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Posets

A poset (partially ordered set) is a pair P = (X,≤P ), where X
is a set and ≤P is a partial order on X. That is, ≤P is a binary
relation on X that is

reflective (x ≤P x),

antisymmetric (if x ≤P y and y ≤P x, then x = y),

transitive (if x ≤P y and y ≤P z, then x ≤P z).

Let’s always just assume that X = [n] = {1, . . . , n}.
We can represent a poset via its Hasse diagram.
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Linear Extensions

Elements of the symmetric group Sn can be seen as labelings of
P . Say u ∈ Sn is a linear extension of P if
i <P j =⇒ u(i) < u(j).
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The Braid Arrangement

Let V ∗ = {(x1, . . . , xn) ∈ Rn : x1 + · · ·+ xn = 0} ∼= Rn−1.
Let Hi,j = {(x1, . . . , xn) ∈ V ∗ : xi = xj}. The n-th braid
arrangement is HSn = {Hi,j : 1 ≤ i < j ≤ n}.

Sn acts on V ∗ by permuting coordinates.

Identify elements of Sn with regions of HSn by

w ←→ {(x1, . . . , xn) ∈ V ∗ : xw−1(1) ≤ · · · ≤ xw−1(n)}.
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Posets

Let P = ([n],≤P ) be a poset. L(P ) corresponds to the set of
points satisfying xi ≤ xj whenever i ≤P j.
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Coxeter Groups

Let I be a finite index set. For distinct i, i′ ∈ I, let m(i, i) = 1,
and choose m(i, i′) = m(i′, i) ∈ {2, 3, . . .} ∪ {∞}. Let
S = {si : i ∈ I}.

Let W be the Coxeter group with presentation

W = ⟨S : (sisi′)
m(i,i′) = 1 for all i, i′ ∈ I⟩,

where 1 is the identity.

The Coxeter graph of W has vertex set I. Two vertices i, i′ ∈ I
are connected by an edge labeled m(i, i′) whenever m(i, i′) ≥ 3.
We do not draw “3” labels.

The Coxeter graph of Sn (with si = (i i+ 1)) is
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Roots

Let V be a real vector space of dimension |I|. Fix a basis
{αi : i ∈ I} of V ; the elements of this basis are called simple
roots.
Define a bilinear form B : V × V → R by
B(αi, αi′) = − cos(π/m(i, i′)) (where π/∞ = 0).
There is a well defined action of W on V such that
siβ = β − 2B(β, αi)αi. The root system of W is

Φ = {wαi : w ∈W, i ∈ I}.
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Roots for Sn

Let I = [n− 1]. Let ei be the i-th standard basis vector of Rn.
Let αi = ei − ei+1.
We have

si(ei − ei+1) = αi − 2B(αi, αi)αi = αi − 2(− cos(π/1))αi

= −αi = esi(i) − esi(i+1);

si(ei+1 − ei+2) = αi+1 − 2B(αi+1, αi)αi = αi+1 − 2(− cos(π/3))αi

= αi + αi+1 = ei − ei+2 = esi(i+1) − esi(i+2).

For |i− j| ≥ 2,

si(ej − ej+1) = αj − 2B(αj , αi)αi = αj − 2(− cos(π/2))αi

= αj = esi(j) − esi(j+1).

In general, w(ei − ei+1) = ew(i) − ew(i+1). So
Φ = {ei − ej : i, j ∈ [n], i ̸= j}.
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The Coxeter Arrangement

Let V ∗ be the dual space of V . For β ∈ Φ, consider the
hyperplane Hβ = {f ∈ V ∗ : f(β) = 0} in V ∗.
The Coxeter arrangement of W is HW = {Hβ : β ∈ Φ}. A region
of HW is the closure of a connected component of V ∗ \

⋃
β∈ΦHβ.

The base region is B = {f ∈ V ∗ : f(αi) ≥ 0 for all i ∈ I}.

There is a right action of W on V ∗ determined by the condition
that (fw)(β) = f(wβ) for all w ∈W , β ∈ V , and f ∈ V ∗.

This yields a right action of W on the set of regions of HW .

The Tits cone is BW . The action of W on the regions of HW in
the Tits cone is free and transitive. Thus, we can identify each
element u ∈W with the region Bu.

The regions adjacent to Bu are Bsiu for i ∈ I.
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The (3, 3, 5) Triangle Group
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Classes of Coxeter Groups

A Coxeter group is irreducible if its Coxeter graph is connected.

There are 3 main classes of Coxeter groups:

Finite. The Tits cone is all of V ∗, and the bilinear form B
makes the Tits cone into a spherical geometry.

Affine. The bilinear form B makes the Tits cone into a
Euclidean geometry.

Everything Else.
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Finite Coxeter Groups

Finite irreducible Coxeter groups have been classified. They are
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Affine Coxeter Groups

Affine irreducible Coxeter groups have been classified. They are
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Reduced Words and Coxeter Elements

A reduced word for an element w ∈W is a word sik · · · si1 of
minimum length that represents w. The length of a reduced
word for w is the length of w.

If W is finite, then there is a unique element w◦ ∈W of
maximum length called the long element. For example, in Sn,
the long element is n(n− 1) · · · 321.
A Coxeter element is an element c = sin · · · si1 obtained by
multiplying all of the simple reflections together in some order.
Any two reduced words for c are related by commutation moves.
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Standard Parabolic Subgroups

Let ΓW be the Coxeter graph of W . Let J ⊆ I, and let WJ be
the Coxeter group whose Coxeter graph is the subgraph of ΓW

induced by J . Equivalently, WJ is the subgroup of W generated
by {si : i ∈ J}. The subgroup WJ is called a standard parabolic
subgroup.
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THANK YOU!
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