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Combinatorial Billiards

Mathematical Billiards

Dynamical Algebraic
Combinatorics

Combinatorial billiards combines these topics.

Combinatorial billiard systems are rigid and discretized.
They can be modeled combinatorially or algebraically.

We can ask precise questions about combinatorial billiard
systems in high-dimensional spaces.
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Combinatorial Billiards

Basic Setup: Start with the Coxeter arrangement of a Coxeter
group W . Shine a beam of light in some particular direction.
When the light hits a hyperplane, it can change its direction
according to some rule. Discretize the beam of light.
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The Affine Symmetric Group

Let V = {(γ1, . . . , γn) ∈ Rn : γ1 + · · ·+ γn = 0}. Let
Hn = {H0

i,j : 1 ≤ i < j ≤ n} and

H̃n = {Hk
i,j : 1 ≤ i < j ≤ n, k ∈ Z}, where

Hk
i,j = {(γ1, . . . , γn) ∈ V : γi − γj = k}.
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The Affine Symmetric Group

The affine symmetric group1 S̃n is the group generated by the
reflections through the hyperplanes in H̃n.

The symmetric group Sn is the subgroup of S̃n generated by
the reflections through the hyperplanes in Hn.

1
Some definitions and results in this talk generalize to all affine Weyl groups.
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The Affine Symmetric Group

The connected components of V \
⋃
Hn are called chambers.

The connected components of V \
⋃
H̃n are called alcoves.

The fundamental chamber is C =
{(γ1, . . . , γn) ∈ V : γ1 ≥ γ2 ≥ · · · ≥ γn}.
The fundamental alcove is
A = {(γ1, . . . , γn) ∈ C : γn ≥ γ1 − 1}.

There is a bijection from Sn to the set of
chambers given by u 7→ uC.
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Lam’s Reduced Random Walk

Start at A. At each time step, choose an adjacent alcove
uniformly at random. If moving to that alcove causes you to
pass through a hyperplane that you have already crossed, do
nothing. Otherwise, move to that adjacent alcove.

Colin Defant Random Combinatorial Billiards



Lam’s Reduced Random Walk

Start at A. At each time step, choose an adjacent alcove
uniformly at random. If moving to that alcove causes you to
pass through a hyperplane that you have already crossed, do
nothing. Otherwise, move to that adjacent alcove.

Colin Defant Random Combinatorial Billiards



Lam’s Reduced Random Walk

Start at A. At each time step, choose an adjacent alcove
uniformly at random. If moving to that alcove causes you to
pass through a hyperplane that you have already crossed, do
nothing. Otherwise, move to that adjacent alcove.

Colin Defant Random Combinatorial Billiards



Lam’s Reduced Random Walk

Start at A. At each time step, choose an adjacent alcove
uniformly at random. If moving to that alcove causes you to
pass through a hyperplane that you have already crossed, do
nothing. Otherwise, move to that adjacent alcove.

Colin Defant Random Combinatorial Billiards



Lam’s Reduced Random Walk

Start at A. At each time step, choose an adjacent alcove
uniformly at random. If moving to that alcove causes you to
pass through a hyperplane that you have already crossed, do
nothing. Otherwise, move to that adjacent alcove.

Colin Defant Random Combinatorial Billiards



Lam’s Reduced Random Walk

Start at A. At each time step, choose an adjacent alcove
uniformly at random. If moving to that alcove causes you to
pass through a hyperplane that you have already crossed, do
nothing. Otherwise, move to that adjacent alcove.

Colin Defant Random Combinatorial Billiards



Lam’s Reduced Random Walk

Start at A. At each time step, choose an adjacent alcove
uniformly at random. If moving to that alcove causes you to
pass through a hyperplane that you have already crossed, do
nothing. Otherwise, move to that adjacent alcove.

Colin Defant Random Combinatorial Billiards



Lam’s Reduced Random Walk

Start at A. At each time step, choose an adjacent alcove
uniformly at random. If moving to that alcove causes you to
pass through a hyperplane that you have already crossed, do
nothing. Otherwise, move to that adjacent alcove.

Colin Defant Random Combinatorial Billiards



Lam’s Reduced Random Walk

Start at A. At each time step, choose an adjacent alcove
uniformly at random. If moving to that alcove causes you to
pass through a hyperplane that you have already crossed, do
nothing. Otherwise, move to that adjacent alcove.

Colin Defant Random Combinatorial Billiards



Lam’s Reduced Random Walk

Start at A. At each time step, choose an adjacent alcove
uniformly at random. If moving to that alcove causes you to
pass through a hyperplane that you have already crossed, do
nothing. Otherwise, move to that adjacent alcove.

Colin Defant Random Combinatorial Billiards



Lam’s Reduced Random Walk

Start at A. At each time step, choose an adjacent alcove
uniformly at random. If moving to that alcove causes you to
pass through a hyperplane that you have already crossed, do
nothing. Otherwise, move to that adjacent alcove.

Colin Defant Random Combinatorial Billiards



The Affine Grassmannian Reduced Random Walk

The affine Grassmannian reduced random walk is the same as
the reduced random walk, except the hyperplanes in Hn start
off pink.
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Projecting to a Torus

The affine Grassmannian reduced random walk projects to a
Markov chain on Sn called the multispecies totally asymmetric
simple exclusion process (multispecies TASEP) on a ring (cycle).
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Lam’s Theorem

Let ζ be the stationary distribution of the multispecies TASEP.

Let
ψLam =

∑
w∈Sn

w−1(1)<w−1(n)

ζ(w)(ew−1(1) − ew−1(n)),

where ei is the i-th standard basis vector of Rn.

Theorem (Lam, 2015)

With probability 1, the affine Grassmannian reduced random
walk travels asymptotically in the direction of ψLam, and the
reduced random walk travels asymptotically in the direction of
one of the vectors in SnψLam.
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Computing the Directions

By analyzing the multispecies TASEP, Ayyer and Linusson
computed ψLam.

Theorem (Ayyer–Linusson, 2017)

The vector ψLam is a positive scalar multiple of∑
1≤i<j≤n(j − i)(ei − ej).

Colin Defant Random Combinatorial Billiards



Computing the Directions

By analyzing the multispecies TASEP, Ayyer and Linusson
computed ψLam.

Theorem (Ayyer–Linusson, 2017)

The vector ψLam is a positive scalar multiple of∑
1≤i<j≤n(j − i)(ei − ej).

Colin Defant Random Combinatorial Billiards



Reduced Random Billiards

Fix p ∈ (0, 1).

Start at a point in the interior of A. Shine a beam of light in
the direction of some vector η ∈ V . When the beam hits a
hyperplane in H̃n that it has not yet crossed, it passes through
with probability p and reflects with probability 1− p. When the
beam hits a hyperplane that it has already crossed, it must
reflect.
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Affine Grassmannian Reduced Random Billiards

The affine Grassmannian reduced random billiard trajectory is
the same as the reduced random billiard trajectory, except we
must reflect when we hit a hyperplane in Hn.
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Affine Grassmannian Reduced Random Billiards

Theorem (D., 2024+)

There exists a vector ψ
(p)
η (depending on p and the initial

direction η) such that with probability 1,

the affine Grassmannian reduced random billiard trajectory

travels asymptotically in the direction of ψ
(p)
η and

the reduced random billiard trajectory travels asymptotically

in the direction of one of the vectors in Snψ
(p)
η .

The affine Grassmannian reduced random billiard trajectory
projects to a finite Markov chain whose stationary distribution

can be used to compute ψ
(p)
η .
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A Special Initial Direction

Assume now that the light beam initially shines in the direction
of the vector δ = (1, 1, . . . , 1,−n+ 1).

Theorem (D., 2024+)

The vector ψ
(p)
δ is a positive scalar multiple of

∑
1≤i<j≤n

(j − i)(2n− (i+ j − 1)p)

(n− ip)(n− (i− 1)p)(n− jp)(n− (j − 1)p)
(ei − ej).

In the limit as p→ 0, we recover ψLam.
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Projecting to the Torus

Project the affine Grassmannian reduced random billiard
trajectory to the torus. A state is a pair (w, i) ∈ Sn × Z/nZ,
where w tells us the alcove containing the beam of light and i
encodes the direction the beam is facing.
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The Multispecies ASEP

Fix t ∈ [0, 1) and λ = (λ1, . . . , λn) ∈ Zn with λ1 ≥ · · · ≥ λn ≥ 0.
For k, k′ ∈ Z, let

ft(k, k
′) =


1 if k > k′;

t if k < k′;

0 if k = k′.

Let Sλ be the set of permutations of λ. When
λ = (n, n− 1, . . . , 1), identify Sλ with Sn.

The multispecies ASEP is a Markov chain with state space Sλ.
Represent a state µ by placing particles of species µ1, . . . , µn on
sites 1, . . . , n of a ring (cycle).

For i ∈ Z/nZ, particles on sites
i and i+ 1 swap with rate
ft(µi, µi+1).
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Past Results on the Multispecies ASEP

The multispecies TASEP is the multispecies ASEP when t = 0.

Ferrari and Martin invented multiline queues in order to
compute the stationary distribution of the multispecies TASEP.

Martin generalized this to the multispecies ASEP.

Corteel, Mandelshtam, and Williams, building off of work of
Cantini, de Gier, and Wheeler, introduced ASEP polynomials,
which are polynomials Fµ(x1, . . . , xn; q, t) ∈ C(q, t)[x1, . . . , xn].
They showed that the stationary probability of µ in the
multispecies ASEP is Fµ(1, . . . , 1; 1, t) (up to normalization).
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Corteel, Mandelshtam, and Williams, building off of work of
Cantini, de Gier, and Wheeler, introduced ASEP polynomials,
which are polynomials Fµ(x1, . . . , xn; q, t) ∈ C(q, t)[x1, . . . , xn].
They showed that the stationary probability of µ in the
multispecies ASEP is Fµ(1, . . . , 1; 1, t) (up to normalization).
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The Stoned Multispecies ASEP

The state space is Sλ × Z/nZ. Represent (µ, j) by placing
particles of species µ1, . . . , µn on the sites of a ring, placing a
gold on site j, and placing green stones on all other sites.

For a transition from state (µ, j), the gold stone swaps with the
green stone on site j + 1. The stones send a signal to the
particles on sites j and j + 1, telling them to swap. The signal
reaches the particles with probability p. If the particles receive
the signal, they follow orders with probability ft(µj , µj+1).
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The Stoned Multispecies ASEP

Theorem (D., 2024+)

Let χ = 1−p
1−pt . The stationary probability of (µ, j) in the stoned

multispecies ASEP is Fµ(1, . . . , 1, χ, 1, . . . , 1; 1, t) (up to
normalization), where the χ is in position j.

When t = 0, this allows us to compute ψ
(p)
δ by analyzing

multiline queues.
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The Stoned Multispecies ASEP

There is a more general version of the stoned multispecies
ASEP in which the green stones are numbered 1, . . . , n− 1 and
the probability of the signal reaching the particles is some
probability pi depending on the number i of the green stone
that swapped with the gold stone. In this setting, the
stationary distribution is given by evaluating ASEP
polynomials at generic values.

Ayyer, Martin, and Williams recently constructed a completely
different Markov chain whose stationary distribution is also
given by evaluating ASEP polynomials at generic values.
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The Stoned Inhomogeneous TASEP

The inhomogeneous TASEP:

Introduced by Lam and Williams. Studied further by many
others.

Stationary distribution conjecturally related to Schubert
polynomials.

Stationary distribution is obtained by particular
specializations of inhomogeneous TASEP polynomials.

There is a stoned version whose stationary distribution is
given by evaluating inhomogeneous TASEP polynomials at
generic values.

The stoned version also has a billiards interpretation.
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The Stoned Open Boundary ASEP

The open boundary ASEP:

Introduced by Spitzer.

Stationary distribution is obtained by particular
specializations of open boundary ASEP polynomials, which
are closely related to Koornwinder polynomials.

There is a stoned version whose stationary distribution is
given by evaluating open boundary ASEP polynomials at
generic values.

The stoned version also has a billiards interpretation in a
type-C affine Weyl group.
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THANKS!
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