
18.212 Problem Set 2 (due Friday, April 5, 2019)

Problem 1. Show that the number of non-crossing partitions of the
set {1, . . . , n} equals the Catalan number Cn = 1

n+1

(
2n
n

)
. (A bijective

proof is preferable. For example, you can use the fact that Cn is equal
to the number of Dyck paths with 2n steps.)

Problem 2. (a) Prove the recurrence relation for the signless Stirling
numbers of the first kind

c(n+ 1, k) = n c(n, k) + c(n, k − 1).

(b) Prove the recurrence relation for the Stirling numbers of the
second kind:

S(n+ 1, k) = k S(n, k) + S(n, k − 1).

Problem 3. The Bell number B(n) is the total number of partitions
of an n element set, i.e., B(n) = S(n, 1) + S(n, 2) + · · ·+ S(n, n).

Show that the Bell numbers can be calculated using the Bell triangle:
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In this triangle, the first number in each row (except the first row)
equals the last number in the previous row; and any other number
equals the sum of the two numbers to the left and above it. The Bell
numbers B(0) = 1, B(1) = 1, B(2) = 2, B(3) = 5, B(4) = 15, B(5) =
52, . . . appear as the first entries (and also the last entries) in rows of
this triangle.

Problem 4. Show that the Bell number B(n) is given by

B(n) =
1
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Problem 5. In class, we mentioned two ways to define a lattice.
(I) A set L with two binary operation called “meet” ∨ and “join” ∧

that satisfy several axioms.
(II) A poset P such that, for any two elements x, y ∈ P , there is a

unique minimal element u such that u ≥ x and u ≥ y, and a unique
maximal element v such that v ≤ x and v ≤ y.

Show that these two defintions of lattices are equivalent.

Problem 6. Let L be a finite distributive lattice. Let P be the poset
formed by all join-irreducible elements of L. Use axioms of distributive
lattices to show that L is isomorphic to J(P ).

Problem 7. Let P be a finite poset. Prove Dilworth’s theorem that
claims that the maximal size M(P ) of an anti-chain in P equals the
minimal number m(P ) of disjoint chains (not necessarily saturated)
that cover all elements of P .

Problem 8. (a) Show that the Fibonacci number Fn+1 equals the
number of compositions of n with all parts equal to 1 or 2, that is, the
number of ordered sequences c1 . . . cl such that c1 + · · ·+ cl = n and all
ci ∈ {1, 2}. For example,

F6 = #{11111, 1112, 1121, 1211, 2111, 122, 212, 221} = 8.

(b) In class, we gave a recursive construction of the differential poset
F called the Fibonacci lattice. Give a nonrecursive description of F as
a certain order relation on compositions with parts equal to 1 or 2.

(c) Prove that F is indeed a lattice.

Problem 9. Let Wn be the number of walks with 2n steps on the Hasse
diagram of the Young’s lattice Y that start and end at the minimal
element 0̂ = (0). (The walks can have up and down steps in any
order.)

For example, W2 = 3, because there are 3 walks with 4 steps:

(0)→ (1)→ (2)→ (1)→ (0)
(0)→ (1)→ (1, 1)→ (1)→ (0)
(0)→ (1)→ (0)→ (1)→ (0)

Show that Wn equals the number of perfect matchings in the com-
plete graph K2n. Find a closed formula for Wn.
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Problem 10. Let X and D be two operators that act on polynomials
f(x) as follows:

X : f(x) 7→ xf(x) and D : f(x) 7→ f ′(x).

For n ≥ 0, define the polynomials fn(x) := (X +D)n(1). For example,
f0 = 1, f1 = x, f2 = x2 + 1, f3 = x3 + 3x. Calculate the constant term
fn(0) of the polynomial fn.

Problem 11. Fix positive integers k and l. Define the weight function
w(x) on boxes x = (i, j) of the k × l rectangular Young diagram by

w((i, j)) := (i− j + l)(j − i+ k),

for i ∈ {1, . . . , k}, j ∈ {1, . . . , l}.
Show that, for any Young diagram λ that fits inside the k × l rec-

tangle, we have∑
x∈Add(λ)

w(x)−
∑

y∈Remove(λ)

w(y) = k · l − 2 |λ|.

Here Add(λ) is the set of all boxes of the k × l rectangle that can be
added to the Young diagram λ; and Remove(λ) is the set of all boxes
that can be removed from λ.

Problem 12. Show that the poset J(J([2]× [n])) is unimodal. (This
is the poset of all shifted Young diagrams that fit inside the shifted
shape (n, n− 1, . . . , 1) ordered by containement.)

Problem 13. Find a closed formula for the number of saturated chains
from the minimal element 0̂ to the maximal element 1̂ in the partition
lattice Πn.

Problem 14. Let NCn be the subposet of the partition lattice Πn

formed by all non-crossing partitions of the set {1, . . . , n}. The poset
NCn is called the lattice of non-crossing partitions.

Find a closed formula for the number of saturated chains from the
minimal element 0̂ to the maximal element 1̂ in the poset NCn.

Problem 15. Find a bijection between partitions of n with all odd
parts and partitions of n with all distinct parts.
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Problem 16. Prove that the number of partitions of n with all distinct
and odd parts equals the number of self-conjugate partitions of n, i.e.,
partitions λ such that λ′ = λ.


