Posets, Coxeter Groups, Root Systems, etc.

Colin Defant

Harvard

University of Minnesota Pre-Talk

Colin Defant Posets, Coxeter Groups, Root Systems, etc.

Colin Defant Posets, Coxeter Groups, Root Systems, etc.

イロト イヨト イヨト イヨト

3

A *poset* (partially ordered set) is a pair $P = (X, \leq_P)$, where X is a set and \leq_P is a *partial order* on X. That is, \leq_P is a binary relation on X that is

- reflective $(x \leq_P x)$,
- antisymmetric (if $x \leq_P y$ and $y \leq_P x$, then x = y),
- *transitive* (if $x \leq_P y$ and $y \leq_P z$, then $x \leq_P z$).

A *poset* (partially ordered set) is a pair $P = (X, \leq_P)$, where X is a set and \leq_P is a *partial order* on X. That is, \leq_P is a binary relation on X that is

- reflective $(x \leq_P x)$,
- antisymmetric (if $x \leq_P y$ and $y \leq_P x$, then x = y),
- *transitive* (if $x \leq_P y$ and $y \leq_P z$, then $x \leq_P z$).

Let's always just assume that $X = [n] = \{1, \ldots, n\}.$

A *poset* (partially ordered set) is a pair $P = (X, \leq_P)$, where X is a set and \leq_P is a *partial order* on X. That is, \leq_P is a binary relation on X that is

- reflective $(x \leq_P x)$,
- antisymmetric (if $x \leq_P y$ and $y \leq_P x$, then x = y),
- *transitive* (if $x \leq_P y$ and $y \leq_P z$, then $x \leq_P z$).

Let's always just assume that $X = [n] = \{1, ..., n\}$. We can represent a poset via its *Hasse diagram*.

Linear Extensions

Colin Defant Posets, Coxeter Groups, Root Systems, etc.

Linear Extensions

Elements of the symmetric group \mathfrak{S}_n can be seen as labelings of P. Say $u \in \mathfrak{S}_n$ is a *linear extension* of P if $i <_P j \implies u(i) < u(j)$.

Colin Defant Posets, Coxeter Groups, Root Systems, etc.

Let
$$V^* = \{(x_1, \ldots, x_n) \in \mathbb{R}^n : x_1 + \cdots + x_n = 0\} \cong \mathbb{R}^{n-1}$$
.
Let $\mathcal{H}_{i,j} = \{(x_1, \ldots, x_n) \in V^* : x_i = x_j\}$. The *n*-th braid
arrangement is $\mathcal{H}_{\mathfrak{S}_n} = \{\mathcal{H}_{i,j} : 1 \leq i < j \leq n\}$.

Let
$$V^* = \{(x_1, \ldots, x_n) \in \mathbb{R}^n : x_1 + \cdots + x_n = 0\} \cong \mathbb{R}^{n-1}$$
.
Let $\mathcal{H}_{i,j} = \{(x_1, \ldots, x_n) \in V^* : x_i = x_j\}$. The *n*-th braid
arrangement is $\mathcal{H}_{\mathfrak{S}_n} = \{\mathcal{H}_{i,j} : 1 \leq i < j \leq n\}$.

 \mathfrak{S}_n acts on V^* by permuting coordinates.

Let
$$V^* = \{(x_1, \ldots, x_n) \in \mathbb{R}^n : x_1 + \cdots + x_n = 0\} \cong \mathbb{R}^{n-1}$$
.
Let $\mathcal{H}_{i,j} = \{(x_1, \ldots, x_n) \in V^* : x_i = x_j\}$. The *n*-th braid
arrangement is $\mathcal{H}_{\mathfrak{S}_n} = \{\mathcal{H}_{i,j} : 1 \leq i < j \leq n\}$.

 \mathfrak{S}_n acts on V^* by permuting coordinates. Identify elements of \mathfrak{S}_n with regions of $\mathcal{H}_{\mathfrak{S}_n}$ by

$$w \longleftrightarrow \{(x_1, \dots, x_n) \in V^* : x_{w^{-1}(1)} \le \dots \le x_{w^{-1}(n)}\}.$$

Colin Defant Posets, Coxeter Groups, Root Systems, etc.

イロト イヨト イヨト イヨト

3

Let $P = ([n], \leq_P)$ be a poset. $\mathcal{L}(P)$ corresponds to the set of points satisfying $x_i \leq x_j$ whenever $i \leq_P j$.

э

< 3 > < 3 >

Let $P = ([n], \leq_P)$ be a poset. $\mathcal{L}(P)$ corresponds to the set of points satisfying $x_i \leq x_j$ whenever $i \leq_P j$.

Colin Defant Posets, Coxeter Groups, Root Systems, etc.

Colin Defant Posets, Coxeter Groups, Root Systems, etc.

Let I be a finite index set. For distinct $i, i' \in I$, let m(i, i) = 1, and choose $m(i, i') = m(i', i) \in \{2, 3, ...\} \cup \{\infty\}$. Let $S = \{s_i : i \in I\}.$

Let I be a finite index set. For distinct $i, i' \in I$, let m(i, i) = 1, and choose $m(i, i') = m(i', i) \in \{2, 3, ...\} \cup \{\infty\}$. Let $S = \{s_i : i \in I\}.$

Let W be the *Coxeter group* with presentation

$$W = \langle S : (s_i s_{i'})^{m(i,i')} = 1 \text{ for all } i, i' \in I \rangle,$$

where 1 is the identity.

Let I be a finite index set. For distinct $i, i' \in I$, let m(i, i) = 1, and choose $m(i, i') = m(i', i) \in \{2, 3, ...\} \cup \{\infty\}$. Let $S = \{s_i : i \in I\}.$

Let W be the *Coxeter group* with presentation

$$W = \langle S : (s_i s_{i'})^{m(i,i')} = 1 \text{ for all } i, i' \in I \rangle,$$

where $\mathbb{1}$ is the identity.

The *Coxeter graph* of W has vertex set I. Two vertices $i, i' \in I$ are connected by an edge labeled m(i, i') whenever $m(i, i') \geq 3$. We do not draw "3" labels.

Let I be a finite index set. For distinct $i, i' \in I$, let m(i, i) = 1, and choose $m(i, i') = m(i', i) \in \{2, 3, ...\} \cup \{\infty\}$. Let $S = \{s_i : i \in I\}.$

Let W be the *Coxeter group* with presentation

$$W = \langle S : (s_i s_{i'})^{m(i,i')} = 1 \text{ for all } i, i' \in I \rangle,$$

where 1 is the identity.

The *Coxeter graph* of W has vertex set I. Two vertices $i, i' \in I$ are connected by an edge labeled m(i, i') whenever $m(i, i') \geq 3$. We do not draw "3" labels.

The Coxeter graph of \mathfrak{S}_n (with $s_i = (i \ i + 1)$) is

$$\begin{array}{c|c} \bullet & \bullet \\ 1 & 2 & \cdots & \bullet \\ \hline n-2 & n-1 \end{array}$$

Colin Defant Posets, Coxeter Groups, Root Systems, etc.

・ロト ・四ト ・ヨト ・ヨト

3

Let V be a real vector space of dimension |I|. Fix a basis $\{\alpha_i : i \in I\}$ of V; the elements of this basis are called *simple roots*.

Let V be a real vector space of dimension |I|. Fix a basis $\{\alpha_i : i \in I\}$ of V; the elements of this basis are called *simple roots*.

Define a bilinear form $B: V \times V \to \mathbb{R}$ by $B(\alpha_i, \alpha_{i'}) = -\cos(\pi/m(i, i'))$ (where $\pi/\infty = 0$).

Let V be a real vector space of dimension |I|. Fix a basis $\{\alpha_i : i \in I\}$ of V; the elements of this basis are called *simple roots*.

Define a bilinear form $B: V \times V \to \mathbb{R}$ by $B(\alpha_i, \alpha_{i'}) = -\cos(\pi/m(i, i'))$ (where $\pi/\infty = 0$). There is a well defined action of W on V such that $s_i\beta = \beta - 2B(\beta, \alpha_i)\alpha_i$. The *root system* of W is

$$\Phi = \{ w\alpha_i : w \in W, \, i \in I \}.$$

Colin Defant Posets, Coxeter Groups, Root Systems, etc.

• • = • • = •

臣

Let I = [n-1]. Let e_i be the *i*-th standard basis vector of \mathbb{R}^n . Let $\alpha_i = e_i - e_{i+1}$.

э

글 🕨 🖌 글

Let I = [n - 1]. Let e_i be the *i*-th standard basis vector of \mathbb{R}^n . Let $\alpha_i = e_i - e_{i+1}$. We have

$$s_i(e_i - e_{i+1}) = \alpha_i - 2B(\alpha_i, \alpha_i)\alpha_i = \alpha_i - 2(-\cos(\pi/1))\alpha_i$$

= $-\alpha_i = e_{s_i(i)} - e_{s_i(i+1)};$

3

.∃ **)** () ∃

Let I = [n - 1]. Let e_i be the *i*-th standard basis vector of \mathbb{R}^n . Let $\alpha_i = e_i - e_{i+1}$. We have

$$s_i(e_i - e_{i+1}) = \alpha_i - 2B(\alpha_i, \alpha_i)\alpha_i = \alpha_i - 2(-\cos(\pi/1))\alpha_i$$

= $-\alpha_i = e_{s_i(i)} - e_{s_i(i+1)};$

$$s_i(e_{i+1} - e_{i+2}) = \alpha_{i+1} - 2B(\alpha_{i+1}, \alpha_i)\alpha_i = \alpha_{i+1} - 2(-\cos(\pi/3))\alpha_i$$
$$= \alpha_i + \alpha_{i+1} = e_i - e_{i+2} = e_{s_i(i+1)} - e_{s_i(i+2)}.$$

3

.∃ **)** () ∃

Roots for $\overline{\mathfrak{S}_n}$

Let I = [n - 1]. Let e_i be the *i*-th standard basis vector of \mathbb{R}^n . Let $\alpha_i = e_i - e_{i+1}$. We have

$$s_i(e_i - e_{i+1}) = \alpha_i - 2B(\alpha_i, \alpha_i)\alpha_i = \alpha_i - 2(-\cos(\pi/1))\alpha_i$$

= $-\alpha_i = e_{s_i(i)} - e_{s_i(i+1)};$

$$\begin{split} s_i(e_{i+1} - e_{i+2}) &= \alpha_{i+1} - 2B(\alpha_{i+1}, \alpha_i)\alpha_i = \alpha_{i+1} - 2(-\cos(\pi/3))\alpha_i \\ &= \alpha_i + \alpha_{i+1} = e_i - e_{i+2} = e_{s_i(i+1)} - e_{s_i(i+2)}. \end{split}$$

For $|i - j| \ge 2$,

$$s_i(e_j - e_{j+1}) = \alpha_j - 2B(\alpha_j, \alpha_i)\alpha_i = \alpha_j - 2(-\cos(\pi/2))\alpha_i$$

= $\alpha_j = e_{s_i(j)} - e_{s_i(j+1)}.$

3

.∃ **)** () ∃

Let I = [n - 1]. Let e_i be the *i*-th standard basis vector of \mathbb{R}^n . Let $\alpha_i = e_i - e_{i+1}$. We have

$$s_i(e_i - e_{i+1}) = \alpha_i - 2B(\alpha_i, \alpha_i)\alpha_i = \alpha_i - 2(-\cos(\pi/1))\alpha_i \\ = -\alpha_i = e_{s_i(i)} - e_{s_i(i+1)};$$

$$s_i(e_{i+1} - e_{i+2}) = \alpha_{i+1} - 2B(\alpha_{i+1}, \alpha_i)\alpha_i = \alpha_{i+1} - 2(-\cos(\pi/3))\alpha_i$$
$$= \alpha_i + \alpha_{i+1} = e_i - e_{i+2} = e_{s_i(i+1)} - e_{s_i(i+2)}.$$

For $|i - j| \ge 2$, $s_i(e_j - e_{j+1}) = \alpha_j - 2B(\alpha_j, \alpha_i)\alpha_i = \alpha_j - 2(-\cos(\pi/2))\alpha_i$ $= \alpha_j = e_{s_i(j)} - e_{s_i(j+1)}.$

In general, $w(e_i - e_{i+1}) = e_{w(i)} - e_{w(i+1)}$. So $\Phi = \{e_i - e_j : i, j \in [n], i \neq j\}.$

Posets, Coxeter Groups, Root Systems, etc.

Colin Defant Posets, Coxeter Groups, Root Systems, etc.

Let V^* be the dual space of V. For $\beta \in \Phi$, consider the hyperplane $\mathcal{H}_{\beta} = \{f \in V^* : f(\beta) = 0\}$ in V^* .

Let V^* be the dual space of V. For $\beta \in \Phi$, consider the hyperplane $\mathcal{H}_{\beta} = \{f \in V^* : f(\beta) = 0\}$ in V^* . The *Coxeter arrangement* of W is $\mathcal{H}_W = \{\mathcal{H}_{\beta} : \beta \in \Phi\}$. A *region* of \mathcal{H}_W is the closure of a connected component of $V^* \setminus \bigcup_{\beta \in \Phi} \mathcal{H}_{\beta}$. The *base region* is $\mathbb{B} = \{f \in V^* : f(\alpha_i) \ge 0 \text{ for all } i \in I\}$.

Let V^* be the dual space of V. For $\beta \in \Phi$, consider the hyperplane $\mathcal{H}_{\beta} = \{f \in V^* : f(\beta) = 0\}$ in V^* . The *Coxeter arrangement* of W is $\mathcal{H}_W = \{\mathcal{H}_{\beta} : \beta \in \Phi\}$. A *region* of \mathcal{H}_W is the closure of a connected component of $V^* \setminus \bigcup_{\beta \in \Phi} \mathcal{H}_{\beta}$. The *base region* is $\mathbb{B} = \{f \in V^* : f(\alpha_i) \ge 0 \text{ for all } i \in I\}$.

There is a right action of W on V^* determined by the condition that $(fw)(\beta) = f(w\beta)$ for all $w \in W$, $\beta \in V$, and $f \in V^*$.

Let V^* be the dual space of V. For $\beta \in \Phi$, consider the hyperplane $\mathcal{H}_{\beta} = \{f \in V^* : f(\beta) = 0\}$ in V^* . The *Coxeter arrangement* of W is $\mathcal{H}_W = \{\mathcal{H}_{\beta} : \beta \in \Phi\}$. A *region* of \mathcal{H}_W is the closure of a connected component of $V^* \setminus \bigcup_{\beta \in \Phi} \mathcal{H}_{\beta}$. The *base region* is $\mathbb{B} = \{f \in V^* : f(\alpha_i) \ge 0 \text{ for all } i \in I\}$.

There is a right action of W on V^* determined by the condition that $(fw)(\beta) = f(w\beta)$ for all $w \in W$, $\beta \in V$, and $f \in V^*$.

This yields a right action of W on the set of regions of \mathcal{H}_W .

Let V^* be the dual space of V. For $\beta \in \Phi$, consider the hyperplane $\mathcal{H}_{\beta} = \{f \in V^* : f(\beta) = 0\}$ in V^* . The *Coxeter arrangement* of W is $\mathcal{H}_W = \{\mathcal{H}_{\beta} : \beta \in \Phi\}$. A *region* of \mathcal{H}_W is the closure of a connected component of $V^* \setminus \bigcup_{\beta \in \Phi} \mathcal{H}_{\beta}$. The *base region* is $\mathbb{B} = \{f \in V^* : f(\alpha_i) \ge 0 \text{ for all } i \in I\}$.

There is a right action of W on V^* determined by the condition that $(fw)(\beta) = f(w\beta)$ for all $w \in W$, $\beta \in V$, and $f \in V^*$.

This yields a right action of W on the set of regions of \mathcal{H}_W .

The *Tits cone* is $\mathbb{B}W$. The action of W on the regions of \mathcal{H}_W in the Tits cone is free and transitive. Thus, we can identify each element $u \in W$ with the region $\mathbb{B}u$.

Let V^* be the dual space of V. For $\beta \in \Phi$, consider the hyperplane $\mathcal{H}_{\beta} = \{f \in V^* : f(\beta) = 0\}$ in V^* . The *Coxeter arrangement* of W is $\mathcal{H}_W = \{\mathcal{H}_{\beta} : \beta \in \Phi\}$. A *region* of \mathcal{H}_W is the closure of a connected component of $V^* \setminus \bigcup_{\beta \in \Phi} \mathcal{H}_{\beta}$. The *base region* is $\mathbb{B} = \{f \in V^* : f(\alpha_i) \ge 0 \text{ for all } i \in I\}$.

There is a right action of W on V^* determined by the condition that $(fw)(\beta) = f(w\beta)$ for all $w \in W$, $\beta \in V$, and $f \in V^*$.

This yields a right action of W on the set of regions of \mathcal{H}_W .

The *Tits cone* is $\mathbb{B}W$. The action of W on the regions of \mathcal{H}_W in the Tits cone is free and transitive. Thus, we can identify each element $u \in W$ with the region $\mathbb{B}u$.

The regions adjacent to $\mathbb{B}u$ are $\mathbb{B}s_i u$ for $i \in I$.

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ○ヨ ○ の々ぐ

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ○ヨ ○ の々ぐ

Colin Defant Posets, Coxeter Groups, Root Systems, etc.

▲ロト ▲暦 ト ▲ 国 ト ▲ 国 - シタ()~

Colin Defant Posets, Coxeter Groups, Root Systems, etc.

▲ロト ▲暦 ト ▲ 国 ト ▲ 国 - シタ()~

The (3,3,5) Triangle Group

Classes of Coxeter Groups

Classes of Coxeter Groups

A Coxeter group is *irreducible* if its Coxeter graph is connected.

A Coxeter group is *irreducible* if its Coxeter graph is connected. There are 3 main classes of Coxeter groups:

Finite. The Tits cone is all of V^* , and the bilinear form B makes the Tits cone into a spherical geometry.

Affine. The bilinear form B makes the Tits cone into a Euclidean geometry.

Everything Else.

Finite Coxeter Groups

Finite irreducible Coxeter groups have been classified. They are

Affine Coxeter Groups

Affine irreducible Coxeter groups have been classified. They are

Reduced Words and Coxeter Elements

Colin Defant Posets, Coxeter Groups, Root Systems, etc.

Reduced Words and Coxeter Elements

A *reduced word* for an element $w \in W$ is a word $s_{i_k} \cdots s_{i_1}$ of minimum length that represents w. The length of a reduced word for w is the *length* of w.

Reduced Words and Coxeter Elements

A reduced word for an element $w \in W$ is a word $s_{i_k} \cdots s_{i_1}$ of minimum length that represents w. The length of a reduced word for w is the *length* of w.

If W is finite, then there is a unique element $w_{\circ} \in W$ of maximum length called the *long element*. For example, in \mathfrak{S}_n , the long element is $n(n-1)\cdots 321$. A reduced word for an element $w \in W$ is a word $s_{i_k} \cdots s_{i_1}$ of minimum length that represents w. The length of a reduced word for w is the *length* of w.

If W is finite, then there is a unique element $w_{\circ} \in W$ of maximum length called the *long element*. For example, in \mathfrak{S}_n , the long element is $n(n-1)\cdots 321$.

A *Coxeter element* is an element $c = s_{i_n} \cdots s_{i_1}$ obtained by multiplying all of the simple reflections together in some order. Any two reduced words for c are related by *commutation moves*.

Standard Parabolic Subgroups

Standard Parabolic Subgroups

Let Γ_W be the Coxeter graph of W. Let $J \subseteq I$, and let W_J be the Coxeter group whose Coxeter graph is the subgraph of Γ_W induced by J. Equivalently, W_J is the subgroup of W generated by $\{s_i : i \in J\}$. The subgroup W_J is called a *standard parabolic subgroup*.

THANK YOU!

Colin Defant Posets, Coxeter Groups, Root Systems, etc.

A B K A B K

3