18.212 Problem Set 2 (due Friday, April 5, 2019)

Problem 1. Show that the number of non-crossing partitions of the set $\{1, \ldots, n\}$ equals the Catalan number $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$. (A bijective proof is preferable. For example, you can use the fact that C_{n} is equal to the number of Dyck paths with $2 n$ steps.)

Problem 2. (a) Prove the recurrence relation for the signless Stirling numbers of the first kind

$$
c(n+1, k)=n c(n, k)+c(n, k-1) .
$$

(b) Prove the recurrence relation for the Stirling numbers of the second kind:

$$
S(n+1, k)=k S(n, k)+S(n, k-1)
$$

Problem 3. The Bell number $B(n)$ is the total number of partitions of an n element set, i.e., $B(n)=S(n, 1)+S(n, 2)+\cdots+S(n, n)$.

Show that the Bell numbers can be calculated using the Bell triangle:

				1
			1	2
		2	3	5
	5	7	10	15
15	20	27	37	52
\vdots	\vdots	\vdots	\vdots	\vdots

In this triangle, the first number in each row (except the first row) equals the last number in the previous row; and any other number equals the sum of the two numbers to the left and above it. The Bell numbers $B(0)=1, B(1)=1, B(2)=2, B(3)=5, B(4)=15, B(5)=$ $52, \ldots$ appear as the first entries (and also the last entries) in rows of this triangle.

Problem 4. Show that the Bell number $B(n)$ is given by

$$
B(n)=\frac{1}{e} \sum_{k=0}^{\infty} \frac{k^{n}}{k!}
$$

Problem 5. In class, we mentioned two ways to define a lattice.
(I) A set L with two binary operation called "meet" \vee and "join" \wedge that satisfy several axioms.
(II) A poset P such that, for any two elements $x, y \in P$, there is a unique minimal element u such that $u \geq x$ and $u \geq y$, and a unique maximal element v such that $v \leq x$ and $v \leq y$.

Show that these two defintions of lattices are equivalent.

Problem 6. Let L be a finite distributive lattice. Let P be the poset formed by all join-irreducible elements of L. Use axioms of distributive lattices to show that L is isomorphic to $J(P)$.

Problem 7. Let P be a finite poset. Prove Dilworth's theorem that claims that the maximal size $M(P)$ of an anti-chain in P equals the minimal number $m(P)$ of disjoint chains (not necessarily saturated) that cover all elements of P.

Problem 8. (a) Show that the Fibonacci number F_{n+1} equals the number of compositions of n with all parts equal to 1 or 2 , that is, the number of ordered sequences $c_{1} \ldots c_{l}$ such that $c_{1}+\cdots+c_{l}=n$ and all $c_{i} \in\{1,2\}$. For example,

$$
F_{6}=\#\{11111,1112,1121,1211,2111,122,212,221\}=8 .
$$

(b) In class, we gave a recursive construction of the differential poset \mathbb{F} called the Fibonacci lattice. Give a nonrecursive description of \mathbb{F} as a certain order relation on compositions with parts equal to 1 or 2 .
(c) Prove that \mathbb{F} is indeed a lattice.

Problem 9. Let W_{n} be the number of walks with $2 n$ steps on the Hasse diagram of the Young's lattice \mathbb{Y} that start and end at the minimal element $\hat{0}=(0)$. (The walks can have up and down steps in any order.)

For example, $W_{2}=3$, because there are 3 walks with 4 steps:

$$
\begin{aligned}
(0) & \rightarrow(1) \rightarrow(2) \rightarrow(1) \rightarrow(0) \\
(0) & \rightarrow(1) \rightarrow(1,1) \rightarrow(1) \rightarrow(0) \\
(0) & \rightarrow(1) \rightarrow(0) \rightarrow(1) \rightarrow(0)
\end{aligned}
$$

Show that W_{n} equals the number of perfect matchings in the complete graph $K_{2 n}$. Find a closed formula for W_{n}.

Problem 10. Let X and D be two operators that act on polynomials $f(x)$ as follows:

$$
X: f(x) \mapsto x f(x) \quad \text { and } \quad D: f(x) \mapsto f^{\prime}(x)
$$

For $n \geq 0$, define the polynomials $f_{n}(x):=(X+D)^{n}(1)$. For example, $f_{0}=1, f_{1}=x, f_{2}=x^{2}+1, f_{3}=x^{3}+3 x$. Calculate the constant term $f_{n}(0)$ of the polynomial f_{n}.

Problem 11. Fix positive integers k and l. Define the weight function $w(x)$ on boxes $x=(i, j)$ of the $k \times l$ rectangular Young diagram by

$$
w((i, j)):=(i-j+l)(j-i+k)
$$

for $i \in\{1, \ldots, k\}, j \in\{1, \ldots, l\}$.
Show that, for any Young diagram λ that fits inside the $k \times l$ rectangle, we have

$$
\sum_{x \in \operatorname{Add}(\lambda)} w(x)-\sum_{y \in \operatorname{Remove}(\lambda)} w(y)=k \cdot l-2|\lambda| .
$$

Here $\operatorname{Add}(\lambda)$ is the set of all boxes of the $k \times l$ rectangle that can be added to the Young diagram λ; and $\operatorname{Remove}(\lambda)$ is the set of all boxes that can be removed from λ.

Problem 12. Show that the poset $J(J([2] \times[n]))$ is unimodal. (This is the poset of all shifted Young diagrams that fit inside the shifted shape ($n, n-1, \ldots, 1$) ordered by containement.)

Problem 13. Find a closed formula for the number of saturated chains from the minimal element $\hat{0}$ to the maximal element $\hat{1}$ in the partition lattice Π_{n}.

Problem 14. Let $N C_{n}$ be the subposet of the partition lattice Π_{n} formed by all non-crossing partitions of the set $\{1, \ldots, n\}$. The poset $N C_{n}$ is called the lattice of non-crossing partitions.

Find a closed formula for the number of saturated chains from the minimal element $\hat{0}$ to the maximal element $\hat{1}$ in the poset $N C_{n}$.

Problem 15. Find a bijection between partitions of n with all odd parts and partitions of n with all distinct parts.

Problem 16. Prove that the number of partitions of n with all distinct and odd parts equals the number of self-conjugate partitions of n, i.e., partitions λ such that $\lambda^{\prime}=\lambda$.

