Posets, Coxeter Groups, Root Systems, etc.

Colin Defant

Harvard

University of Minnesota Pre-Talk

Colin Defant [Posets, Coxeter Groups, Root Systems, etc.](#page-54-0)

医间周的间

Colin Defant [Posets, Coxeter Groups, Root Systems, etc.](#page-0-0)

メロトメ 御 トメ 君 トメ 君 トー 君

A poset (partially ordered set) is a pair $P = (X, \leq_P)$, where X is a set and \leq_P is a partial order on X. That is, \leq_P is a binary relation on X that is

- reflective $(x \leq_P x)$,
- antisymmetric (if $x \leq_P y$ and $y \leq_P x$, then $x = y$),
- *transitive* (if $x \leq_P y$ and $y \leq_P z$, then $x \leq_P z$).

A poset (partially ordered set) is a pair $P = (X, \leq_P)$, where X is a set and \leq_P is a partial order on X. That is, \leq_P is a binary relation on X that is

- reflective $(x \leq_P x)$,
- antisymmetric (if $x \leq_P y$ and $y \leq_P x$, then $x = y$),
- *transitive* (if $x \leq_P y$ and $y \leq_P z$, then $x \leq_P z$).

Let's always just assume that $X = [n] = \{1, \ldots, n\}.$

A poset (partially ordered set) is a pair $P = (X, \leq_P)$, where X is a set and \leq_P is a partial order on X. That is, \leq_P is a binary relation on X that is

- reflective $(x \leq_P x)$,
- antisymmetric (if $x \leq_P y$ and $y \leq_P x$, then $x = y$),
- *transitive* (if $x \leq_P y$ and $y \leq_P z$, then $x \leq_P z$).

Let's always just assume that $X = [n] = \{1, \ldots, n\}.$ We can represent a poset via its *Hasse diagram*.

Linear Extensions

メロト メタト メミト メミト

重

Linear Extensions

Elements of the symmetric group \mathfrak{S}_n can be seen as labelings of P. Say $u \in \mathfrak{S}_n$ is a linear extension of P if $i < p \, j \implies u(i) < u(j).$

 \leftarrow

おす 重 おす

 298

Let
$$
V^* = \{(x_1, ..., x_n) \in \mathbb{R}^n : x_1 + \cdots + x_n = 0\} \cong \mathbb{R}^{n-1}
$$
.
Let $H_{i,j} = \{(x_1, ..., x_n) \in V^* : x_i = x_j\}$. The *n*-th *braid* arrangement is $\mathcal{H}_{\mathfrak{S}_n} = \{H_{i,j} : 1 \leq i < j \leq n\}$.

4. 0. 6

凸

トメモトメモ

 298

Let
$$
V^* = \{(x_1, ..., x_n) \in \mathbb{R}^n : x_1 + \cdots + x_n = 0\} \cong \mathbb{R}^{n-1}
$$
.
Let $H_{i,j} = \{(x_1, ..., x_n) \in V^* : x_i = x_j\}$. The *n*-th *braid arrangement* is $\mathcal{H}_{\mathfrak{S}_n} = \{H_{i,j} : 1 \leq i < j \leq n\}$.

 \mathfrak{S}_n acts on V^* by permuting coordinates.

不是 医牙

Let
$$
V^* = \{(x_1, ..., x_n) \in \mathbb{R}^n : x_1 + \cdots + x_n = 0\} \cong \mathbb{R}^{n-1}
$$
.
Let $H_{i,j} = \{(x_1, ..., x_n) \in V^* : x_i = x_j\}$. The *n*-th *braid arrangement* is $\mathcal{H}_{\mathfrak{S}_n} = \{H_{i,j} : 1 \leq i < j \leq n\}$.

 \mathfrak{S}_n acts on V^* by permuting coordinates. Identify elements of \mathfrak{S}_n with regions of $\mathcal{H}_{\mathfrak{S}_n}$ by

$$
w \longleftrightarrow \{(x_1,\ldots,x_n) \in V^* : x_{w^{-1}(1)} \leq \cdots \leq x_{w^{-1}(n)}\}.
$$

Colin Defant [Posets, Coxeter Groups, Root Systems, etc.](#page-0-0)

メロトメ 御 トメ 君 トメ 君 トー 君

Let $P = ([n], \leq_P)$ be a poset. $\mathcal{L}(P)$ corresponds to the set of points satisfying $x_i \leq x_j$ whenever $i \leq_P j$.

医阿雷氏阿雷氏

 $2Q$

∍

Let $P = ([n], \leq_P)$ be a poset. $\mathcal{L}(P)$ corresponds to the set of points satisfying $x_i \leq x_j$ whenever $i \leq_P j$.

Colin Defant [Posets, Coxeter Groups, Root Systems, etc.](#page-0-0)

 $\mathcal{H}_{\mathfrak{S}_4}$

Colin Defant [Posets, Coxeter Groups, Root Systems, etc.](#page-0-0)

メロト メタト メミト メミト

重

Let I be a finite index set. For distinct $i, i' \in I$, let $m(i, i) = 1$, and choose $m(i, i') = m(i', i) \in \{2, 3, ...\} \cup \{\infty\}$. Let $S = \{s_i : i \in I\}.$

 298

IK BIKK B

Let I be a finite index set. For distinct $i, i' \in I$, let $m(i, i) = 1$, and choose $m(i, i') = m(i', i) \in \{2, 3, ...\} \cup \{\infty\}$. Let $S = \{s_i : i \in I\}.$

Let W be the *Coxeter group* with presentation

$$
W = \langle S : (s_i s_{i'})^{m(i,i')} = \mathbb{1} \text{ for all } i, i' \in I \rangle,
$$

where $\mathbbm{1}$ is the identity.

Let I be a finite index set. For distinct $i, i' \in I$, let $m(i, i) = 1$, and choose $m(i, i') = m(i', i) \in \{2, 3, ...\} \cup \{\infty\}$. Let $S = \{s_i : i \in I\}.$

Let W be the *Coxeter group* with presentation

$$
W = \langle S : (s_i s_{i'})^{m(i,i')} = \mathbb{1} \text{ for all } i, i' \in I \rangle,
$$

where 1 is the identity.

The Coxeter graph of W has vertex set I. Two vertices $i, i' \in I$ are connected by an edge labeled $m(i, i')$ whenever $m(i, i') \geq 3$. We do not draw "3" labels.

 QQ

Let I be a finite index set. For distinct $i, i' \in I$, let $m(i, i) = 1$, and choose $m(i, i') = m(i', i) \in \{2, 3, ...\} \cup \{\infty\}$. Let $S = \{s_i : i \in I\}.$

Let W be the *Coxeter group* with presentation

$$
W = \langle S : (s_i s_{i'})^{m(i,i')} = \mathbb{1} \text{ for all } i, i' \in I \rangle,
$$

where 1 is the identity.

The Coxeter graph of W has vertex set I. Two vertices $i, i' \in I$ are connected by an edge labeled $m(i, i')$ whenever $m(i, i') \geq 3$. We do not draw "3" labels.

The Coxeter graph of \mathfrak{S}_n (with $s_i = (i \; i+1)$) is

$$
\underbrace{0 \qquad \qquad 0 \qquad \qquad }_{1 \qquad \qquad 2 \qquad n-2 \qquad n-1}
$$

 QQ

Colin Defant [Posets, Coxeter Groups, Root Systems, etc.](#page-0-0)

メロトメ 御 トメ 差 トメ 差 トー 差

Let V be a real vector space of dimension $|I|$. Fix a basis $\{\alpha_i : i \in I\}$ of V; the elements of this basis are called *simple* roots.

医单头 化重

Let V be a real vector space of dimension $|I|$. Fix a basis $\{\alpha_i : i \in I\}$ of V; the elements of this basis are called *simple* roots.

Define a bilinear form $B: V \times V \to \mathbb{R}$ by $B(\alpha_i, \alpha_{i'}) = -\cos(\pi/m(i, i'))$ (where $\pi/\infty = 0$).

- 4 重 8 - 4 重 8

Let V be a real vector space of dimension $|I|$. Fix a basis $\{\alpha_i : i \in I\}$ of V; the elements of this basis are called *simple* roots.

Define a bilinear form $B: V \times V \to \mathbb{R}$ by $B(\alpha_i, \alpha_{i'}) = -\cos(\pi/m(i, i'))$ (where $\pi/\infty = 0$). There is a well defined action of W on V such that $s_i\beta = \beta - 2B(\beta, \alpha_i)\alpha_i$. The root system of W is

 $\Phi = \{w\alpha_i : w \in W, i \in I\}.$

Colin Defant [Posets, Coxeter Groups, Root Systems, etc.](#page-0-0)

メロト メタト メミト メミト

重

Let $I = [n-1]$. Let e_i be the *i*-th standard basis vector of \mathbb{R}^n . Let $\alpha_i = e_i - e_{i+1}$.

4. 0. 6

医阿雷氏阿雷氏

 298

Let $I = [n-1]$. Let e_i be the *i*-th standard basis vector of \mathbb{R}^n . Let $\alpha_i = e_i - e_{i+1}$. We have

$$
s_i(e_i - e_{i+1}) = \alpha_i - 2B(\alpha_i, \alpha_i)\alpha_i = \alpha_i - 2(-\cos(\pi/1))\alpha_i
$$

= $-\alpha_i = e_{s_i(i)} - e_{s_i(i+1)};$

4. 0. 6

∢ 母

医阿雷氏阿雷氏

 298

Let $I = [n-1]$. Let e_i be the *i*-th standard basis vector of \mathbb{R}^n . Let $\alpha_i = e_i - e_{i+1}$. We have

$$
s_i(e_i - e_{i+1}) = \alpha_i - 2B(\alpha_i, \alpha_i)\alpha_i = \alpha_i - 2(-\cos(\pi/1))\alpha_i
$$

= $-\alpha_i = e_{s_i(i)} - e_{s_i(i+1)};$

$$
s_i(e_{i+1} - e_{i+2}) = \alpha_{i+1} - 2B(\alpha_{i+1}, \alpha_i)\alpha_i = \alpha_{i+1} - 2(-\cos(\pi/3))\alpha_i
$$

= $\alpha_i + \alpha_{i+1} = e_i - e_{i+2} = e_{s_i(i+1)} - e_{s_i(i+2)}$.

4. 0. 6

∢ 母

医阿雷氏阿雷氏

 298

Let $I = [n-1]$. Let e_i be the *i*-th standard basis vector of \mathbb{R}^n . Let $\alpha_i = e_i - e_{i+1}$. We have

$$
s_i(e_i - e_{i+1}) = \alpha_i - 2B(\alpha_i, \alpha_i)\alpha_i = \alpha_i - 2(-\cos(\pi/1))\alpha_i
$$

= $-\alpha_i = e_{s_i(i)} - e_{s_i(i+1)};$

$$
s_i(e_{i+1} - e_{i+2}) = \alpha_{i+1} - 2B(\alpha_{i+1}, \alpha_i)\alpha_i = \alpha_{i+1} - 2(-\cos(\pi/3))\alpha_i
$$

= $\alpha_i + \alpha_{i+1} = e_i - e_{i+2} = e_{s_i(i+1)} - e_{s_i(i+2)}$.
For $|i - j| \ge 2$,

$$
s_i(e_j - e_{j+1}) = \alpha_j - 2B(\alpha_j, \alpha_i)\alpha_i = \alpha_j - 2(-\cos(\pi/2))\alpha_i
$$

= $\alpha_j = e_{s_i(j)} - e_{s_i(j+1)}$.

 \leftarrow \Box \rightarrow

⊣●●

医阿雷氏阿雷氏

 298

造

Let $I = [n-1]$. Let e_i be the *i*-th standard basis vector of \mathbb{R}^n . Let $\alpha_i = e_i - e_{i+1}$. We have

$$
s_i(e_i - e_{i+1}) = \alpha_i - 2B(\alpha_i, \alpha_i)\alpha_i = \alpha_i - 2(-\cos(\pi/1))\alpha_i
$$

= $-\alpha_i = e_{s_i(i)} - e_{s_i(i+1)};$

$$
s_i(e_{i+1} - e_{i+2}) = \alpha_{i+1} - 2B(\alpha_{i+1}, \alpha_i)\alpha_i = \alpha_{i+1} - 2(-\cos(\pi/3))\alpha_i
$$

= $\alpha_i + \alpha_{i+1} = e_i - e_{i+2} = e_{s_i(i+1)} - e_{s_i(i+2)}$.

For $|i - j| > 2$, $s_i(e_i - e_{i+1}) = \alpha_i - 2B(\alpha_i, \alpha_i)\alpha_i = \alpha_i - 2(-\cos(\pi/2))\alpha_i$ $= \alpha_j = e_{s_i(j)} - e_{s_i(j+1)}.$

In general, $w(e_i - e_{i+1}) = e_{w(i)} - e_{w(i+1)}$. So $\Phi = \{e_i - e_j : i, j \in [n], i \neq j\}.$

 \leftarrow

 \rightarrow \equiv \rightarrow

 298

Þ

Let V^* be the dual space of V. For $\beta \in \Phi$, consider the hyperplane $H_{\beta} = \{ f \in V^* : f(\beta) = 0 \}$ in V^* .

- 4 重 8 - 4 重 8

Let V^* be the dual space of V. For $\beta \in \Phi$, consider the hyperplane $H_{\beta} = \{ f \in V^* : f(\beta) = 0 \}$ in V^* . The Coxeter arrangement of W is $\mathcal{H}_W = \{H_\beta : \beta \in \Phi\}$. A region of \mathcal{H}_W is the closure of a connected component of $V^* \setminus \bigcup_{\beta \in \Phi} H_{\beta}$. The base region is $\mathbb{B} = \{f \in V^* : f(\alpha_i) \geq 0 \text{ for all } i \in I\}.$

 QQ

Let V^* be the dual space of V. For $\beta \in \Phi$, consider the hyperplane $H_{\beta} = \{ f \in V^* : f(\beta) = 0 \}$ in V^* . The Coxeter arrangement of W is $\mathcal{H}_W = \{H_\beta : \beta \in \Phi\}$. A region of \mathcal{H}_W is the closure of a connected component of $V^* \setminus \bigcup_{\beta \in \Phi} H_{\beta}$. The base region is $\mathbb{B} = \{f \in V^* : f(\alpha_i) \geq 0 \text{ for all } i \in I\}.$

There is a right action of W on V^* determined by the condition that $(fw)(\beta) = f(w\beta)$ for all $w \in W, \beta \in V$, and $f \in V^*$.

(何) (ヨ) (ヨ)

 QQ

Let V^* be the dual space of V. For $\beta \in \Phi$, consider the hyperplane $H_{\beta} = \{ f \in V^* : f(\beta) = 0 \}$ in V^* . The Coxeter arrangement of W is $\mathcal{H}_W = \{H_\beta : \beta \in \Phi\}$. A region of \mathcal{H}_W is the closure of a connected component of $V^* \setminus \bigcup_{\beta \in \Phi} H_{\beta}$. The base region is $\mathbb{B} = \{f \in V^* : f(\alpha_i) \geq 0 \text{ for all } i \in I\}.$

There is a right action of W on V^* determined by the condition that $(fw)(\beta) = f(w\beta)$ for all $w \in W, \beta \in V$, and $f \in V^*$.

This yields a right action of W on the set of regions of \mathcal{H}_W .

∢ 何 ゝ _∢ ヨ ゝ _∢ ヨ ゝ

Let V^* be the dual space of V. For $\beta \in \Phi$, consider the hyperplane $H_{\beta} = \{ f \in V^* : f(\beta) = 0 \}$ in V^* . The Coxeter arrangement of W is $\mathcal{H}_W = \{H_\beta : \beta \in \Phi\}$. A region of \mathcal{H}_W is the closure of a connected component of $V^* \setminus \bigcup_{\beta \in \Phi} H_{\beta}$. The base region is $\mathbb{B} = \{f \in V^* : f(\alpha_i) \geq 0 \text{ for all } i \in I\}.$

There is a right action of W on V^* determined by the condition that $(fw)(\beta) = f(w\beta)$ for all $w \in W, \beta \in V$, and $f \in V^*$.

This yields a right action of W on the set of regions of \mathcal{H}_W .

The Tits cone is BW. The action of W on the regions of \mathcal{H}_W in the Tits cone is free and transitive. Thus, we can identify each element $u \in W$ with the region $\mathbb{B}u$.

イ母 トイラト イラト

Let V^* be the dual space of V. For $\beta \in \Phi$, consider the hyperplane $H_{\beta} = \{ f \in V^* : f(\beta) = 0 \}$ in V^* . The Coxeter arrangement of W is $\mathcal{H}_W = \{H_\beta : \beta \in \Phi\}$. A region of \mathcal{H}_W is the closure of a connected component of $V^* \setminus \bigcup_{\beta \in \Phi} H_{\beta}$. The base region is $\mathbb{B} = \{f \in V^* : f(\alpha_i) \geq 0 \text{ for all } i \in I\}.$

There is a right action of W on V^* determined by the condition that $(fw)(\beta) = f(w\beta)$ for all $w \in W, \beta \in V$, and $f \in V^*$.

This yields a right action of W on the set of regions of \mathcal{H}_W .

The Tits cone is BW. The action of W on the regions of \mathcal{H}_W in the Tits cone is free and transitive. Thus, we can identify each element $u \in W$ with the region $\mathbb{B}u$.

The regions adjacent to $\mathbb{B}u$ are $\mathbb{B} s_iu$ for $i \in I$.

 $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{A} \oplus \mathcal{B}$

-÷ ÷ \bullet \bullet

Colin Defant [Posets, Coxeter Groups, Root Systems, etc.](#page-0-0)

The (3, 3, 5) Triangle Group

Classes of Coxeter Groups

 \leftarrow \Box \rightarrow

医阿雷氏阿雷

 298

Classes of Coxeter Groups

A Coxeter group is irreducible if its Coxeter graph is connected.

 298

 \rightarrow

A Coxeter group is irreducible if its Coxeter graph is connected. There are 3 main classes of Coxeter groups:

Finite. The Tits cone is all of V^* , and the bilinear form B makes the Tits cone into a spherical geometry.

Affine. The bilinear form B makes the Tits cone into a Euclidean geometry.

Everything Else.

Finite Coxeter Groups

Finite irreducible Coxeter groups have been classified. They are

Affine Coxeter Groups

Affine irreducible Coxeter groups have been classified. They are

 $2Q$

 \rightarrow

Reduced Words and Coxeter Elements

 298

Þ

Reduced Words and Coxeter Elements

A reduced word for an element $w \in W$ is a word $s_{i_k} \cdots s_{i_1}$ of minimum length that represents w . The length of a reduced word for w is the *length* of w .

Reduced Words and Coxeter Elements

- A reduced word for an element $w \in W$ is a word $s_{i_k} \cdots s_{i_1}$ of minimum length that represents w . The length of a reduced word for w is the *length* of w .
- If W is finite, then there is a unique element $w_0 \in W$ of maximum length called the *long element*. For example, in \mathfrak{S}_n , the long element is $n(n-1)\cdots 321$.

A reduced word for an element $w \in W$ is a word $s_{i_k} \cdots s_{i_1}$ of minimum length that represents w . The length of a reduced word for w is the *length* of w .

If W is finite, then there is a unique element $w_0 \in W$ of maximum length called the *long element*. For example, in \mathfrak{S}_n , the long element is $n(n-1)\cdots 321$.

A Coxeter element is an element $c = s_{i_n} \cdots s_{i_1}$ obtained by multiplying all of the simple reflections together in some order. Any two reduced words for c are related by *commutation moves*.

Standard Parabolic Subgroups

 \leftarrow

 \rightarrow \Rightarrow \rightarrow

 298

É

Standard Parabolic Subgroups

Let Γ_W be the Coxeter graph of W. Let $J \subseteq I$, and let W_J be the Coxeter group whose Coxeter graph is the subgraph of Γ_W induced by J. Equivalently, W_J is the subgroup of W generated by $\{s_i : i \in J\}$. The subgroup W_J is called a *standard parabolic* subgroup.

THANK YOU!

Colin Defant [Posets, Coxeter Groups, Root Systems, etc.](#page-0-0)

メロト メタト メミト メミト

 $2QQ$

造