Narayana number N(n,k) equals the number of binary trees on n vertices with k-1 left edges.

Problem 2. An *increasing plane tree* is a plane tree with vertices labelled by $1, 2, \ldots$ so that each child has a greater label than its parent. Find an explicit formula for the number of increasing plane trees on n + 1 vertices.

Problem 3. A *left-increasing binary tree* is a binary tree with vertices labelled by $1, 2, \ldots, n$ so that left childeren have greater labels than their parents. Show that the number of left-increasing binary trees on n vertices equals $(n + 1)^{n-1}$.

Problem 4. Define the *q*-Catalan number as the sum $C_n(q) := \sum q^{\operatorname{area}(P)}$ over Dyck paths *P* with 2*n* steps, where $\operatorname{area}(P)$ is the area below *P*. Find a recurrence relation for the *q*-Catalan numbers and show that

$$\sum_{n \ge 0} C_n(q) x^n = \frac{1}{1 - \frac{x}{1 - \frac{qx}{1 - \frac{q^2x}{1 - \frac{q^3x}{1 - \frac{q^3x}{1 - \cdots}}}}}$$

Problem 5. Find a formula for the face number f_i , i.e., the numbers of *i*-dimensional faces, of the (n-1)-dimensional associahedron.

Problem 6. A permutation $w = w_1, \ldots, w_n$ is alternating if it is satisfies $w_1 < w_2 > w_3 < w_4 > \cdots$. Show that the alternating sum

$$(-1)^{n(n+1)/2} \sum_{(a_1,\dots,a_n)} (-1)^{a_1+\dots+a_n}$$

over all parking functions (a_1, \ldots, a_n) of size n equals the number of alternating permutations of size n.

Problem 7. For a partition $\lambda = (\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n)$ with *n* nonzero parts, a sequence (a_1, \ldots, a_n) of positive integers $a_i > 0$ is λ -parking function if the weakly decreasing rearrangement $b_1 \ge b_2 \ge \cdots \ge b_n$ of the numbers a_1, \ldots, a_n satisfies $b_i \le \lambda_i$ for $i = 1, \ldots, n$.

Show that the alternating sum

$$\sum_{(a_1,\dots,a_n)} (-1)^{a_1+\dots+a_n}$$

over all λ -parking functions (a_1, \ldots, a_n) equals zero if and only if λ_n is even.

Problem 8. A symmetric tree T is a tree on 2n+1 vertices labelled by $-n, -n+1, \ldots, -1, 0, 1, \ldots, n$ which is invariant under reversing the signs of all labels $i \mapsto -i$ (except 0). Construct a bijection between symmetric trees on 2n + 1 vertices and λ -parking functions for $\lambda = (2n + 1, 2n - 1, 2n - 3, \ldots, 3, 1)$.

Problem 9. The *Shi arrangement* is the arrangement of the hyperplanes $H_{i,j,k}$ in \mathbb{R}^n given by

 $H_{i,j,k} := \{(x_1, \ldots, x_n) \in \mathbb{R}^n \mid x_i - x_j = k\}, \text{ for } 1 \le i < j \le n, k \in \{0, 1\}$ Find a bijection between regions of the Shi arrangement in \mathbb{R}^n and parking functions of size n.

Problem 10. Recall that the *Stirling number* S(n,k) of the second kind is the number of set partitions of [n] with k non-empty blocks. The *Eulerian number* A(n,k) is the number of permutations $w \in S_n$ with k descents. Give a combinatorial proof of the identity:

$$\sum_{i=0}^{n-1} (n-i)! S(n,n-i) t^i = \sum_{k=0}^{n-1} A(n,k) (t+1)^k$$

Problem 11. The Eulerian polynomials $A_n(x)$ are defined by

$$\sum_{i \ge 0} i^n x^i = \frac{x A_n(x)}{(1-x)^{n+1}}, \quad \text{for } n \ge 1.$$

On the other hand,

$$\sum_{i\geq 0} (i)_n x^i = \frac{n! x^n}{(1-x)^{n+1}},$$

where $(i)_n := i(i-1)(i-2)\dots(i-n+1)$ is the *n*-th falling power of *i*. Use the identity

$$i^n = \sum_{k=0}^n S(n,k) \, (i)_k$$

to deduce an expression for the Eulerian polynomials $A_n(x)$ in terms of the Stirling numbers S(n, k) of the second kind.

Problem 12. Find a combinatorial interpretation of the γ -vector of the (n-1)-dimensional permutohedron.