18.212 Problem Set 1 (due Monday, March 04, 2018)

Turn in as many problems as you want. (You don't need to turn in all problems to get a perfect grade in the class. Around 6 problems should be enough.)

Problem 1. In class, we sketched a proof of the formula for the Catalan number $C_{n}=\frac{1}{2 n+1}\binom{2 n+1}{n}$ using cyclic shifts of sequences of ± 1 's. The proof is based on the following two claims. Prove these claims.

Let $\left(e_{1}, \ldots, e_{2 n+1}\right)$ be a sequence such that such that $e_{i} \in\{1,-1\}$, $\#\left\{i \mid e_{i}=1\right\}=n$, and $\#\left\{i \mid e_{i}=-1\right\}=n+1$.
(1) All $2 n+1$ cyclic shifts $\left(e_{i}, \ldots, e_{2 n+1}, e_{1}, \ldots, e_{i-1}\right)$, for $i=1, \ldots, 2 n+$ 1, are different from each other.
(2) Exactly one cyclic shift $\left(e_{1}^{\prime}, \ldots, e_{2 n+1}^{\prime}\right)$ among these $2 n+1$ shifts satisfies $e_{1}^{\prime}+\cdots+e_{j}^{\prime} \geq 0$, for $j=1, \ldots, 2 n$.

Problem 2. Consider the random walk of a man on the integer line \mathbb{Z} such that, at each step, that the probability to go from position i to position $i+1$ is p, and the probability to go from i to $i-1$ is $1-p$. The man "falls off the cliff" if he reaches the position 0 .

Suppose that the man starts at the initial position $i_{0} \geq 1$. Find the probability that he falls off the cliff.

Problem 3. The same setup as in the previous problem. Find the probability that the man starting at position i_{0} falls off the cliff after exactly m steps. (Hint: Use the reflection principle.)

Problem 4. Prove that a permutation is queue-sortable if and only if it is 321 -avoiding.

Problem 5. Prove that a permutation is stack-sortable if and only if it is 231-avoiding.

Problem 6. Find a bijection between 321-avoiding permutations of size n and 231-avoiding permutations of size n.

Problem 7. Find an expression for the number of permutations w of size n such that w is both 321-avoiding and 3412-avoiding.
(Hint: Calculate the number of such permutations for small values of n, then guess the answer.)

Problem 8. Find an expression for the number of permutations w of size n such that w is both 231-avoiding and 4321-avoiding.

Problem 9. In class, we proved part (1) of Schensted's theorem. Prove part (2) of this theorem:

If the Schensted correspondence maps a permutation w to a pair (P, Q) of standard Young tableaux of the same shape λ, then the size of a largest decreasing subsequence in w equals the number of nonzero parts in partition λ (i.e., the number of rows of its Young diagram).

Problem 10. Fix two positive integers m and n. Let w be a permutation of size $m \cdot n+1$. Prove that w either has an increasing subsequence of size $m+1$ or a decreasing subsequence of size $n+1$.
(Hint: You can use properties of Schented correspondence. There is also a direct proof based on the pigenhole principle.)

Problem 11. Find an explicit expression for the number of permutations w of size $m \cdot n$ such that w does not have an increasing subsequence of size $m+1$ nor a decreasing subsequence of size $n+1$.

Problem 12. Prove the "baby hook-length formula":
The number of linear extensions of the poset whose Hasse diagram is a rooted tree T on n vertices equals $n!/ \prod_{v \in T} h(v)$, where the product is over all vertices v of the tree, and the "hook-length" $h(v)$ equals the size of the branch of T growing from vertex v.

Problem 13. For positive integers n_{1}, \ldots, n_{m} and $n=n_{1}+\cdots+n_{m}$, the q-multinomial coefficient is defined as

$$
\left[\begin{array}{c}
n \\
n_{1}, \ldots, n_{m}
\end{array}\right]_{q}:=\frac{[n]_{q}!}{\left[n_{1}\right]_{q}!\cdots\left[n_{m}\right]_{q}!} .
$$

Show that

$$
\left[\begin{array}{c}
n \\
n_{1}, \ldots, n_{m}
\end{array}\right]_{q}=\sum_{w} q^{i n v(w)},
$$

where the sum is over all permutations w of the multset $\left\{1^{n_{1}}, 2^{n_{2}}, \ldots, m^{n_{m}}\right\}$, and $\operatorname{inv}(w)$ is the number of inversions in w. Here i^{n} denotes i, \ldots, i (repeated n times).

Problem 14. Prove the identity for q-binomial coefficients

$$
\left[\begin{array}{c}
2 n \\
n
\end{array}\right]_{q}=\sum_{k=0}^{n} q^{k^{2}}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}
$$

(Hint: Use the interpretation of q-binomial coefficients in terms of Young diagrams, and try to subdivide a Young diagram into several pieces to prove the identity.)

Problem 15. Prove the following noncommutative version of binomial theorem.

Let q be a parameter, and let x, y be two noncommuting variables that satisfy the relation

$$
y x=q x y .
$$

We assume that q commutes with both x and y, i.e., $q x=x q$ and $q y=y q$. Show that

$$
(x+y)^{n}=\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} x^{k} y^{n-k} .
$$

Bonus Problems

Problem 16. Show that the two statistics $\operatorname{inv}(w)$ (the number of inversions) and $\operatorname{maj}(w)$ (the major index) on permutations $w \in S_{n}$ are equidistributed.

Problem 17. An exceedance in a permutation $w \in S_{n}$ is an index $i \in\{1, \ldots, n\}$ such that $w(i)>i$. Similarly, a weak exceedance in a permutation $w \in S_{n}$ is an index $i \in\{1, \ldots, n\}$ such that $w(i) \geq i$. Let $\operatorname{exc}(w)$ be the number of exceedances and $\operatorname{wexc}(w)$ be the number of weak exceedances in a permutation w. Prove that the statistics $\operatorname{exc}(w)$ and $\operatorname{wexc}(w)-1$ on permutations $w \in S_{n}$ (for $n \geq 1$) are equidistributed.

Problem 18. Prove that the number of set-partitions π of the set $[n]:=\{1, \ldots, n\}$ such that, for any $i=1, \ldots, n-1$, the consecutive numbers i and $i+1$ do not belong to the same block of π equals the number of set-partitions of the set $[n-1]$.

Problem 19. For $1 \leq k \leq n / 2$, find a bijection f between k-element subsets of $\{1, \ldots, n\}$ and $(n-k)$-element subsets of $\{1, \ldots, n\}$ such that $f(I) \supseteq I$, for any k-element subset I.

Problem 20. We say that a pair $(i, j), 1 \leq i<j \leq n$, is an odd-length inversion of a permutation $w \in S_{n}$ if $w_{i}>w_{j}$ and $j-i$ is odd. Let $\operatorname{inv}(w)$ be the number of all inversions in w and $\operatorname{oinv}(w)$ be the number of odd-length invesions in w. Prove the identity

$$
\sum_{w \in S_{n}}(-1)^{i n v(w)} x^{o i n v(w)}=\prod_{i=2}^{n}\left(1+(-1)^{i-1} x^{\lfloor i / 2\rfloor}\right)
$$

