Parking Functions

- n cars, n parking spots on a one-way road.

Preference function \(f: [n] \rightarrow [n] \)

\[f: i \mapsto f_i \quad f = (f_1, \ldots, f_n) \]

The driver of the \(i \)th car prefers to park in the \(f_i \)th parking spot.

- \(i \)th car drives to \(f_i \)th spot and parks there if the spot is empty.
 Otherwise, it keeps driving until it finds an empty spot and parks there.

Definition \(f = (f_1, \ldots, f_n) \) is called a parking function if all \(n \) cars will park.
Example \(n = 4 \)

\[(x_1, x_2, x_3, x_4) = (3, 3, 1, 1) \]

\[\Rightarrow \]

\[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
\end{array} \]

\[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
\end{array} \]

\[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
\end{array} \]

So \((3, 3, 1, 1) \) is a parking function.

But \((3, 3, 2, 2) \) is not a parking function, because the 4th car cannot park.
Lemma \(f = (f_1, \ldots, f_n) \quad f_i \in [n] \forall i \)

TFAE:

(A) \(f \) is a parking function

(B) The sequence \(f_1, \ldots, f_n \) contains

 at most 1 entry \(n \);

 at most 2 entries \(\geq n-1 \);

 at most 3 entries \(\geq n-2 \);

 \ldots

 at most \(k \) entries \(\geq n-k+1 \)

 for \(k = 1, 2, \ldots, n \).

\[\# \{ f_i \geq n-k+1 \} \leq k \quad \text{for } k \in [n]. \]

(C) There exists a permutation

\(w_1, \ldots, w_n \) of \(1, 2, \ldots, n \) s.t.

\(f_i \leq w_i \forall i = 1, 2, \ldots, n \)

Exercise. Prove that these 3 conditions are equivalent.

Note: It is clear that

\((A) \implies (B) \)
Example $n = 3$.

All parking functions.

6 permutations:

1 2 3, 1 3 2, 2 1 3
2 3 1, 3 1 2, 3 2 1

and everything obtained from these permutations by decreasing some entries:

1 2 2, 2 1 2, 2 2 1
1 1 3, 1 3 1, 3 1 1
1 1 2, 1 2 1, 2 1 1
1 1 1

In total, $6 + 3 + 3 + 3 + 1 = 16$

parking functions for $n = 3$.

Theorem. There are exactly $(n+1)^n$ parking functions of size n.
Proof. We will modify the setup as follows:

- n cars
- $n+1$ parking spots on a circular road (with counter-clockwise direction)
- preference function $f : \{1, \ldots, n\} \rightarrow \{n+1\}$

The cars park according to the same procedure.

Now all n cars will always park for any preference function $f : \{1, \ldots, n\} \rightarrow \{n+1\}$.

Moreover, one parking spot will never be left empty after all n cars park.
This construction has circular symmetry:

If \(\tilde{f}_i = f_i + 1 \mod n+1 \)
for all \(i \in [n] \),

Then the resulting parking arrangement for \(\tilde{f} \) is obtained from the parking arrangement for \(f \) by shifting it 1 step counter-clockwise.

Example \(n = 3 \)

\[f = (2, 3, 3) \]

\[\tilde{f} = (2, 3, 3) \]

1st spot remains empty

\[f = (3, 4, 4) \]

2nd spot remains empty

\[f = (4, 1, 1) \]

3rd spot remains empty

\[f = (1, 2, 2) \]

4th spot remains empty
Observation. A preference function \(f : [n] \rightarrow [n+1] \) is a parking function iff in the resulting parking arrangement of the cars the \((n+1)\)st spot remains empty.

This means that no car drives past the \((n+1)\)st parking spot. In other words, this is equivalent to parking on a non-circular road.

Let \(F_i \) be the set of preference functions for which \(i \)th spot remains empty.

\[
F_{n+1} = \text{the set of parking functions.}
\]

Because of the circular symmetry

\[
|F_1| = |F_2| = \ldots = |F_{n+1}|
\]

So

\[
\# \{ \text{parking functions} \} = |F_{n+1}|
\]

\[
\frac{1}{n+1} \sum_{f : [n] \rightarrow [n+1]} \#	ext{all preference functions}
\]

\[
= \frac{1}{n+1} \cdot (n+1)^n = (n+1)^{n-1}
\]

\(\square \)
Exercise Find a bijection between parking functions of size n and spanning trees of K_{n+1}.

\[
\text{parking functions} \leftrightarrow \text{labelled trees}
\]

Dyck paths again

Consider a Dyck path P of length $2n$ (i.e. P has n "up" steps and n "down" steps)

Let us label all "up" steps in P by $1, 2, \ldots, n$

(without repetitions) such that the labels in any consecutive sequence of "up" steps increase.

We'll call them labelled Dyck paths.

Example $n = 6$

\[\text{a labelled Dyck path}\]

Theorem The number of labelled Dyck paths of length $2n$ equals $(n+1)^{n-1}$.\\
Let's mark the Appeals so whose top steps can be linked by 1, 2, 5, at least once.

A labelled Dyck path P corresponds to the partition function $f \left(\mathcal{E}, \mathcal{V}_d \right)$ at

$$d = 5$$

If the top steps labelled 1 is on the 5th diagonal.

Example (the above labelled), Dyck path P is $f \left(\mathcal{E}, \mathcal{V}_d \right) = \left(\mathcal{E}, \mathcal{V}_d \right)$

It is also possible to consider the top steps labelled 1, 5

$$d = 5$$

It is also possible to consider the top steps labelled 1, 2

$$d = 5$$

We get

$$f \left(\mathcal{E}, \mathcal{V}_d \right) = \left(\mathcal{E}, \mathcal{V}_d \right)$$

Here vertex i, v_i correspond to the labels in the Dyck path, and the values of E_i correspond to diagonal in the Dyck path.

It is easy to see that the condition that E_i is a perfect function correspond to condition that P is a Pasha path.

Indeed, a lattice path P then $(a_{i,j})$ is $(a_{i,j})$, which is a Dyck path if P is

- no top step on OM line
- at least 1 top step on OM line
- at most 2 top steps on $(a_{i,j})$
- at least 1 top step on $(a_{i,j})$
- at most 2 top steps on $(a_{i,j})$

etc.

These conditions mean that

$$a_{i,j} = \begin{cases} \begin{array}{ll}
0 & \text{if } i < j \\
1 & \text{if } i = j \\
2 & \text{if } i > j
\end{array} \end{cases}$$

etc.

The last condition is (3) that defines partition functions.
Remark. Clearly, if we permute entries in a parking function, we get a parking function. For example

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \end{pmatrix} \mapsto \begin{pmatrix} 5 & 1 & 2 & 4 & 1 & 6 \end{pmatrix}$$

Permutations of $\binom{n}{m}$ correspond to relabellings of labelled Dyck paths.

Thus the equivalence classes of parking function under permutation of entries correspond to usual (unlabelled) Dyck paths.

Propositions 4 weakly increasing parking functions of size n equals the n^{th} Catalan number $C_n = \frac{1}{n+1} \binom{2n}{n}$.

Example $n = 3$.

$C_3 = 5$ weakly increasing parking functions:

$$123, 122, 113, 112, 111.$$
Generalized parking functions.

Fix \(n \geq 1 \) and \(\alpha = (\alpha_1, \ldots, \alpha_n) \) (where \(\alpha_i \)'s are positive integers)

Definition: \((f_1, \ldots, f_n)\) is an \(\alpha \)-parking function if:

- \(f_1, \ldots, f_n \in \{1, 2, \ldots, \alpha_n\} \)
- For all \(k = 1, 2, \ldots, n \)
 \[\# \{ f_i \leq \alpha_k \} = k. \]

Equivalently, the set of \(\alpha \)-parking functions consists of all \((f_1, \ldots, f_n)\) obtained from \((\alpha_1, \ldots, \alpha_n)\) by

- permuting the entries,
 and/or
- decreasing some entries.

For example, the usual parking functions are exactly the \(\alpha \)-parking functions for \(\alpha = (1, 2, 3, \ldots, n) \).
Example \(n = 2 \) \(\alpha = (1, 4) \)

\(\alpha \)-parking functions:

14, 41, 13, 31, 12, 21, 11

7 \(\alpha \)-parking functions for \(\alpha = (1, 4) \).

Theorem. Fix \(n, k, \ell \geq 1 \).

Let \(\alpha = (\ell, \ell + k, \ell + 2k, \ell + 3k, \ldots, \ell + (n - 1)k) \)

Then \(\# \alpha \)-parking functions equals \(\ell \cdot (\ell + k \cdot n)^{n-1} \).

Example (above example)

\(n = 2, \ell = 1, k = 3 \)

\(\# \alpha \)-parking functions

\(= (1 + 2 \cdot 3)^{2-1} = 7 \).
Chip-firing game

(aka. Abelian sandpile model)

This is a simple mathematical model for complicated natural processes such as avalanches.

- [Per Bak, Chao Tang, Kurt Wiesenfeld, 1987]
- [Anders Björner, Laszlo Lovász, Peter Shor, 1991]

\[G = (V, E) \] a connected finite graph with one selected vertex \(q \in V \), called the sink.

We'll assume \(V = \{0, 1, \ldots, m\} \) and \(q = 0 \).

A chip configuration \(C = (C_1, \ldots, C_m) \) is any non-negative integer vector.

We think of \(C_i \) as the number of chips at vertex \(i \).

Example \(G = \)

\[\begin{array}{c}
\text{sink} \\
\cdots \\
\cdots \\
\end{array} \]

a chip configuration

\[C = (4, 0, 2) \]

The arrow indicates chips at the sink \(q \).

The sink is a "black hole": any chip that goes into it "vanishes".
Let \(d_i = \deg G(i) \) degree of vertex \(i \).

If \(C_i \geq d_i \) then \(i \) is called a critical site. We can fire such vertex \(i \) by sending one chip to each neighbour of \(i \).

Example. We can fire vertex 3.

\[
C = (4, 0, 2) \rightarrow (5, 1, 0)
\]

Then we can fire vertex 1.

\[
(5, 1, 0) \rightarrow (2, 2, 1)
\]

Notice that one chip goes into the sink \(q \) and disappears. So the total number of chips decreases.

Now we cannot fire any vertex, because no chips at any vertex < the degree of the vertex.

Def. A chip configuration \((C_1, \ldots, C_n)\) is called stable if \(C_i < d_i \) \(\forall i \).

(i.e. we cannot fire any vertex)
Lemma. For any initial chip configuration $C_{\text{init}} = (G_1, \ldots, G_n)$,

- we will always obtain a stable chip configuration $C_{\text{stab}} = (G'_1, \ldots, G'_n)$ after a finite number of firings.
- The resulting stable configuration C_{stab} is unique, i.e., it depends only on C_{init} but not on a choice of firings.

C_{stab} is called the **stabilization** of the initial config C_{init}.

Example (the previous example)

For $C_{\text{init}} = (4, 0, 2)$ the stabilization is $C_{\text{stab}} = (2, 2, 1)$.

We will arrive to the same stable configuration if we first fire vertex 1 and then fire vertex 3.
Consider the following random model

(1) Start with any initial configuration C_{init}

(2) Stabilize the configuration

(3) randomly select a vertex $i \in \{1, 2, \ldots, n\}$ (with uniform distribution) and add 1 chip to vertex i, i.e. increase c_i by 1.

(3) go to step (1)

Basically, we keep repeating steps (2) and (1) (randomly drop a chip, stabilize, drop a chip, stabilize, etc.)
A stable configuration is called recurrent if it keeps occurring in the random process.

Theorem. A recurrent chip configuration equals the number of spanning trees of the graph G.

Example. $G = \begin{array}{c}
\text{4 vertices} \\
\text{2 edges}
\end{array}$

```
4 0 2 1 0 2 0 1
1 1

- drop a chip at vert. 2
- (Still a stable conf.)
- drop another chip at 1

2 1 0 2 0 1

- etc.
```

Recurrent configurations:
- $(1, 1)$, $(1, 0)$, $(0, 1)$

These are 3 spanning trees of G.

The configuration $(0, 0)$ is stable but not recurrent. It can appear only in initial steps of the random process. But if we run it for a while it can never occur.