Solve 3 or more problems.

Problem 1. Prove the following result (which we mentioned in class). Let $f=\left(f_{1}, \ldots, f_{n}\right)$ be a sequence of integers between 1 and n. The following 3 conditions are equivalent to each other:
(1) f is a parking function.
(2) $\#\left\{i \mid f_{i} \geq n-k+1\right\} \leq k$ for $k=1, \ldots, n$.
(3) There is a permutation w_{1}, \ldots, w_{n} of $1, \ldots, n$ such that $f_{i} \leq w_{i}$ for $i=1, \ldots, n$.

Problem 2. Fix two positive integers n and k. We say that a sequences $\left(f_{1}, \ldots, f_{n}\right)$ of positive integers is a generalized (n, k)-parking function if there exists a permutation $w_{1}, w_{2}, \ldots, w_{n}$ of $1,1+k, 1+$ $2 k, 1+3 k, \ldots, 1+(n-1) k$ such that $f_{i} \leq w_{i}$ for $i=1, \ldots, n$. (This is a generalization of condition (c) from the previous problem.)

Show that the number of generalized (n, k)-parking functions equals $(1+k n)^{n-1}$.

Problem 3. In class, we mentioned the Y-Delta transform of electrical networks. Recall that this is the transformation of some large electrical network composed of many resistors where we replace 3 resistors with resistances R_{1}, R_{2}, R_{3} connected in Y-shape by 3 resistors with resistances $R_{1}^{\prime}, R_{2}^{\prime}, R_{3}^{\prime}$ connected in ∇-shape. (∇ is upside down Delta.)

Prove that there exist unique resistances $R_{1}^{\prime}, R_{2}^{\prime}, R_{3}^{\prime}$ such that all effective resistances in the resulting network are the same as the effective resistances in the original network. Find expressions for $R_{1}^{\prime}, R_{2}^{\prime}, R_{3}^{\prime}$ in terms of R_{1}, R_{2}, R_{3}.

Problem 4. Let $\mathrm{Cube}_{d}=K_{2} \times K_{2} \times \cdots \times K_{d}$ (d terms) be the graph which is the 1 -skeleton of the d-dimensional hypercube. Consider Cube_{d} as an electrical network where every edge has resistance 1 Ohm. Find the effective resistance between a pair of opposite vertices in Cube $_{d}$.

Problem 5. In class, we showed that the number of spanning trees in Cube $_{d}$ equals $2^{2^{d}-d-1} \prod_{k=1}^{d} k^{\binom{d}{k}}$.

Let G be the graph obtained from Cube $_{d}$ be adding one extra edge connecting a pair of opposite vertices. Find an explicit formula for the number of spanning trees in G.
(For example, for $d=2$, the graph G is obtained from the square $K_{2} \times K_{2}$ by adding one diagonal edge. We used this graph in many examples in the lectures. Recall that this graph has 8 spanning trees.)

Problem 6. Let $G=[4] \times[4]$ be the 4×4-grid graph. It has 4^{2} vertices corresponding to pairs $(i, j), i, j \in[4]$. Let us mark two opposite corners $A=(1,1)$ (the "house") and $B=(4,4)$ (the "cliff") of the graph G.

Consider the random walk on the graph G such that, at each step, we go from a vertex v to any of the neighbors of v with probability $1 / \operatorname{deg}(v)$. A walk stops when we arrive one of the vertices A or B.

For any initial vertex (i, j), find the probability that a random walk starting at (i, j) stops at vertex A.

Problem 7. In class, we showed that the numbers A_{n} of alternating permutations in S_{n} satisfy the recurrence relation:

$$
A_{n}=\sum_{k \in[n], k \text { is even }}\binom{n-1}{k-1} A_{k-1} A_{n-k}
$$

for $n \geq 1$. And $A_{0}=1$.
Consider the following two exponential generating functions:

$$
T(x)=\sum_{k \geq 0} A_{2 k+1} x^{2 k+1} /(2 k+1)!\quad \text { and } \quad S(x)=\sum_{k \geq 0} A_{2 k} x^{2 k} /(2 k)!
$$

(a) Deduce from the recurrence relation that $T(x)$ satisfies the differential equation $T^{\prime}(x)=1+(T(x))^{2}$ with the initial condition $T(0)=0$.
(b) Also show that $S(x)$ satisfies the differential equation $S^{\prime}(x)=$ $S(x) T(x)$ and $S(0)=1$.
(c) Now deduce that $T(x)=\tan (x)$ and $S(x)=\sec (x)$.

Problem 8. The Euler-Bernoulli triangle is the triangular array of numbers

					1					
				0		1				
			1		1		0			
	5			1		2		2		
0		5		10		14		16		16
\vdots										

Each odd/even row of this triangle is obtained by adding the numbers in the row above it starting from the right/left.

Show that the numbers $1,1,2,5,16, \ldots$ that appear on the sides of this triangle are the numbers A_{n} of alternating permutations in S_{n}.

Problem 9. We say that a tree T on the vertex set $0,1, \ldots, n$ is an increasing odd tree if
(1) T is an increasing tree (i.e., vertex labels increase as we go away from the vertex 0 (root)), and
(2) degrees of all vertices in T are odd.

Notice that, for even n, there are no increasing odd trees on $n+1$ vertices.

Show that, if n is odd, then the number of increasing odd trees on $n+1$ vertices equals the number A_{n} of alternating permutations in S_{n}.

Problem 10. Calculate the number of permutations w in S_{n} such that w is 123 -avoiding and alternating.

Problem 11. Let

$$
I_{n}(x):=\sum_{T \text { is a spanning tree of } K_{n+1}} x^{\operatorname{inv}(T)}
$$

be the tree inversion polynomial. In class, we discussed the values $I_{n}(1)=(n+1)^{n-1}, I_{n}(0)=n!$, and $I_{n}(-1)=A_{n}$.

Prove that the value $I_{n}(2)$ equals the number of connected subgraphs of K_{n+1}.

Problem 12. Calculate the determinant of the $n \times n$ matrix $A=\left(a_{i j}\right)$, where $a_{i j}=C_{i+j-2}$, for $i, j \in[n]$. Here $C_{k}=\frac{1}{k+1}\binom{2 k}{k}$ are the Catalan numbers.

