### 18.211 Problem Set 2 (due Friday, October 4, 2019)

Problem 1. Find the minimal number of adjacent transpositions needed to transform the permutation $1,2,3,4,5,6,7,8,9,10$ into the permutation $6,7,8,9,10,1,2,3,4,5$.
Problem 2. Fix two nonnegative integers $m$ and $n$. Find a closed expression for the sum of binomial coefficients

$$
\sum_{a=0}^{m} \sum_{b=0}^{n}\binom{a+b}{a}
$$

Problem 3. For an integer $n \geq 3$, prove the following identity for $q$-binomial coefficients:

$$
\left[\begin{array}{c}
n+3 \\
n
\end{array}\right]_{q}=\sum_{k=0}^{3} q^{k^{2}}\left[\begin{array}{l}
3 \\
k
\end{array}\right]_{q}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} .
$$

Problem 4. Prove that the number of compositions of $n$ with all parts greater than or equal to 2 equals the Fibonacci number $F_{n-1}$.
Problem 5. Prove that the number of compositions of $n$ with all odd parts equals the Fibonacci number $F_{n}$.

Problem 6. Fix two integers $n \geq 0$ and $k \geq 2$. Show that the following 3 numbers are equal:
(a) The number of compositions of $n$ with parts equal to 1 or $k$.
(b) The number of compositions of $n+k$ with all parts greater than or equal to $k$.
(c) The number of compositions of $n+1$ with all parts congruent to 1 modulo $k$.

Problem 7. Use the formula $x^{n}=\sum_{k=0}^{n} S(n, k)(x)_{k}$ to find explicit expressions for the Stirling numbers of the second kind $S(n, 1), S(n, 2)$, $S(n, 3)$ and $S(n, 4)$ as linear combinations of $1^{n}, 2^{n}, 3^{n}$, and $4^{n}$.

Problem 8. Let $p(n)$ denote the number of integer partions of $n$. Show that $p(n)-p(n-1)$ equals the number of integer partitions of $n$ with all parts greater than or equal to 2 .
Problem 9. Fix two integers $n \geq 0$ and $k \geq 1$. Show that the following 3 numbers are equal:
(a) The number of integer partitons of $n$ with at most $k$ parts.
(b) The number of integer partitions of $n+k$ with exactly $k$ parts.
(c) The number of integer partitions of $n$ with all parts less than or equal to $k$.

Problem 10. Show that the number of integer partitions of $n$ with odd parts equals the number of integer partitions of $n$ with all distinct parts.

