18.212 Problem Set 1 (due Monday, February 28, 2022)

Solve 6 or more problems.

Problem 1. Construct a bijection between Dyck paths with $2 n$ steps and triangulations of an $(n+2)$-gon.

Problem 2. Show that, for any pattern $\sigma \in S_{3}$, the number of σ avoiding permutations in S_{n} equals the Catalan number C_{n}.

Problem 3. Prove that stack-sortable permutations are exactly the 231-avoiding permutations. (Stack-sortable permutations are defined on pages 6-7 of these lecture notes.)

Problem 4. Calculate the number of permutations in S_{n} which are both 123 -avoiding and 2143 -avoiding.

For example, for $n=4$, there are 13 such permutations because among $C_{4}=14$ permutations in S_{4} which are 123-avoiding exactly one permutation contains pattern 2143.

Problem 5. In class, we discussed plane binary trees; see page 11 of these notes. Plane binary trees have unlabelled vertices. Recall that the number of such trees on n vertices equals the Catalan number C_{n}.

Define an increasing binary tree as a plane binary tree with vertices labelled by $1,2, \ldots, n$ so that the root is labelled 1 and, if vertex u belongs to the shortest path between vertex v and the root, then that lebel of u is less than the label of v. In other words, the labels of vertices should increase as we go away from the root. For example, for $n=3$, there are 6 increasing binary trees.

Find the number of increasing binary trees on n vertices.
Problem 6. Fix two integers n and $r<n$. Let $B_{n, r}$ be the number of set partitions of $[n]$ such that, for any pair of entries $i \neq j$ that belong to the same block of π, we have $|i-j| \geq r$. For example, $B_{n, 1}$ is the usual Bell number $B(n)$.

Prove that $B_{n, r}$ equals the Bell number $B(n-r+1)$.

Problem 7. Define a k-colored set partition as a set partition π of [n] with all elements of $[n]$ colored in k colors such that, if two elements $i \neq j$ belong to the same block of π, then i and j are colored in different colors. Let $a_{n, k}$ be the number of k-colored set patitions of [n].

For example, for $n=3$ and $k=2$, we have $a_{3,2}=20$, because there are 20 colored set partitions in this case: (12|3), (12|3), (12|3), (12|3), (13|2), (13|2), (13|2), (13|2), (23|1), (23|1), (23|1), (23|1), (1|2|3), (1|2|3), (1|2|3), (1|2|3), (1|2|3), (1|2|3), (1|2|3), (1|2|3).

Find the exponential generating function for the number of k-colored set partitions

$$
f_{k}(x)=\sum_{n \geq 0} a_{n, k} \frac{x^{n}}{n!}
$$

Problem 8. Let $b_{k, l}$ be the number of lattice paths P on the plane (with steps of two types $(1,1)$ and $(1,-1)$) that start at $(0,0)$, end at (a, b), and always stay in the uppper half-plane $\left\{(x, y) \in \mathbb{R}^{2} \mid y \geq 0\right\}$. For example, for $(k, l)=(2 n, 0)$, these paths are the usual Dyck paths with $2 n$ steps, so $b_{2 n, 0}$ is the Catalan number C_{n}.

Find and prove an explicit formula for $b_{k, l}$ using two methods:
(a) the reflection method,
(b) the hook length formula.

Problem 9. Prove that the number of non-crossing set partitons of [n] with k blocks equals the number $N(n, k)$ of Dyck paths with $2 n$ steps and k peaks (the Narayna number).

Problem 10. Show that the two statistics on permutations $w \in S_{n}$

- the inversion number $\operatorname{inv}(w):=\#\left\{1 \leq i<j \leq n \mid w_{i}>w_{j}\right\}$,
- the major index $\operatorname{maj}(w):=\sum_{i: w_{i}>w_{i+1}} i$
are equidistributed.
Problem 11. Show that the following 3 statistics on permutations $w \in S_{n}$ are equidistributed with each other:
- the number of descents $\operatorname{des}(w):=\#\left\{i \in[n-1] \mid w_{i}>w_{i+1}\right\}$,
- the number of exceedances $\operatorname{exc}(w):=\#\left\{i \in[n] \mid w_{i}>i\right\}$,
- the number of weak exceedances minus one $\operatorname{wexc}(w)-1:=$ $\#\left\{i \in[n] \mid w_{i} \geq i\right\}-1$.

Problem 12. For $1 \leq k \leq n / 2$, find a bijection f between k-element subsets of $\{1, \ldots, n\}$ and $(n-k)$-element subsets of $\{1, \ldots, n\}$ such that $f(I) \supseteq I$, for any k-element subset I.

