Abelian Sandpile Model (cont’d)

- Bak, Tang, Wiesenfeld, 1987
- D. Dhar, 1990
- Björner, Lovász, Shor, 1991

- This is a game on graph with simple rules.
- It models complicated natural processes such as avalanches.
- It can have complicated "fractal-like" features.

\[G = (V, E) \] a finite connected graph on vertex set \(V = \{ 0, 1, \ldots, n \} \) with on special vertex \(q = 0 \), called the sink.

\(L = (L_{ij}) \) the reduced Laplacian matrix of \(G \) (= the Laplacian matrix of \(G \) with 0th row & column removed).

\[L_{ij} = \begin{cases} -\# \text{edges between } i \text{ & } j, i \neq j & \text{if } i = j \end{cases} \]

\[d_i = \text{deg}_G(i) - \text{ the degree of vertex } i. \]

Recall, MTT: \(\det(L) = \# \text{spanning trees in } G \)

\(\hat{e}_1, \hat{e}_2, \ldots, \hat{e}_n \in \mathbb{R}^n \) the row vectors of the reduced Laplacian matrix \(\hat{L} \).
Configurations
\(\bar{C} = (C_1, ..., C_n) \in \mathbb{Z}_{\geq 0}^n \)

Stable configurations:
\(\bar{C} = (C_1, ..., C_n) \in \mathbb{Z}_{\geq 0}^n \), \(0 \leq C_i < d_i \), \(\forall i \)

Topplings (or flips)
For a configuration \(\bar{C} \), a vertex \(i \) is unstable if \(C_i = d_i \).
We can topple an unstable vertex \(i \):
\(\bar{C} \mapsto \bar{C} - \vec{L}_i \)

Example
\[L = \begin{bmatrix} 3 & -1 & -1 \\ -3 & 3 & -1 \\ -1 & -1 & 2 \end{bmatrix} \]
Reduced Laplacian

\[\vec{L}_1 = (3, -1, -1) \]
\[\vec{L}_2 = (-1, 3, -1) \]
\[\vec{L}_3 = (-1, -1, 2) \]

A configuration \(\bar{C} = (4, 2, 1) \)

Vertex 1 is unstable

Toppling of vertex 1:
\(\bar{C} = (4, 2, 1) \mapsto \bar{C} - \vec{L}_1 = (1, 3, 2) \)
Lemma (Dhar)

Finiteness: A initial configuration $C_{\text{init}} \in \mathbb{Z}^{\geq 0}$, after finitely many topplings, we obtain a stable configuration C_{stab}.

Uniqueness: C_{stab} does not depend on a choice of order of topplings. (It depends only on C_{init}.)

We proved this Lemma in the last lecture:

- Finiteness: Each toppling strictly increases the "value" of a country.
- Uniqueness: "Diamond Lemma" argument.

- C_{stab} is called the stabilization of C_{init}.

Example $G = \begin{array}{c}
\end{array}$

\[C_{\text{init}} = (4, 2, 1) \]

The stabilization of $C_{\text{init}} = (4, 2, 1)$ is $C_{\text{stab}} = (2, 0, 1)$.

\[\text{topple 1} \]

\[\text{topple 2} \]

\[\text{topple 3} \]

\[\text{Stable} \]

\[C_{\text{stab}} = (2, 0, 1) \]
The avalanche operators A_1, \ldots, A_n act on the set of stable configurations \mathcal{C}.

- $A_i(\mathcal{C})$ is the stabilization of $\mathcal{C} + \mathcal{e}_i$, where $\mathcal{e}_i = (0, \ldots, 0, i, 0, \ldots, 0)$.

Example

$\mathcal{C} = (2,0,2)$

A stable config

$A_2(\mathcal{C})$: add 1 chip to vertex 2 and stabilize:

$\mathcal{C} + \mathcal{e}_2$

- Topple 2

$\mathcal{C} + \mathcal{e}_2$

- Topple 3

Stable

$(1,2,0)$

$A_2: (2,0,2) \mapsto (1,2,0)$

Lemma (Dhar) The avalanche operators A_1, \ldots, A_n commute pairwise.

Proof $A_i A_j(\mathcal{C}) = A_j A_i(\mathcal{C}) = \text{the stabilization of } \mathcal{C} + \mathcal{e}_i + \mathcal{e}_j$. □
The Abelian Sandpile Model is the random walk on the set of stable configurations C:

- randomly pick $i \in C_{\text{stable}}$ with probability γ_i.
- $C \rightarrow A_i C$ (perform the i^{th} avalanche operator A_i).

Example (from last lecture)

$G = \begin{array}{ccc}
\bullet & \bullet & \bullet \\
1 & 2 & 3
\end{array}$

4 stable configurations:

$(0,0)$, $(0,1)$, $(1,0)$, $(1,1)$.

The avalanche operators A_1 and A_2:

$\begin{array}{ccc}
(0,0) & \xrightarrow{A_2} & (0,1) \\
\downarrow A_1 & & \downarrow A_1 \\
(1,0) & \xrightarrow{A_2} & (1,1)
\end{array}
$

$\begin{array}{ccc}
(0,0) & \xrightarrow{\gamma_2} & (0,1) \\
\downarrow \gamma_2 & & \downarrow \gamma_2 \\
(1,0) & \xrightarrow{\gamma_2} & (1,1)
\end{array}
$

The Abelian sandpile model is given by...
Definition. A stable configuration \(\mathcal{C} \) is called \underline{recurrent} if \(\exists N \in \mathbb{Z}_{\geq 0} \) such that \((A_i)^N \mathcal{C} = \mathcal{C} \) for all \(i = 1, \ldots, n \).

In other words, we can always come back to a recurrent configuration in this random walk.

Remark. Since \(G \) is a finite graph, there are finitely many stable configurations. So we can assume that \(N \) is the same for all recurrent configurations.

Example. (The previous example)

For \(G = \begin{array}{c} 3 \\ 1 \rightarrow 2 \end{array} \):

- recurrent configurations: \((0,1)\), \((1,0)\), \((1,1)\)

- (we can take \(N = 3 \))

Stable but \underline{not} recurrent: \((0,0)\)
Let's restrict the avalanche operators A_1, \ldots, A_n to the set R of all recurrent configurations.

The operators A_1, \ldots, A_n are invertible on R. Indeed, $A_i^{-1} \vec{c} = A^{n-1} \vec{c}$ for any recurrent configuration \vec{c}.

Definition. The *sandpile group* SG (a.k.a. the critical group) is the finite abelian group generated by the avalanche operators A_1, \ldots, A_n acting on the set R of recurrent configurations.

(So SG is a certain abelian subgroup of the symmetric group S_{181}.)
Theorem \([\text{Dhar}]\)

- \(SG \cong \mathbb{Z}^n / \langle L_1, \ldots, L_m \rangle\)

 the subgroup of \(\mathbb{Z}^n\) generated by rows \(L_i\)
 of the reduced Laplacian

- \(|R| = |SG| = \det L\)

 \# recurrent configurations the order of \(L\)
 \# spanning trees in \(G\)

In particular (by the MTT),

\(\#\) recurrent configurations

\(\cong\) \# spanning trees in \(G\).

Example \(G = \begin{array}{c}
\begin{array}{c}
A_1 \\
A_2 \\
A_3
\end{array}
\end{array} \quad \begin{array}{c}
\begin{array}{c}
(0,1) \\
(1,0) \\
(1,1)
\end{array}
\end{array} \quad \begin{array}{c}
\begin{array}{c}
L = \begin{bmatrix}
2 & -1 \\
-1 & 2
\end{bmatrix}
\end{array}
\end{array}
\)

\(SG \cong \mathbb{Z}^2 / \langle (2,-1), (-1,2) \rangle \cong \mathbb{Z}/3\mathbb{Z}\) the cyclic group of order 3

\(L_1 = (2,-1)\) \(L_2 = (-1,2)\)

\(5\) elements of \(\mathbb{Z}^2 / \langle L_1, L_2 \rangle\)

\(|R| = |SG| = 3 = \#\) spanning trees.
Proof. Since the available operators A_1, \ldots, A_n are invertible (and pairwise commuting) operators on the set R of recurrent configurations \mathcal{C}, we can define

$$A^B : \mathcal{C} \rightarrow A_1^b \cdot A_2^b \cdot \ldots \cdot A_n^b (\mathcal{C})$$

for any integer vector $B = (b_1, \ldots, b_n) \in \mathbb{Z}^n$.

By definition,

$$SG := \{ A^B \mid b \in \mathbb{Z}^n \}.$$

For any recurrent config. $\mathcal{C} \in R$ and any $i \in \{1, \ldots, n\}$,

$$A_1^{b_1} (\mathcal{C}) = \text{the stabilization of } \mathcal{C} + t_1 (N_1, \ldots, N_n)$$

$$= \text{the stabilization of } \mathcal{C} + (N_1, \ldots, N_n)$$

$$= A_1^{(b_1, \ldots, N_n)} (\mathcal{C}) = \mathcal{C}.$$

So $A^B = Id$, the identity operator acting on recurrent configurations.

If B is a linear combination of vectors t_1, \ldots, t_n,

On the other hand, if B is not a linear comb. of t_1, \ldots, t_n, we can stabilize \mathcal{C} by adding, say, $-t_1$.

Thus $SG = \mathbb{Z}^n \setminus \langle t_1, \ldots, t_n \rangle$.

Explicitly,

$$A^B \leftrightarrow B \mod (t_1, \ldots, t_n)$$

$$SG \approx \mathbb{Z}^n \setminus \langle t_1, \ldots, t_n \rangle.$$
Lemma. For any two recurrent configurations \(\mathbf{c}, \mathbf{c}' \in \mathcal{R} \)
\[\mathbf{c}' = A^{\mathbf{c} - \mathbf{c}'}(\mathbf{c}). \]

Proof of Lemma:
\[A^{\mathbf{c} - \mathbf{c}'}(\mathbf{c}) = \text{the stabilization of} \]
\[\mathbf{c} + (\mathbf{c}' - \mathbf{c} + (N, \ldots, N)) \]
\[= \text{the stabilization of} \]
\[\mathbf{c}' + (N, \ldots, N) \]
\[= A^{\mathbf{c}'}(\mathbf{c}) = \mathbf{c}'. \]

This implies that the sandpile group acts simply transitively on the set \(\mathcal{R} \) of recurrent configurations. In particular,
\[|SG| = |\mathcal{R}|. \]

Here is an explicit bijection between \(SG \) and \(\mathcal{R} \):
Fix one reference recurrent configuration \(\mathbf{c}_{\text{ref}} \in \mathcal{R} \).
\[A^{\mathbf{c}_{\text{ref}}} \leftrightarrow_{bij} \mathbf{c} = A^{\mathbf{c}_{\text{ref}}} \]
\[\overline{\mathcal{R}} \leftrightarrow SG \]

Finally,
\[|SG| = |\mathcal{R}| = \left| \mathbf{e}^{\mathbf{c}_{\text{ref}}} \right| \]
\[= |\det (\mathbf{L_i})| = \pm \text{Spanning tree of } \mathbf{c}_{\text{ref}}. \]

This equality holds for any collection of integer vectors that form a basis of \(R^n \).

This finishes the proof of the theorem. \(\square \)
How to describe recurrent configurations?

Definition. A configuration \(C = (c_1, \ldots, c_n) \) is allowed if

A nonempty subset \(I \subseteq \{1, \ldots, n\} \)

\(\exists i \in I \) such that

\[c_i > \deg_{G_I}(i), \]

where \(G_I \) is the induced graph on vertex set \(I \), i.e.,

\[\deg_{G_I}(i) = \sum_{j \in I \setminus \{i\}} 1 \]

Theorem. A configuration is recurrent iff it is stable and allowed.

[Shaw 1990] proved \(\Rightarrow \) & conjectured \(\Leftarrow \).

This was proved in

[Gabrielov 1993]

[Inashkevich-Prikozev 1998]

[Meester-Redig-Zumzensky 2001]

[Cori-Rossin-Salvy 2002]

[Pi-Skapino 2004]

etc.
Definition. \([P\text{-}\text{Parking}]\)

For a connected graph \(G\) on vertex set \(\{0,1,2,\ldots,n\}\)

a **\(G\)-parking function** if

a positive integer vector \((a_0, a_1, \ldots, a_n) \in (\mathbb{Z}_{\geq 0})^n\) such that

For every nonempty subset \(I \subseteq \{0,1,2,\ldots,n\}\)

\(\exists \ i \in I \) s.t.

\[a_i < d_i(i), \]

where \(d_i(i) : = \# \text{ edges } (i,j) \in E \quad \text{with } \ j \not\in I \)

Example. If \(G = K_{n+1}\) then

\(G\)-parking functions are the usual parking functions.

Theorem. \# \(G\)-parking functions

= \# spanning trees of \(G\).

Theorem. \(G\)-parking functions

\(\overrightarrow{a} = (a_0, a_1, \ldots, a_n)\) are

in bijection with recurrent configurations \(\overrightarrow{c} = (c_0, c_1, \ldots, c_n)\).

Namely,

\(\overrightarrow{c} = (d_0, d_1, \ldots, d_n) - \overrightarrow{a}\)

where \(d_i\) are degrees of vertices in \(G\).
Example. $G = \begin{array}{c}
\begin{array}{c}
\textbf{Example. } G = \\
\textbf{G-parking functions} \ (a_1, a_2, a_3)
\end{array}
\end{array}$

- $a_1, a_2, a_3 \geq 1$
- $a_1 \leq 3$, $a_2 \leq 3$, $a_3 \leq 2$
- $I = \{1, 2, 3\}$

\[
d_{i,j,3} (1) = 2, \ d_{i,j,3} (2) = 1
\]

either $a_1 \leq 2$ or $a_2 \leq 2$

- $I = \{2, 3\}$

\[
d_{i,3} (1) = 2, \ d_{i,3} (2) = 1
\]

either $a_1 \leq 2$ or $a_3 \leq 1$

- $I = \{2, 3, 5\}$

\[
d_{i,3} (1) = d_{i,3} (2) = 1
\]

either $a_1 \leq 1$ or $a_2 \leq 1$ or $a_3 \leq 0$

8 G-parking functions:

\[
(111) \ (112) \ (121) \ (211) \\
(122) \ (212) \ (131) \ (311)
\]

G has 8 spanning trees.

\[
\text{det}(L) = \begin{vmatrix}
3 & -1 & 1 \\
-1 & 3 & -1 \\
-1 & -1 & 2
\end{vmatrix} = 8
\]

8 Recurrent configurations:

\[
(221) \ (220) \ (211) \ (121) \\
(210) \ (120) \ (201) \ (021)
\]