18.211 Problem Set 5 (due Friday, November 15, 2019)

Problem 1. For a tree T on n labelled vertices $1, \ldots, n$, let $x^{T}:=$ $\prod_{i=1}^{n} x_{i}^{\operatorname{deg}_{T}(i)}$. Show that

$$
\sum_{T} x^{T}=x_{1} \cdots x_{n}\left(x_{1}+\cdots+x_{n}\right)^{n-2}
$$

where the sum is over all n^{n-2} labelled trees T on n vertices.
(Hint: Some properties of Prüfer's code might help you.)
In the following two problems, $G=(V, E)$ is a graph with positive weights $c(e)>0$ assigned to edges $e \in E$. (The weight $c(e)$ is the cost of edge e.) The cost of a subgraph $H=\left(V, E^{\prime}\right), E^{\prime} \subset E$, of G is defined as $c(H):=\sum_{e \in E^{\prime}} c(e)$. Let's try to use variations of the greedy algorithm to maximize the cost of several kinds of subgraphs of G.
Problem 2. We would like to find a matching M in G with maximal possible cost $c(M)$ among all matchings of G. Let us pick an edge e_{1} with maximal cost $c\left(e_{1}\right)$, then pick an edge e_{2} with maximal possible cost $c\left(e_{2}\right)$ among all edges e_{2} such that $\left\{e_{1}, e_{2}\right\}$ is a matching, then pick an edge e_{3} with maximal possible cost $c\left(e_{3}\right)$ among all edges such that $\left\{e_{1}, e_{2}, e_{3}\right\}$ is a matching, etc. Will this algorithm always produce a matching with maximal possible cost? Prove this or find a counterexample.
Problem 3. We would like to find a subgraph $H=\left(V, E^{\prime}\right)$ of G such that its complementary subgraph $G \backslash H=\left(V, E \backslash E^{\prime}\right)$ is connected and H has maximal possible cost among all subgraphs of G with this property. Let us pick an edge e_{1} with maximal cost $c\left(e_{1}\right)$ among all edges of G such that $G \backslash\left\{e_{1}\right\}$ is connected, then pick an edge e_{2} with maximal possible cost $c\left(e_{2}\right)$ among all edges e_{2} such that $G \backslash\left\{e_{1}, e_{2}\right\}$ is still connected, then pick an edge e_{3} with maximal possible cost $c\left(e_{3}\right)$ among all edges such that $G \backslash\left\{e_{1}, e_{2}, e_{3}\right\}$ is still connected, etc. Will this algorithm always produce a subgraph with the needed property? Prove this or find a counterexample.
Problem 4. Calculate the number of spanning trees of the product $K_{3} \times K_{3}$ of two complete graphs K_{3}.
(The product of two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ is the graph $G_{1} \times G_{2}$ on the vertex set $V_{1} \times V_{1}=\left\{(u, v) \mid u \in V_{1}, v \in V_{2}\right\}$ with edges of the form $\left\{(u, v),\left(u, v^{\prime}\right)\right\}$, for any $u \in V_{1}$ and $\left\{v, v^{\prime}\right\} \in E_{2}$, and of the form $\left\{(u, v),\left(u^{\prime}, v\right)\right\}$, for any $\left\{u, u^{\prime}\right\} \in E_{1}$ and $v \in V_{2}$.)
Problem 5. Calculate the number of spanning trees of the complete biparite graph $K_{m, n}$.

Problem 6. Find the number of perfect matchings of the bipartite graph $G \subset K_{n, n}$ on the vertices $1, \ldots, n, 1^{\prime}, \ldots, n^{\prime}$ such that the vertices i and j^{\prime} are connected by an edge in G if and only if $j \leq i+3$.

Problem 7. Fix $n \geq 3$. Let C be the graph on n vertices that consists of a single cycle with n edges. Show that the number of all (not necessarily perfect) matchings of C equals the sum of two Fibonacci numbers $F_{n+1}+F_{n-1}$. (For example, the 3 -cycle has $F_{4}+F_{2}=3+1=4$ matchings, namely, the empty matching and the 3 matchings with a single edge.)

Problem 8. Let $G \subset K_{n-1, n}$ be a biparite graph on the vertices $1, \ldots, n-1$ (the left part) and $1^{\prime}, 2^{\prime}, \ldots, n^{\prime}$ (the right part). Let $N_{i}:=\left\{j^{\prime} \mid\left(i, j^{\prime}\right)\right.$ is an edge of $\left.G\right\}$, for $i \in[n-1]$. Show that the following two conditions are equivalent:
(A) For any $j \in[n]$, there exists a matching in G (with $n-1$ edges) that covers all vertices of G except the vertex j^{\prime}.
(B) For any distinct $i_{1}, \ldots, i_{k} \in[n-1]$, we have

$$
\left|N_{i_{1}} \cup N_{i_{2}} \cup \cdots \cup N_{i_{k}}\right| \geq k+1
$$

Bonus Problems

Problem 9. Find the number of spanning trees of the complete triparite graph $K_{m, n, k}$. (The graph $K_{m, n, k}$ is the graph with $m+n+k$ vertices $1, \ldots, m, 1^{\prime}, \ldots, n^{\prime}, 1^{\prime \prime}, \ldots, k^{\prime \prime}$, whose edges are $\left(i, j^{\prime}\right),\left(i, l^{\prime \prime}\right)$, and $\left(j^{\prime}, l^{\prime \prime}\right)$, for any $\left.i \in[n], j \in[m], l \in[k].\right)$
Problem 10. Let D be a Dyck path with $2 n$ steps. If the i th "up" step in D is the line segment $[(x, y),(x+1, y+1)]$, we define its height as $h_{i}=h_{i}(D):=y+1$. (For example, for the Dyck path represented by the sequence $(1,1,1,-1,1,-1,-1,1,-1,-1)$, the heights are $h_{1}=1$, $h_{2}=2, h_{3}=3, h_{4}=3$, and $h_{5}=2$.)

Find a closed expression for the sum

$$
\sum_{D} \prod_{i=1}^{n} h_{i}(D)
$$

over all Dyck paths D with $2 n$ steps.

