Solve 3 or more problems.

Problem 1. Prove the following result (which we mentioned in class). Let $f = (f_1, \ldots, f_n)$ be a sequence of integers between 1 and n. The following 3 conditions are equivalent to each other:

- (1) f is a parking function.
- (2) $\#\{i \mid f_i \ge n k + 1\} \le k \text{ for } k = 1, \dots, n.$
- (3) There is a permutation w_1, \ldots, w_n of $1, \ldots, n$ such that $f_i \leq w_i$ for $i = 1, \ldots, n$.

Problem 2. Fix two positive integers n and k. We say that a sequences (f_1, \ldots, f_n) of positive integers is a generalized (n, k)-parking function if there exists a permutation w_1, w_2, \ldots, w_n of $1, 1 + k, 1 + 2k, 1 + 3k, \ldots, 1 + (n-1)k$ such that $f_i \leq w_i$ for $i = 1, \ldots, n$. (This is a generalization of condition (c) from the previous problem.)

Show that the number of generalized (n, k)-parking functions equals $(1 + kn)^{n-1}$.

Problem 3. In class, we mentioned the Y-Delta transform of electrical networks. Recall that this is the transformation of some large electrical network composed of many resistors where we replace 3 resistors with resistances R_1, R_2, R_3 connected in Y-shape by 3 resistors with resistances R'_1, R'_2, R'_3 connected in ∇ -shape. (∇ is upside down Delta.)

Prove that there exist unique resistances R'_1, R'_2, R'_3 such that all effective resistances in the resulting network are the same as the effective resistances in the original network. Find expressions for R'_1, R'_2, R'_3 in terms of R_1, R_2, R_3 .

Problem 4. Let $\text{Cube}_d = K_2 \times K_2 \times \cdots \times K_d$ (*d* terms) be the graph which is the 1-skeleton of the *d*-dimensional hypercube. Consider Cube_d as an electrical network where every edge has resistance 1 Ohm. Find the effective resistance between a pair of opposite vertices in Cube_d .

Problem 5. In class, we showed that the number of spanning trees in Cube_d equals $2^{2^d-d-1}\prod_{k=1}^d k^{\binom{d}{k}}$.

Let G be the graph obtained from Cube_d be adding one extra edge connecting a pair of opposite vertices. Find an explicit formula for the number of spanning trees in G.

(For example, for d = 2, the graph G is obtained from the square $K_2 \times K_2$ by adding one diagonal edge. We used this graph in many examples in the lectures. Recall that this graph has 8 spanning trees.)

Problem 6. Let $G = [4] \times [4]$ be the 4×4 -grid graph. It has 4^2 vertices corresponding to pairs (i, j), $i, j \in [4]$. Let us mark two opposite corners A = (1, 1) (the "house") and B = (4, 4) (the "cliff") of the graph G.

Consider the random walk on the graph G such that, at each step, we go from a vertex v to any of the neighbors of v with probability $1/\deg(v)$. A walk stops when we arrive one of the vertices A or B.

For any initial vertex (i, j), find the probability that a random walk starting at (i, j) stops at vertex A.

Problem 7. In class, we showed that the numbers A_n of alternating permutations in S_n satisfy the recurrence relation:

$$A_n = \sum_{k \in [n], \ k \text{ is even}} \binom{n-1}{k-1} A_{k-1} A_{n-k},$$

for $n \ge 1$. And $A_0 = 1$.

Consider the following two exponential generating functions:

$$T(x) = \sum_{k \ge 0} A_{2k+1} x^{2k+1} / (2k+1)!$$
 and $S(x) = \sum_{k \ge 0} A_{2k} x^{2k} / (2k)!$

(a) Deduce from the recurrence relation that T(x) satisfies the differential equation $T'(x) = 1 + (T(x))^2$ with the initial condition T(0) = 0.

(b) Also show that S(x) satisfies the differential equation S'(x) = S(x)T(x) and S(0) = 1.

(c) Now deduce that $T(x) = \tan(x)$ and $S(x) = \sec(x)$.

 $\mathbf{2}$

Problem 8. The Euler-Bernoulli triangle is the triangular array of numbers

Each odd/even row of this triangle is obtained by adding the numbers in the row above it starting from the right/left.

Show that the numbers $1, 1, 2, 5, 16, \ldots$ that appear on the sides of this triangle are the numbers A_n of alternating permutations in S_n .

Problem 9. We say that a tree T on the vertex set $0, 1, \ldots, n$ is an *increasing odd tree* if

- (1) T is an increasing tree (i.e., vertex labels increase as we go away from the vertex 0 (root)), and
- (2) degrees of all vertices in T are odd.

Notice that, for even n, there are no increasing odd trees on n+1 vertices.

Show that, if n is odd, then the number of increasing odd trees on n+1 vertices equals the number A_n of alternating permutations in S_n .

Problem 10. Calculate the number of permutations w in S_n such that w is 123-avoiding and alternating.

Problem 11. Let

$$I_n(x) := \sum_{T \text{ is a spanning tree of } K_{n+1}} x^{\operatorname{inv}(T)}$$

be the tree inversion polynomial. In class, we discussed the values $I_n(1) = (n+1)^{n-1}$, $I_n(0) = n!$, and $I_n(-1) = A_n$.

Prove that the value $I_n(2)$ equals the number of connected subgraphs of K_{n+1} .

Problem 12. Calculate the determinant of the $n \times n$ matrix $A = (a_{ij})$, where $a_{ij} = C_{i+j-2}$, for $i, j \in [n]$. Here $C_k = \frac{1}{k+1} \binom{2k}{k}$ are the Catalan numbers.